Skip to main content
Log in

The kinetics of calcium deficient and stoichiometric hydroxyapatite formation from CaHPO4·2H2O and Ca4(PO4)2O

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Isothermal calorimetry was performed on intimate mixtures of CaHPO4·2H2O and Ca4(PO4)2O constituted at Ca/P molar ratios of 1.50 and 1.67 to form the hydroxyapatite compositions Ca9HPO4(PO4)5OH and Ca10(PO4)6(OH)2, respectively, at complete reaction. The temperature range investigated was 15–70°C. The effects of the reaction temperature on the rates of heat evolution during hydroxyapatite formation were determined. Reactions were carried out utilizing a liquid-to-solids weight ratio of 1.0. A two-stage reaction mechanism was observed regardless of the Ca/P ratio as indicated by the presence of two reaction peaks in the plots of the rates of heat evolution against time. An Arrhenius relationship was found between the rate and temperature for each reaction stage for both compositions. Apparent activation energies of 120 and 90 kJ/mol (Ca/P=1.67) and 118 and 83 kJ/mol (Ca/P=1.50), respectively, were calculated for the first and second reaction peaks. An Arrhenius relationship was also found between the time of maximum rate and temperature. The following qualitative reaction mechanism is proposed for each of the two reaction stages for both compositions studied. The first stage involves the complete consumption of CaHPO4·2H2O and the partial consumption of Ca4(PO4)2O to form a noncrystalline calcium phosphate and nanocrystalline hydroxyapatite. During the second stage the remaining Ca4(PO4)2O reacts with the noncrystalline calcium phosphate to form the final product, stoichiometric or calcium deficient hydroxyapatite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. BROWN, N. HOCKER and S. HOYLE, J. Amer. Ceram. Soc. 74 (1991) 1848.

    Google Scholar 

  2. M. T. FULMER and P. W. BROWN, J. Amer. Ceram. Soc. 74 (1991) 934.

    Google Scholar 

  3. M. T. FULMER and P. W. BROWN, J. Mater. Res. 8 (1993) 1687.

    Google Scholar 

  4. W. E. BROWN and L. C. CHOW, in “Cements research progress,” edited by P. W. BROWN (American Ceramic Society, Westerville, OH, 1987) p. 352.

    Google Scholar 

  5. L. XIE and E. A. MONROE, in “Materials Research Society Symposium Proceedings” Vol. 179, edited by B. SHEETZ, A. LANDERS, I. ODLER, and H. JENNINGS (Materials Research Society, Pittsburgh, PA, 1991) p. 25.

    Google Scholar 

  6. M. S. TUNG, N. EIDELMAN, B. SIECK and W. E. BROWN, J. Res. Natn. Bur. Stands. 93 (1988) 613.

    Google Scholar 

  7. L. C. CHOW, S. TAGAKI, P. D. CONSTANTINO and C. D. FRIEDMAN, in “Materials Research Society Proceedings,” Vol. 179, edited by B. SHEETZ, A. LANDERS, I. ODLER, and H. JENNINGS (Materials Research Society, Pittsburgh, PA, 1991) p. 3.

    Google Scholar 

  8. Y. DOI, Y. TAKEZAWA, S. SHIBATA, N. WAKAMATSU, H. KAMEMIZU, T. GOTO, M. IIJIMA, Y. MORIWAKI, K. UNO, F. KUBO and Y. HAEUCHI, J. Jpn. Soc. Dent. Mater. Devices 6 (1987) 53.

    Google Scholar 

  9. Y. TAKEZAWA, Y. DOI, S. SHIBATA, N. WAKAMATSU, T. GOTO, M. IIJIMA, Y. MORIWAKI, K. UNO, F. KUBO and Y. HAEUCHI, J. Jpn. Soc. Dent. Mater. Devices. 6 (1987) 426.

    Google Scholar 

  10. N. EIDELMAN, L. C. CHOW and W. E. BROWN, Calcif. Tissue Int. 41 (1987) 18.

    Google Scholar 

  11. W. E. BROWN, N. EIDELMAN and B. TOMAZIC, Adv. Dent. Res. 1 (1987) 307.

    Google Scholar 

  12. K. S. TENHUISEN and P. W. BROWN, J. Mater. Sci. Mater. Med. 5 (1994) 291.

    Google Scholar 

  13. R. I. MARTIN and P. W. BROWN, J. Mater. Sci. Mater. Med. 6 (1995) 138.

    Google Scholar 

  14. R. P. LINK, S. TAKAGI, S. GREENHULT, L. C. CHOW and R. L. STRAUSBERG, J. Dent. Res. (special issue) 70 (1991) 567 (abstract no. 2410).

    Google Scholar 

  15. N. SANIN, S. TAGAGI, L. C. CHOW and S. MATSUYA, J. Dent. Res. (special issue) 70 (1991) 567 (abstract no. 2411).

    Google Scholar 

  16. Y. FUKASE, E. D. EANES, S. TAKAGI, L. C. CHOW and W. E. BROWN, J. Dent. Res. (special issue) 69 (1990) 1852.

    Google Scholar 

  17. K. S. TENHUISEN and P. W. BROWN, J. Bio. Mater. Res. (submitted).

  18. R. I. MARTIN and P. W. BROWN, ibid. (submitted).

  19. E. J. PROSEN, P. W. BROWN, G. FROHNSDORFF and F. DAVIS, Cem. Concr. Res. 15 (1985) 703.

    Google Scholar 

  20. E. D. EANES, I. H. GILLESSEN and A. S. POSNER, Nature 208 (1965) 233.

    Google Scholar 

  21. E. D. EANES and A. S. POSNER, Trans. N.Y. Acad. Sci. 28 (1965) 233.

    Google Scholar 

  22. E. D. EANES, J. D. TERMINE and M. U. NYLEN, Calcif. Tissue Res. 12 (1973) 143.

    Google Scholar 

  23. C. HOLT, M. J. J. M. VAN KEMENADE, J. E. HARRIES, L. S. NELSON, R. T. BAILEY, D. W. L. HUKINS, S. S. HASNAIN and P. L. De BRUYN, J. Cryst. Growth 92 (1988) 239.

    Google Scholar 

  24. A. L. BOSKEY and A. S. POSNER, J. Phys. Chem. 77 (1973) 2313.

    Google Scholar 

  25. A. S. POSNER, Physiol. Rev. 49 (1969) 760.

    Google Scholar 

  26. J. D. TERMINE and A. S. POSNER, Science 153 (1966) 1523.

    Google Scholar 

  27. K. S. TENHUISEN, B. CLARK, M. KLIMKIEWICZ and P. W. BROWN, Cell and Materials (submitted).

  28. G. H. NANCOLLAS and B. TOMAZIC, J. Phys. Chem. 78 (1974) 2218.

    Google Scholar 

  29. B. TOMAZIC and G. H. NANCOLLAS, J. Coll. Interface Sci. 50 (1975) 451.

    Google Scholar 

  30. W. E. BROWN, J. P. SMITH, J. R. LEHR and W. A. FRAZIER, Nature 196 (1962) 1050.

    Google Scholar 

  31. B. TOMAZIC, M. TOMSON and G. H. NANCOLLAS, Arch. Oral Biol. 20 (1975) 803.

    Google Scholar 

  32. J. D. TERMINE and E. D. EANES, Calcif. Tissue. Res. 10 (1972) 171.

    Google Scholar 

  33. P.-T. CHENG and K. P. H. PRITZKER, Calcif. Tissue Int. 35 (1983) 596.

    Google Scholar 

  34. F. ABBONA, H. E. Lundager MADSEN and R. BOISTELLE, J. Crystal Growth 74 (1986) 581.

    Google Scholar 

  35. C. HOLT, M. J. J. M. Van KEMENADE, L. S. NELSONJr., D. W. L. HUKINS, R. T. BAILEY, J. E. HARRIES, S. S. HASNAIN and P. L. de BRUYN, Mater. Res. Bull. 23 (1989) 55.

    Google Scholar 

  36. T. M. GREGORY, E. C. MORENO and W. E. BROWN, J. Res. Nat. Bur. Stand. 74A (1970) 461.

    Google Scholar 

  37. H. MCDOWELL, T. M. GREGORY and W. E. BROWN, J. Res. Nat. Bur. Stand. 74A (1977) 273.

    Google Scholar 

  38. R. I. MARTIN and P. W. BROWN, Adv. Cement Res. 5(19) (1993) 119.

    Google Scholar 

  39. L. XIE and E. A. MONROE, in “Handbook of bioactive ceramics, Vol. II, calcium phosphate and hydroxylapatite ceramics,” edited by T. YAMAMUR, L. L. HENCH and J. WILSON (CRC Press, Boca Raton, FL, 1990) p. 29.

    Google Scholar 

  40. E. C. CORBRIDGE, in “Phosphorus: an outline of its chemistry, biochemistry and technology,” 3rd Edn (Elsevier, Amsterdam, 1985) p. 138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenhuisen, K.S., Brown, P.W. The kinetics of calcium deficient and stoichiometric hydroxyapatite formation from CaHPO4·2H2O and Ca4(PO4)2O. J Mater Sci: Mater Med 7, 309–316 (1996). https://doi.org/10.1007/BF00154541

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00154541

Keywords

Navigation