Skip to main content
Log in

New starch-based thermoplastic hydrogels for use as bone cements or drug-delivery carriers

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The development of new biodegradable hydrogels, based on corn starch/cellulose acetate blends, produced by free-radical polymerization with methyl methacrylate monomer (MMA) and/or an acrylic acid monomer (AA), is reported. The polymerization was initiated by a redox system consisting of a benzoyl peroxide and 4-dimethlyaminobenzyl alcohol at low temperature. These hydrogels may constitute an alternative to the materials currently used as bone cements or drug-delivery carriers. Swelling studies were carried out, as a function of pH and temperature, in buffered solutions. The xerogels were further characterized by Fourier transform–infrared spectroscopy. Tensile and compression tests, and dynamic mechanical thermal analysis were used to assess the mechanical performance of the developed materials. The fracture surfaces were observed by scanning electron microscopy. The developed materials are sensitive to the pH, showing a clear reversible transition in a relatively narrow interval of pH, which is just in the range of physiological conditions. These properties make the materials developed in this study very promising for biomedical applications. Fickian-type diffusion is the mechanism predominant in these systems, except for the composition with a higher concentration of AA, that corresponds to the most desirable kinetical behavior for controlled release (case II-transport mechanism). Furthermore, the results obtained in the mechanical tests are in the range of those reported for typical PMMA bone cements, showing that it is possible to develop partially degradable cements with an adequate mechanical behavior. © 1998 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. A. Peppas and A. G. Mikos, in “Hydrogels in Medicine and Pharmacy-Fundamentals”, Vol. I, edited by N. A. Peppas (CRC Press, Boca Raton, FL, 1988) p. 1.

    Google Scholar 

  2. P. A. Netti, J. C. Shelton, P. A. Revell, C. Pirie, S. Smith, L. Ambrosio, L. Nicolais and W. Bonfield, Biomaterials 14 (1993) 1098.

    Google Scholar 

  3. S. Woerly, ibid. 14 (1993) 1056.

    Google Scholar 

  4. N. A. Peppas, in “Biomaterials Science–An Introduction to Materials in Medicine-Part I”, edited by B. D. Ratner, A. S. Hoffman, F. J. Schoen and J. E. Lemons (Academic Press, London, 1996) p. 60.

    Google Scholar 

  5. B. Pascual, I. Castellano, B. VÁzquez, M. Gurruchaga and I. GoÑi, Polymer 37 (1996) 1005.

    Google Scholar 

  6. E. J. Mack, T. Okano and S. W. Kim, in “Hydrogels in Medicine and Pharmacy-Polymers”, Vol. II, edited by N. A. Peppas (CRC Press, Boca Raton, FL, 1988) p. 65.

    Google Scholar 

  7. E. Karadag, D. Saraydin, S. Çetinkaya and O. Guven, Biomaterials 17 (1996) 67.

    Google Scholar 

  8. S. W. Kim, Y. H. Bae and T. Okano, Pharmaceut. Res. 9 (1992) 283.

    Google Scholar 

  9. M. D. Blanco, O. GarcÍa, R. M. Trigo, J. M. Teijon and I. Katime, Biomaterials 17 (1996) 1061.

    Google Scholar 

  10. A. Abusafieh, S. Siegler and S. R. Kalidindi, J. Biomed. Res. 38 (1997) 314.

    Google Scholar 

  11. T. L. Norman, V. Kish, J. D. Blaha, T. A. Gruen and K. Hustosky, J. Biomed. Mater. Res. 29 (1995) 495.

    Google Scholar 

  12. J. Yang, Biomaterials 18 (1997) 1293.

    Google Scholar 

  13. G. Lewis, J. S. Nyman and H. H. Trieu,, J.Biomed. Mater. Res. 38 (1997) 221.

    Google Scholar 

  14. G. Lewis, ibid. 38 (1997) 155.

    Google Scholar 

  15. A. J. Domb, N. Manor and O. Elmalak, Biomaterials 17 (1996) 411.

    Google Scholar 

  16. J. Kost and R. Langer, in “Hydrogels in Medicine and Pharmacy-Properties and Applications”, Vol. III, edited by N. A. Peppas (CRC Press, Boca Raton, FL, 1988) p. 95.

    Google Scholar 

  17. D. Lohmann, Macromol. Symp. 100 (1995) 25.

    Google Scholar 

  18. Y. Ogawa, J.Biomater. Sci. Polymer Edn 8 (1997) 391.

    Google Scholar 

  19. L. Di Silvio, N. Gurav, M. V. Kayser, M. Braden and S. Downes, Biomaterials 15 (1994) 931.

    Google Scholar 

  20. A. G. Andreopoulos, Clin. Mater. 15 (1994) 691.

    Google Scholar 

  21. R. Langer, MRS Bull. (1995) 18.

  22. J. Heller, in “Applications of Materials in Medicine and Dentistry-Part II”, edited by B. D. Ratner, A. S. Hoffman, F. J. Schoen and J. E. Lemons (Academic Press, London, 1996) p. 346.

    Google Scholar 

  23. C. Bastioli, in “Recycle'94–Davos Global Forum and Exposition”, Switzerland, March 1994.

  24. Idem, in “Degradadble Polymers-Principles and Applications” (Chapman and Hall, London, 1995) p. 112.

    Google Scholar 

  25. R. L. Reis, A. M. Cunha, J. Mater. Sci. Mater. Med. 6 (1995) 786.

    Google Scholar 

  26. R. L. Reis, A. M. Cunha, P. S. Allan and M. J. Bevis, Polym. Adv. Technol. 7 (1996) 784.

    Google Scholar 

  27. R. L. Reis, S. C. Mendes, A. M. Cunha and M. J. Bevis, Polym. Int. 43 (1997) 347.

    Google Scholar 

  28. R. L. Reis, A. M. Cunha, P. S. Allan and M. J. Bevis, Adv. Poly. Technol. 16 (1997) 263.

    Google Scholar 

  29. R. L. Reis, A. M. Cunha and M. J. Bevis, Med. Plast. Biomateri. (1997) 46.

  30. C. S. Pereira, M. E. Gomes, R. L. Reis and A. M. Cunha, in “Foams, Emulsion and Cellular Materials”, edited by J. F. Sadoc and N. River (NATO/ASI series, Kluwer Press, Dordrecht, 1998) in press.

    Google Scholar 

  31. R. L. Reis and A. M. Cunha, in “Antec'98–Plastics on My Mind”, Society of Plastics Engieers, Atlanta, April/May 1998, in press.

    Google Scholar 

  32. Idem, ibid.

  33. C. Elvira, B. Levenfeld, B. VÁzquez and J. San romÁn, J. Polym. Sci. A Polym. Chem. 34 (1996) 2783.

    Google Scholar 

  34. P. A. Liso. B. VÁzquez, M. Rebuelta, M. L. HernÁez, R. Rotger and J. San, Biomaterials 18 (1997) 15.

    Google Scholar 

  35. B. VÁzquez, C. Elvira, B. Levenfeld, B. Pascual, I. Gonñi, M. Gurruchaga, M. P. Ginerba, F. X. Gil, J. A. Planell, P. A. Liso, M. Rebuelta and J. San rÓman, J.Biomed. Mater. Res. 34 (1997) 129.

    Google Scholar 

  36. B. VÁzquez, C. Elvira, J. San RomÁn and B. Levenfeld, Polymer 38 (1997) 4365.

    Google Scholar 

  37. I. Castellano, B. Pascual, B. VÁzquez, I. Gonñi and M. Gurrruchaga, J. Appl. Polym. Sci. 54 (1994) 577.

    Google Scholar 

  38. J. Jane, J.M.S. Pure Appl. Chem. A32 (1995) 751.

    Google Scholar 

  39. N. A. Peppas and R. W. Korsmeyer, in “Medicine and Pharmacy-Properties and Applications”, Vol. III, edited by N. A. Peppas (CRC Press, Boca Raton, FL, 1988) p. 109.

    Google Scholar 

  40. S. Saha and S. Pal, J.Biomed. Mater. Res. 18 (1984) 435.

    Google Scholar 

  41. E. P. Lautenschlager, B. K. Moore and C.M. Schoenfeld, J.Biomed. Mater. Res. Symp. (1974) 185.

  42. C. Migiaresi, L. Fambri and J. Kolanik, Biomaterials 15 (1994) 875.

    Google Scholar 

  43. L. D. T. Topoleski, P. Ducheyne and J. M. Cuckler, ibid. 14 (1993) 1165.

    Google Scholar 

  44. R. L. Clarke, ibid. 10 (1989) 494.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, C.S., Cunha, A.M., Reis, R.L. et al. New starch-based thermoplastic hydrogels for use as bone cements or drug-delivery carriers. Journal of Materials Science: Materials in Medicine 9, 825–833 (1998). https://doi.org/10.1023/A:1008944127971

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008944127971

Keywords

Navigation