Skip to main content
Log in

Photoelasto-plastic studies on brittle fracture of high-polymer solids

A simple photoelasto-plastic method for the determination of stress-concentration factors in plane-elasticity problems is suggested on the basis of experimental results

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The mechanism of brittle fracture of high-polymer solids is experimentally investigated under one-or two-dimensional stress states by a new photoelastoplastic method suggested by the author. The application of the photoelasto-plastic method on the brittle-fracture problem is based on the principle that breaking stress can be computed in brittle fracture by the measurement of the fringe orderN B of isochromatic lines at fracture point.

Bending under three-point and four-point loads, and the plane problems, some having stress concentration and others being under contacting load, are examined by using rigid polyester cast resin containing styrol as a model specimen; and, in conclusion, the brittle fracture of high-polymer solids under one- or two-dimensional stress states is decided by the constant tensile stress, whose magnitude depends only upon the material used as a model specimen, and is larger than its ultimate tensile strength.

Many kinds of factors in fracture are defined, and stress-concentration factors in fracture are compared with stress-concentration factors in elasticity. A new photoelasto-plastic simple method for the determination of stress-concentration factors in elasticity is suggested by utilization of the experimental results on this brittle fracture of high-polymer solids and is examined on the perforated plane problem having finite width under tension in comparison with theoretical analysis and the experimental results by other measuring methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

σ t :

tensile stress, Kg/mm2

ε t :

tensile strain, %

N :

fringe order of isochromatic line, F.O.

λ:

wave length of monochromatic, circularly polarized light, Å

α:

photoelastic sensitivity, F.O./Kg/mm

N B :

fracture fringe order at fracture point in test specimen, F.O.

t :

thickness of plate test specimen, mm

1 - σ2):

difference of principal stresses, Kg/mm2

\({\bar \sigma }\) :

effective stress, Kg/mm2

\(\bar \varepsilon\) :

effective strain, %

M B :

breaking bending moment, Kg/mm

b σBN :

extreme fiber stress at fracture measured by photoelasto-plastic method, Kg/mm2

b σB cal :

extreme fiber stress at fracture computed from breaking bending moment, Kg/mm2

σT :

ultimate tensile strength of test specimen, Kg/mm2

σC :

ultimate compressive strength of test specimen, Kg/mm2

c :

distance between two supports for a beam in three-point bending, mm

σA, σE :

stress at pointsA andE, respectively, of perforated-plate specimen, Kg/mm2

l :

initial length of specimen, mm

w :

initial width of specimen, mm

d :

initial diameter of circular hole in perforated-plate specimen, mm

σ c ′, ε c ′:

apparent compressive stress and strain for perforated-plate specimen, computed on the basis of the cross-sectional area without a hole, Kg/mm2, %

P :

applied load, Kg

c σm :

mean compressive stress in plate specimen in the cross section without a hole, Kg/mm2

c σBM :

mean compressive stress in plate specimen in the cross section without a hole at fracture, Kg/mm2

c σBN :

fracture stress at fracture point of plate specimen under compressive load, measured by photoelasto-plastic method, Kg/mm2

k A ,k E :

analytical value of stress-concentration factor in elasticity at pointsA andE, respectively, for perforated specimen under uniform tension, computed on the basis of mean stress in the cross section with a hole

k A′ ,k E′ :

analytical value of stress-concentration factor in elasticity at pointsA andE, respectively, for perforated specimen under uniform tension, computed on the basis of mean stress in the cross section without a hole

N max :

maximum fringe order of isochromatic lines, F.O.

d P :

diameter of circular, load-carrying pin, mm

t σBN :

fracture stress at fracture point of plate specimen under tensile load, measured by photoelasto-plastic method, Kg/mm2

t σBM :

mean tensile stress in plate specimen in the cross section without a hole, at fracture, Kg/mm2

P B :

breaking load, Kg

t P B :

breaking tensile load, Kg

References

  1. Ito, K., “Studies on Photoelasto-plastic Mechanics (I): On the Yielding and Strain Figure of Ductile Linear Polymer Solids,” J. Sci. Res. Inst., No.1417, 50,19–28 (1956).

    Google Scholar 

  2. Nadai, A., Theory of the Flow and Fracture of Solids,McGraw-Hill, New York (1950).

    Google Scholar 

  3. Ito, K., “A New Simple Measuring Method for Temperature Dependence of Mechanical Behaviors of High Polymer Solids,” J. Sci. Res. Inst., No.1359, 48,154–165 (1954).

    Google Scholar 

  4. Ito, K., “Measuring Temperature Dependence of Mechanical Properties of Plastics,” Modern Plastics,167–172 (November 1957).

  5. Mönch, E., “Die Dispersion der Doppelbrechung als Mass für die Plastizität bei Spannungsoptischen Versuchen,” Forschung,Bd. 21, Heft 1, S20–25 (1955).

    Google Scholar 

  6. Ito, K., “Studies on the Straining of High Polymer Solids,” J. Pol. Sci., 27, No.115, 419–431 (January, 1958).

    Article  Google Scholar 

  7. Kleine-Albers, August, “Verhalten harter Thermoplastischer Kuntstoffe bei Spanlose Formgebung,” Kunststoffe,Bd. 45, Heft 7, S.276–289 (1955).

    Google Scholar 

  8. Leven, M. M., “A New Material for Freezing Three-Dimensional Photoelasticity,” Proc. Soc. Exptl. Stress Analysis, 6, No.1, 19–28 (1948).

    Google Scholar 

  9. Ito, K., “On the New Materials for Freezing Three Dimensional Photoelasticity,” Repts. Sci. Res. Inst., 30,233–248 (1954).

    Google Scholar 

  10. Ballet, M., andMallet, G., “Photoelasticimetrie—Sur l'utilisation d'une resine ethoxyline en photoelasticimetrie a trois dimensions selon la technique du figeage,” Compt. rend.,Tome 233, 846–847 (1951).

    Google Scholar 

  11. Nisida, M., and Hondo, M., “Photoelastic Investigation on the Stress Concentration Due to Intersecting Holes,” Proc. 5th Japan Natl. Congress Appl. Mech.,131–134 (1955).

  12. Ito, K., andFukui, S., “Photoelastic Investigation of Stress Distribution in a Plate Having Two Circular Holes,” Bull. Inst. Phys. Chem. Res., 23,95–98 (1948).

    Google Scholar 

  13. Hetenyi, M., “A Study in Photoelasticity,” Proc. First U. S. Natl. Congr. Appl. Mech.,499–502 (1950).

  14. Fried, B., and Shoup, N. H., “The Photoelastic Effect in the Region of Large Deformation in Polyethylene,” Proc. Second U. S. Natl. Congr. Appl. Mech.,477–483 (1954).

  15. Mönch, E., “Die Dispersion der Doppelbrechung bei Zelluloid als Plastizitätsmass in der Spannungsoptik,” Z. Angewandte Physik,Bd. 6, Heft 8, S.371–375 (1954).

    Google Scholar 

  16. Fried, B., “Some Observation on Photoelastic Materials Stressed beyond the Elastic Limit,” Proc. Soc. Exptl. Stress Analysis, 8, No.2, 143–148 (1951).

    Google Scholar 

  17. Jira, R., “Das mechanische und spannungsoptische Verhalten von Zelluloid bei zweiachsiger Beanspruchung und der Nachweis seiner Eignung fur ein photoplastisches Verfahren, Konstruktion,9, Jahrg. Heft 11, S.438–449 (1957).

    Google Scholar 

  18. Hiltscher, R., “Theorie und Anwendung der Spannungsoptik in elastoplastischen Gebiete,”VDI, Bd. 97, Nr.2, S.49–58 (1955).

    Google Scholar 

  19. Hiltscher, R., “Spannungsoptische Untersuchung elastoplastischer Spannungszustände,” VDI,Bd. 95, Nr.23, S.777–781 (1953).

    Google Scholar 

  20. Stein, R. S. Krimm, S., andTobolsky, A. V., “An Investigation of the Relationship between Polymer Structure and Mechanical Properties, Part III: Thermodynamic and Optical Analysis of the Behavior of Polyethylene, Polyvinyl Chloride and Lactoprene,” Textile Research Jnl., 19,8–22 (January 1949).

    Google Scholar 

  21. Nakanishi, F., “On the Yield Point of Mild Steel,” Proc. World Engrg. Congr., Tokyo, III,Engrg. Sci., Part I, 235–261 (1929).

  22. Mylonas, C., Drucker, D. C., andIsberg, L., “Brittle Fracture Initiation Test,” The Welding Jnl., 36 (1),Research Suppl., 9s to 17s (1957).

    Google Scholar 

  23. Frocht, M. M., “The Behavior of a Brittle Material at Fracture,” J. Appl. Mech., 3, No.3, A99-A103 (1946).

    Google Scholar 

  24. Howland, R. C. J., “On the Stresses in the Neighbourhood of a Circular Hole under Tension,” Phil. Trans. Roy. Soc. London, Ser. A, 229,49–86 (1930).

    MATH  Google Scholar 

  25. Howland, R. C. J., andStevenson, A. C., “Bi-Harmonic Analysis in a Perforated Strip,”, 232,155–222 (1932).

    Google Scholar 

  26. Ishida, M., and Nakagawa, K., “On the Stress Gradients in Tension and Bending of a Perforated Strip,” Proc. Third Japan Natl. Congr. Appl. Mech.,1–4 (1953).

  27. Bichley, W. G., “The Distribution of Stress Around a Circular Hole in a Plate,” Phil. Trans. Roy. Soc. London, Ser. A, 227,383–415 (1928).

    MATH  Google Scholar 

  28. Knight, R. C., “The Action of a Rivet in a Plate of Finite Width” Phil. Mag., 19,517–540 (1935).

    MATH  Google Scholar 

  29. Coker, E. G., “Photo-elasticity,” Jnl. Franklin Inst., 199, No.3, 289–331 (1923).

    Google Scholar 

  30. Frocht, M. M., andHill, H. N., “Stress-Concentration Factors around a Central Circular Hole in a Plate Loaded Through Pin in the Hole,” J. Appl. Mech., 7, No.1, A5-A9 (1940).

    Google Scholar 

  31. Nisida, M., andHondo, M., “Photoelastic Investigation on Stress Concentration due to Circular Hole (III), Rept. Sci. Res. Inst., 30, No.2, 49–62 (1954).

    Google Scholar 

  32. Wahl, A. M., andBeeuwkes, R., Jr., “Stress Concentration Produced by Holes and Notches,” Trans. ASME, 56,617–625 (1934).

    Google Scholar 

  33. Frocht, M. M., Guernsey, Jr., R., andLandsberg, D., “Photoelasticity—A Precision Instrument of Stress Analysis,” Proc. Soc. Exptl. Stress Anal., 11, No.1, 105–114 (1953).

    Google Scholar 

  34. Hetenyi, M., Handbook of Experimental Stress Analysis,John Wiley & Sons, Inc., New York (1950).

    Google Scholar 

  35. Kuroda, M., andTakahashi, T.On the Measuring Method of Stress Concentration by Lüder's Fringe Lines,” Jnl. Japan Soc. MechanicalEngrs., 44, No.296, 827–829 (1941).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, K. Photoelasto-plastic studies on brittle fracture of high-polymer solids. Experimental Mechanics 1, 159–168 (1961). https://doi.org/10.1007/BF02327587

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02327587

Keywords

Navigation