Skip to main content
Log in

Sol-Gel Synthesis of Nano-Scaled BaTiO3, BaZrO3 and BaTi0.5Zr0.5O3 Oxides via Single-Source Alkoxide Precursors and Semi-Alkoxide Routes

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol-gel synthesis of nano-sized BaTiO3, BaZrO3 and BaTi0.5Zr0.5O3 ceramics using alkoxide and semi-alkoxide routes has been investigated and the pervoskites obtained have been compared with respect to crystallisation temperature, crystallite size and compositional purity. Heterometal alkoxides containing two (for BaTiO3 and BaZrO3) and three (for BaTi0.5Zr0.5O3) different metals were used as single-source precursors in the alkoxide route while semi-alkoxide synthesis was performed by reacting barium hydroxide or acetate with Ti and/or Zr alkoxides. Semi-alkoxide synthesis also produces stoichiometric and phase-pure oxides, however, at temperatures higher than 1000°C. At temperatures below 1000°C, BaCO3 and small amounts of other undesired phases (e.g., BaTi2O4) were present in the oxides derived from semi-alkoxide synthesis. Thermal behaviour, studied by TGA/DTA measurements, shows that thermal decomposition occurs in three major steps and depends on the educt composition and the synthesis route. Among alkoxide derived powders, crystalline BaTi0.5Zr0.5O3 phase is formed at 400°C while complete crystallisation of BaMO3 ceramics occurs around 600°C. The cubic to tetragonal phase transition for BaTiO3 is clearly observed at relatively low-temperature of 800°C. The stoichiometry and phase homogeneity of the obtained powders were demonstrated by energy dispersive X-ray analysis and powder diffractometry. The averaged crystallite size of the obtained nano-ceramics was evaluated using the FormFit programme. SEM and TEM observations revealed a high microstructural uniformity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A.J. Moulson and J.M. Herbert, Electroceramics: Materials, Properties and Applications (Chapman and Hall, London, 1986).

    Google Scholar 

  2. G. Goodman, in Ceramic Materials for Electronics, edited by R.C. Buchanan (Marcel-Dekker, New York, 1986).

    Google Scholar 

  3. E. Wu, K.C. Chen, and J.D. Mackenzie, in Better Ceramics Through Chemistry, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (North Holland, Amsterdam, 1984).

    Google Scholar 

  4. R.E. Riman, in High-performance Ceramics, edited by R. Pugh and L. Bergstroem (Marcel-Dekker, New York, 1993).

    Google Scholar 

  5. R.C. Mehrotra, Chemtracts 2, 338 (1990).

    Google Scholar 

  6. C.D. Chandler, C. Roger, and M.J. Hampden-Smith, Chem. Rev. 93, 1205 (1993).

    Google Scholar 

  7. L.L. Hench and J.K. West, Chem. Rev. 90, 33 (1990).

    Google Scholar 

  8. K. Uchino, E. Sadanaga, and T. Hirose, J. Am. Ceram. Soc. 72, 1555 (1989).

    Google Scholar 

  9. P.P. Phule and S.H. Risbud, J. Mater. Sci. 25, 1169 (1990).

    Google Scholar 

  10. H.P. Beck, F. Mueller, R. Haberkorn, and D. Wilhelm, Nanostructured Materials 6, 659 (1995).

    Google Scholar 

  11. B. Gissibl, D. Wilhelm, R. Wuerschum, H. Herrig, F. Mueller, M. Kelsch, K. Reimann, F. Phillipp, H.P. Beck, R. Hempelmann, and H.E. Schaefer, Nanostructured Materials 9, 619 (1997).

    Google Scholar 

  12. K.K. Deb, M.D. Hill, and J.F. Kelly, J. Mater. Res. 7, 3296 (1992).

    Google Scholar 

  13. T.R. Armstrong, L.E. Morgens, A.K. Maurice, and R.C. Buchanan, J. Am. Ceram. Soc. 72, 605 (1989).

    Google Scholar 

  14. D.M. Tahan, A. Safari, and L.C. Klein, J. Am. Ceram. Soc. 79, 1593 (1996).

    Google Scholar 

  15. N. Kamehara, M. Tsukada, J.S. Cross, and K. Kurihara, J. Ceram. Soc. Jpn. 105, 801 (1997).

    Google Scholar 

  16. G. Pfaff, J. Mater. Chem. 2, 591 (1992).

    Google Scholar 

  17. P. Nanni, M. Leoni, V. Buscaglia, and G. Aliprandi, J. Europ. Ceram. Soc. 14, 85 (1990).

    Google Scholar 

  18. C. Lemoine, B. Gilbert, B. Michaux, J.P. Pirard, and A.J. Lecloux, J. Non-Cryst Solids 1, 175 (1994).

    Google Scholar 

  19. M. Veith, S. Mathur, and C. Mathur, Polyhedron 17, 1005 (1998).

    Google Scholar 

  20. R.C. Mehrotra, A. Singh, and S. Sogani, Chem. Rev. 94, 1643 (1994).

    Google Scholar 

  21. R.C. Mehrotra, J. Non-Cryst. Solids 100, 1 (1988).

    Google Scholar 

  22. Y. Suyama, and M. Nagawara, J. Am. Ceram. Soc. 77, 603 (1994).

    Google Scholar 

  23. E.P. Turevskaya, D.V. Berdyev, and N. Ya. Turova, J. Sol-Gel Sci. Tech. 8, 111 (1997).

    Google Scholar 

  24. L.G. Hubert-Pfalzgraf, S. Daniele, J.M. Decans, and J. Vaissermann, J. Sol-Gel Sci. Tech. 8, 49 (1997).

    Google Scholar 

  25. R.E. Rocheleau, Z. Zhang, J.W. Gilje, and J.A. Meese-Marktscheffel, Chem. Mater. 6, 1615 (1994).

    Google Scholar 

  26. K.B. Pflanz, R. Riedel, and H. Schmiel, Adv. Mater. 4, 662 (1992).

    Google Scholar 

  27. D.J. Eichorst and D.A. Payne, Mater. Res. Soc. Symp. Proc. 271, 331 (1992).

    Google Scholar 

  28. M. Veith and S. Kneip, J. Mater. Sci. Lett. 13, 335 (1994).

    Google Scholar 

  29. M. Veith, S. Faber, R. Hempelman, S. Janssen, J. Prewo, and H. Eckerlebe, J. Mater. Sci. 31, 2009 (1996).

    Google Scholar 

  30. M. Veith, S. Kneip, A. Jungmann, and S. Hüfner, Z. Anorg. Allg. Chem. 623, 1507 (1997).

    Google Scholar 

  31. M. Veith, A. Altherr, N. Lecerf, S. Mathur, K. Valtchev, and E. Fritscher, Nanostructured Materials 12, 191 (1999).

    Google Scholar 

  32. D.C. Bradley, R.C. Mehrotra, and D.P. Gaur, Metal Alkoxides (Academic Press, London, 1978).

    Google Scholar 

  33. R. Haberkorn, FormFit—Programme for Particle Size Distribution From XRD Scans (University of Saarland, Saarbruecken, Germany, 1997).

    Google Scholar 

  34. M. Veith, S. Mathur, V. Huch, and T. Decker, Eur. J. Inorg. Chem. 1327 (1998).

  35. M. Veith and S. Mathur, manuscript in preparation.

  36. V.W. Day, T.A. Eberspacher, W.G. Klemperer, and C.W. Park, J. Am. Chem. Soc. 115, 8469 (1993).

    Google Scholar 

  37. V.W. Day, T.A. Eberspacher, W.G. Klemperer, C.W. Park, and F.S. Rosenberg, J. Am. Chem. Soc. 113, 8190 (1991).

    Google Scholar 

  38. V.W. Day, T.A. Eberspacher, W.G. Klemperer, C.W. Park, and F.S. Rosenberg, in Chemical Processing of Advanced Materials, edited by L.L. Hench and J.K. West (Wiley, New York, 1992).

    Google Scholar 

  39. JCPDS Powder Diffraction File, File Card Nos. [5–626], [31–174] and [6–399] Joint Committee for Powder Diffraction Standards (1990).

  40. A.R. West, Solid State Chemistry VCH (1992).

  41. H.P. Beck, R. Haberkorn, and W. Eiser, manuscript in preparation.

  42. R.A. Nyquist, C.L. Putzy, and M.A. Leugers, The Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts (Academic Press, 1997).

  43. M. Veith, A. Altherr, and H. Wolfanger, Adv. Materials 5, 87 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veith, M., Mathur, S., Lecerf, N. et al. Sol-Gel Synthesis of Nano-Scaled BaTiO3, BaZrO3 and BaTi0.5Zr0.5O3 Oxides via Single-Source Alkoxide Precursors and Semi-Alkoxide Routes. Journal of Sol-Gel Science and Technology 17, 145–158 (2000). https://doi.org/10.1023/A:1008795419020

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008795419020

Navigation