Skip to main content
Log in

In vitro growth and differentiation of osteoblast-like human bone marrow cells on glass reinforced hydroxyapatite plasma-sprayed coatings

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Human osteoblastic bone marrow cells were cultured for periods of up to 28 days in control conditions and on the surface of a glass reinforced hydroxyapatite composite (HA/G1) and commercial hydroxyapatite (HA) plasma-sprayed coatings, in the “as-received” condition and after immersion treatment in culture medium for 21 days. Cultures were characterized for total protein content and alkaline phosphatase activity. Scanning electron microscope analyses were performed on control cultures, seeded materials and materials incubated in the absence of cells. Culture media were analyzed for total and ionized calcium and phosphorus concentrations throughout the incubation period. Immersion of HA/G1 and HA coatings in culture medium resulted in significant alterations to the levels of calcium and phosphorus in the medium, leading to surface modifications. However, seeded material samples showed significant differences in the pattern of variation of the levels of these species. Cell proliferation was observed in the “as-received” HA/G1 composite, but cell mediated formation of mineral deposits was not proved. In contrast, “as-received” HA hardly supported cell growth. Previously immersed material samples showed cell proliferation and evidence of biological formation of mineral deposits. However, the HA/G1 composite presented better surface characteristics for cell growth as the behavior of bone marrow cells was closer to that observed in control cultures. © 1999 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Passuti, G. Daculsi and S. Martin, in “Clinical Implant Materials”, edited by V. Soltesz and A. Lee (Elsevier, Amsterdam, 1990) p. 255.

    Google Scholar 

  2. R. Legeros, Adv. Dental Res. 2 (1988) 164.

    Google Scholar 

  3. L. L. Hench, J. Amer. Ceram. Soc. 74 (1992) 1487.

    Google Scholar 

  4. T. Kokubo, in “Bone-bonding Biomaterals”, edited by P. Ducheyne, T. Kokubo and C. A. Blitterswijk (Reed Health-Care Comunications, Leiden, The Netherlands, 1993) p. 31.

    Google Scholar 

  5. G. Daculsi, R. Z. Legeros, M. Henghebaert and I. Barbieux, Calcif. Tissue Int. 46 (1990) 20.

    PubMed  Google Scholar 

  6. F. B. Bagambisa, U. Joos and W. Schilli, J. Biomed. Mater. Res. 27 (1993) 1047.

    PubMed  Google Scholar 

  7. J. D. De Bruijn, C. A. Van Blitterswijk and J. E. Davies, J. Biomed. Mater. Res. 29 (1995) 89

    PubMed  Google Scholar 

  8. H. Aoki, in “Science and Medical Applications of Hydroxyapatite”, (JAAS, 1991).

  9. W. Raemdonck, P. Ducheyne and P. Meester, in “Metal and Ceramic Materials”, edited by P. Ducheyne and G. W. Hastings (CRC Press, Boca Raton, FL, 1984) p. 143.

    Google Scholar 

  10. C. Rey, M. Freche, M. Heughebaert and M. Vignoles, in “Bioceramics 4”, edited by W. Bonfield, G.W. Hastings and K. E. Tanner (Butterworth-Heinemann, London, 1991) p. 57.

    Google Scholar 

  11. M. Nagase, Y. Abe and E. Udagawa, Biomaterials 13 (1992) 172.

    PubMed  Google Scholar 

  12. J. Burnie and T. Gilchrist, in “Ceramics in Surgery”, edited by P. Vincenzini (Elsevier, Amsterdam, 1993) p. 169.

    Google Scholar 

  13. F. Burnie and T. Gilchrist, Ceramics in Surgery, p. 177.

    Google Scholar 

  14. R. D. Rawlings, P. S. Rogers and P. M. Stokes, in “High Tech Ceramics”, edited by P. Vincenzini (Elsevier, Amsterdam, 1987) p. 73.

    Google Scholar 

  15. J. D. Santos, J. C. Knowles, R. L. Reis, F. J. Monteiro and G. W. Hastings, Biomaterials 15 (1994) 5.

    PubMed  Google Scholar 

  16. J. D. Santos, J. J. Lakhan and F. J. Monteiro, Biomaterials 16 (1995) 521.

    PubMed  Google Scholar 

  17. J. D. Santos, R. L. Reis, F. J. Monteiro, J. C. Knowles and G. W. Hastings, J. Mater. Sci. Mater. Med. 6 (1995) 348.

    Google Scholar 

  18. C. P. A. T. Klein, P. Patka and H. B. M. Van Der Lubbe, J. Biomed. Mater. Res. 25 (1991) 53.

    PubMed  Google Scholar 

  19. J. A. Jansen, J. P. C. M. Van Der Waerden and J. G. C. Wolke, J. Mater. Sci. Mater. Med. 4 (1993) 466.

    Google Scholar 

  20. J. D. De Bruijn, C. P. A. T. Klein, K. De Groot and C. A. Van Blitterswijk, J. Biomed. Mater. Res. 26 (1992) 1365.

    PubMed  Google Scholar 

  21. P. Frayss Inet, F. Tourenne, P. Rouquet, P. Conte, C. Delga and G. Bonel, J. Mater. Sci. Mater. Med. 5 (1994) 11.

    Google Scholar 

  22. E. Lugscheider, M. Knepper, B. Heimberg, A. Dekker and C. J. Kirkpatrick, J. Mater. Sci. Mater. Med. 5 (1994) 371.

    Google Scholar 

  23. R. G. Courteney-harris, M. V. Kayser and S. Downes, Biomaterials 16 (1995) 489.

    PubMed  Google Scholar 

  24. B. Labat, A. Chanson and J. Frey, J. Biomed. Mater. Res. 29 (1995) 1397.

    PubMed  Google Scholar 

  25. D. De Santis, C. Guerriero, P. F. Nocini, A. Ungersbock, G. Richards, P. Gotte and U. Armato, J. Mater. Sci. Mater. Med. 7 (1996) 21.

    Google Scholar 

  26. K. Anselme, P. Sharrock, P. Hardouin and M. Dard, J. Biomed. Mater. Res. 34 (1997) 247.

    PubMed  Google Scholar 

  27. J. L. Ong, C. W. Prince and L. C. Lucas, J. Biomed. Mater. Res. 29 (1995) 165.

    PubMed  Google Scholar 

  28. W. C. A. Vrouwenvelder, C. G. Groot and K. De Groot, J. Mater. Sci. Mater. Med. 6 (1995) 144.

    Google Scholar 

  29. J. AmÉdÉe, R. Bareille, R. Jeandot, L. Bordenave, M. RÉmy, F. Rouais and C. Baquey, Biomaterials 15 (1994) 1029.

    PubMed  Google Scholar 

  30. C. Maniatopoulos, J. Sodek and A. Melcher, Cell Tissue Res. 254 (1988) 317.

    PubMed  Google Scholar 

  31. M. A. Aronow, L. C. Gerstenfeld and T. A. Owen, J. Cell Phys. 143 (1990) 213.

    Google Scholar 

  32. R. Gundle, C. J. Joyner and J. T. Triffit, Bone 16 (1995) 597.

    PubMed  Google Scholar 

  33. M. H. Fernandes, M. A. Costa and G. S. Carvalho, J. Mater. Sci. Mater. Med. 8 (1997) 61.

    PubMed  Google Scholar 

  34. H. TomÄs, G. S. Carvalho, M. H. Fernandes, A. P. Freire and L. M. Abrantes, J. Mater. Sci. Mater. Med. 8 (1997) 233.

    PubMed  Google Scholar 

  35. H. TomÄs, G. S. Carvalho, M. H. Fernandes, A. P. Freire and L. M. Abrantes, J. Mater. Sci. Mater. Med. 7 (1996) 291.

    Google Scholar 

  36. S. Morais, N. Dias, J. P. Sousa, M. H. Fernandes and G. S. Carvalho, J. Biomed. Mater. Res. 44 (1999) 176.

    PubMed  Google Scholar 

  37. C. G. Bellows, J. E. Aubin and J. N. M. Heersche, Bone and Min. 14 (1991) 27.

    Google Scholar 

  38. M. P. Ferraz, F. J. Monteiro and J. D. Santos, J. Biomed. Mater. Res. submitted.

  39. T. A. Owen, M. Aronow and V. Shalhoub, J. Cell Phys. 143 (1990) 420.

    Google Scholar 

  40. T. J. Martin, D. M. Findlay, J. K. Heath K. and W. Ng, in “Handbook of Experimental Pharmacology”, edited by J. R. Mundy and T. J. Martin Berlin (Springer-Verlag, 1993) p. 149.

  41. G. S. Stein and J. B. Lian, in “Cellular and Molecular Biology of Bone”, edited by M. Noda (Academic Press, Tokyo, 1993) p. 47.

    Google Scholar 

  42. H. C. Anderson and D. C. Morris, in “Handbook of Experimental Pharmacology”, edited by J. R. Mundy and T. J. Martin Berlin (Springer-Verlag, 1993) p. 267.

  43. I. A. P. Gwynn, J. Mater. Sci. Mater. Med. 5 (1994) 357.

    Google Scholar 

  44. C. J. Kirkpatrick, M. Wagner, H. Kohler, F. Bittinger, M. Otto and C. L. Klein, J. Mater. Sci. Mater. Med. 8 (1997) 131.

    PubMed  Google Scholar 

  45. R. Z. Legeros, I. Orly, M. Gregoire and G. Daculsi, in “The Bone-Biomaterial Interface”, edited by J. E. Davies (University of Toronto Press, Toronto, 1991) p. 76.

    Google Scholar 

  46. J. H. Chern Lin, M. L. Liu and C. P. Ju, J. Biomed. Mater. Res. 28 (1994) 723.

    PubMed  Google Scholar 

  47. E. L. Ghannam, P. Ducheyne and I. Spapiro, J. Biomed. Mater. Res. 29 (1995) 359.

    PubMed  Google Scholar 

  48. S. R. Radin and P. Ducheyne, J. Biomed. Mater. Res. 27 (1993) 35.

    PubMed  Google Scholar 

  49. S. R. Radin and P. Ducheyne, J. Biomed. Mater. Res. 27 (1993) 1047.

    PubMed  Google Scholar 

  50. S. Best, B. Sim, M. Kayser and S. Downes, J. Mater. Sci. Mater. Med. 8 (1997) 97.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferraz, M.P., Fernandes, M.H., Trigo Cabral, A. et al. In vitro growth and differentiation of osteoblast-like human bone marrow cells on glass reinforced hydroxyapatite plasma-sprayed coatings. Journal of Materials Science: Materials in Medicine 10, 567–576 (1999). https://doi.org/10.1023/A:1008924516146

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008924516146

Keywords

Navigation