Skip to main content
Log in

Isothermal and non-isothermal polymerization of a new bone cement

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A new bone cement based on poly(ethylmethacrylate) (PEMA), hydroxyapatite powder (HA) and n-butylmethacrylate monomer (n-BMA) has been studied using isothermal and non-isothermal polymerization. Methacrylate monomers are highly reactive and release a considerable amount of heat during polymerization. A quantitative understanding of the methacrylate polymerization is necessary because the thermal history of the polymerization has considerable influence on the final properties of a bone cement. In the first part, polymerization kinetics are analysed by means of differential scanning calorimetry (DSC). DSC data are used to evaluate a phenomenological model describing the cure kinetics of this new bone cement. In the second part, a kinetic model coupled with the energy balance is used to obtain temperature and degree of conversion profiles in the bone–cement–prosthesis system, under non-isothermal conditions, as function of initial temperature and thickness of the cement. Material properties, boundary and initial conditions and the kinetic behaviour are the input data for the numerically solved heat-transfer model. The temperature at the bone/cement interface, can be considered as a weak point, often responsible for total joint replacement failure. For this particular bone cement exhibiting a low exotherm and low glass transition temperature, the interfacial temperature is lower than the threshold level for thermal tissue damage (50 °C). The conversion occurs almost completely, avoiding problems with unreacted monomers that can be released by the cement, giving rise to tissue damage. © 1998 Chapman & Hall

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. C. Noble, Biomaterials 4 (1983) 94.

    Google Scholar 

  2. G. M. Brauer, D. R. Steinberger and J. W. Stansbury, J. Biomed. Mater. Res. 20 (1986) 839.

    Google Scholar 

  3. S. Saha and S. Pal, ibid. 18 (1984) 435.

    Google Scholar 

  4. C. D. Jefferiss, A. J. C. Lee and R. S. M. Ling, J. Bone Jt Surg. 57 B (1975) 511.

    Google Scholar 

  5. G. Odian, “Principles of polymerization” (McGraw-Hill, New York, 1988).

    Google Scholar 

  6. I. Mita, K. Horie, JMS-Rev. Macromol. Chem. Phys. C 27 (1) (1987) 91.

    Google Scholar 

  7. A. Maffezzoli, R. Terzi and L. Nicolais, J. Mater. Sci. Mater. Med. 6 (1995) 155.

    Google Scholar 

  8. L. W. Swenson, D. J. Schurman and R. L. Piziali, J. Biomed. Mater. Res. 15 (1981) 83.

    Google Scholar 

  9. E. J. Harper, J. C. Behiri and W. Bonfield, J. Mater. Sci. Mater. Med. 6 (1995) 799.

    Google Scholar 

  10. R. L. Clarke and M. Braden, J. Dental Res. 61 (1982) 997.

    Google Scholar 

  11. L. Migliaresi, L. Fambri and J. Kolarik, Biomaterials 15 (1994) 875.

    Google Scholar 

  12. J. A. Feliu, C. Sottile, C. Bassani, J. Ligthart and G. Maschio, Chem. Eng. Sci. 51 (1996) 2793.

    Google Scholar 

  13. J. M. Yang, J. W. You, H. L. Chen and C. H. Shih, J. Biomed. Mater. Res. 33 (1996) 83.

    Google Scholar 

  14. J. M. Kenny, A. Maffezzoli and L. Nicolais, Compos. Sci. Technol. 38 (1990) 339.

    Google Scholar 

  15. F. Mark, “Encyclopedia of Chemical Technology”, Vol. 15, 3rd Edn, (Wiley, New York, 1981).

    Google Scholar 

  16. J. M. Kenny and A. Trivisano, Polym. Eng. Sci. 31 (1991) 1426.

    Google Scholar 

  17. A. Maffezzoli, A. Della Pietra, S. Rengo, L. Nicolais and G. Valletta, Biomaterials 15 (1994) 1221.

    Google Scholar 

  18. J. Brandrup and E. H. Immergut, “Polymer Handbook” (Wiley Interscience, 1989).

  19. K. A. High, H. B. Lee and D. T. Turner, Macromolecules 12 (1979) 332.

    Google Scholar 

  20. J. M. Dionisio and K. F. O'Driscoll, J. Polym. Sci. Polym. Chem. 18 (1980) 241.

    Google Scholar 

  21. R. Sack, G. V. Schulz and G. Meyerhoff, Macromolecules 21 (1988) 3345.

    Google Scholar 

  22. A. Maffezzoli, R. Terzi and L. Nicolais, J. Mater. Sci. Mater. Med. 6 (1995) 161.

    Google Scholar 

  23. B. N. Feinberg, “Handbook of Engineering in Medicine and Biology” (CRC Press, Cleveland, 1978).

    Google Scholar 

  24. F. Kreith, “Principles of Heat Transfer” (Dun-Donnelley, New York, 1973).

    Google Scholar 

  25. T. Kijima and M. Tsutsumi, J. Am. Ceram. Soc. 62 (1979) 9.

    Google Scholar 

  26. S. Saha and S. Pal, J. Biomed. Mater. Res. 18 (1984) 435.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borzacchiello, A., Ambrosio, L., Nicolais, L. et al. Isothermal and non-isothermal polymerization of a new bone cement. Journal of Materials Science: Materials in Medicine 9, 317–324 (1998). https://doi.org/10.1023/A:1008898712929

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008898712929

Keywords

Navigation