Skip to main content
Log in

Biocompatibility of microplates for culturing epithelial renal cells evaluated by a microcalorimetric technique

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In the present study we have developed a microcalorimetric procedure which allows convenient investigation of biocompatibility in a microsystem. We examined the biocompatibility of a porcine renal epithelial tubule cell line LLC-PK1 and a human primary renal epithelial tubule cell (RPTEC) with microplates composed of three different materials, i.e. Thermanox, transparent film and titanium. All three materials showed equal biocompatibility with LLC-PK1 cells, judging from the attainment of steady-state power curves and the same rate of heat production per cell (2.5 μW / μg DNA). The human renal cells were poorly biocompatible with the Thermanox and transparent film. However, on titanium the RPTEC cell did adhere, as demonstrated by a steady-state power curve. The human cells also showed a higher metabolic activity (3.0 μW / μg DNA), than did LLC-PK1 cells cultured on the same type of microplates. In research on biocompatibility there is a need for alternatives to experimental animal investigations. The present technique allows studies of cellular interactions with different biomaterials in a rapid and standardized manner and may therefore prove to be a useful screening procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Swartbol, H. Parsson, L. Nässberger and L. Norgren, Int. J. Artif. Organs. 18 (1995) 372.

    Google Scholar 

  2. H. Parsson, L. Nässberger, J. Thorne and L. Norgren, J. Biomed. Mater. Res. 29 (1995) 519.

    Google Scholar 

  3. O. A. Trentz, R. Zellweger, M. G. Amgwerd and G. K. Uhlschmid, Unallchirurg. 100 (1997) 39.

    Google Scholar 

  4. V. Riccio, F. Della Ragione, G. Marrone, R. Palumbo, G. Guida and A. Oliva, Clin. Orthop. 308 (1994) 73.

    Google Scholar 

  5. S. Caropreso, L. Cerroni, S. Marini, D. Cocchia, R. Martinetti and S. G. Condo, Minerva. Stomatol. 46 (1997) 45.

    Google Scholar 

  6. A. B. Mathur, T. O. Collier and W. J. Kao, J. Biomed. Mater. Res. 36 (1997) 246.

    Google Scholar 

  7. H. Prigent, P. Pellen-Mussi, G. Cathelineau and M. Bonnure-Mallet, ibid. 39 (1998) 200.

    Google Scholar 

  8. V. Grill, M. A. Sandrucci and M. Basa, Boll. Soc. Ital. Biol. Sper. 72 (1996) 87.

    Google Scholar 

  9. C. T. Hanks, J. C. Wataha and Z. Sun, Dent. Mater. 12 (1996) 186.

    Google Scholar 

  10. L. Chou, J. D. Firth, D. Nathanson, V. J. Uitto and D. M. Brunette, J. Biomed. Mater. Res. 31 (1996) 209.

    Google Scholar 

  11. S. Kato, T. Akagi, A. Kishida, K. Sugimura and M. Akashi, J. Biomater. Sci. Polym. Ed. 8 (1997) 809.

    Google Scholar 

  12. A. E. Beezer, “Biological Microcalorimetry” (Academic Press, London, 1980).

    Google Scholar 

  13. L. Shapira and S. Takashiba, J. Immunol. Methods 165 (1992) 93.

    Google Scholar 

  14. J. Suurkuusk and I. Wadsö, Chem. Sci. 20 (1982) 155.

    Google Scholar 

  15. S. H. Dougherty and R. L. Simmons, Curr. Probl. Surg. 19 (1982) 265.

    Google Scholar 

  16. L. Nässberger and M. Monti, Protoplasma 123 (1984) 135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y., DePierre, J.W. & Na¨ssberger, L. Biocompatibility of microplates for culturing epithelial renal cells evaluated by a microcalorimetric technique. Journal of Materials Science: Materials in Medicine 11, 587–591 (2000). https://doi.org/10.1023/A:1008984304821

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008984304821

Keywords

Navigation