Skip to main content
Log in

The implant material, Ti6Al7Nb: surface microstructure, composition and properties

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The excellent biocompatibility of titanium and its alloys is intimately related with the properties of the surface in contact with the biological environment, and therefore it is closely connected with the stable, passivating oxide layer that forms on its surface. In the present paper, the oxide layer on the alloy Ti6Al7Nb has been characterized using X-ray photoelectron spectroscopy, scanning Auger microscopy and pH-dependent lateral force microscopy. The alloying elements Al and Nb are incorporated in the oxide layer and detected in their most stable oxidized form, as Al2O3 and Nb2O5. Their distribution in the oxide reflects the underlying α-β microstructure, with enrichment of Al in the α- and of Nb in the β-phase (determined by electron microprobe). Friction measurements (lateral force microscopy) indicate slightly different, pH-dependent, lateral forces above the α- and β-phase structures that point to small local variations in surface charges. © 1999 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Steinemann and P.-A. MÄusli, in Proceedings of the 6th World Conference on Titanium, France, 1988, (1989) p. 535.

  2. J. Lausmaa, L. Mattsson, U. Rolander and B. Kasemo, Biomed. Mater. MRS; symposium (1986) p. 351.

  3. B. Kasemo and J. Lausmaa, CRC Crit. Rev. Biocompatibility 4 (1986) 335.

    Google Scholar 

  4. B. D. Ratner, in “Surface characterisation of biomaterials,” (Elsevier Science Publishers B.V., Amsterdam 1988) p. 13.

    Google Scholar 

  5. L. Vroman and A. L. Adams, in “Proteins at interfaces, physicochemical and biochemical studies,” edited by J.L. Brash and T.A. Horbett (ACS, Washington DC, 1987) p. 154.

    Google Scholar 

  6. T. A. Horbett and J. L. Brash, in “Proteins at interfaces, physicochemical and biochemical studies,” edited by J.L. Brash and T.A. Horbett (ACS, Washington DC, 1987) p. 1.

    Google Scholar 

  7. X. Clivaz, R. Emch, P. Descouts, P. Vaudaux, D. Lew, M. Delmi and H. Vasey, Clin. Mater. 5 (1990) 191.

    Google Scholar 

  8. T. Albrektsson, P.-I. BrÅnemark, H.-A. Hansson, B. Kasemo, K. Larsson, I. LundstrÖm, D. Mcqueen and R. Skalak, Ann. Biomed. Eng. 11 (1983) 1.

    Google Scholar 

  9. J. M. Gold, M. Schmidt and S. G. Steinemann, in “Clinical implant materials, advances in biomaterials” vol. 9, edited by G. Heimke, U. Soltész and A.J.C. Lee (Elsevier Science Publishers B.V., Amsterdam 1990) p. 69.

    Google Scholar 

  10. R. Thull, Med. Progr. Technol. 16 (1990) 225.

    Google Scholar 

  11. J. E. Davies, in “Surface characterization of biomaterials,” edited by B.D. Ratner (Elsevier Science Publishers B.V., Amsterdam 1988) p. 219.

    Google Scholar 

  12. J. E. Davies, B. Causton, Y. Bovell, K. Davy and C. S. Sturt, Biomaterials 7 (1986) 231.

    Google Scholar 

  13. M. Semlitsch, F. Staub and H. Weber, Biomedizinische Technik 30 (1985) 334.

    Google Scholar 

  14. A. Marti, G. HÄhner and N. D. Spencer, Langmuir 11 (1995) 4632.

    Google Scholar 

  15. G. HÄhner, A. Marti and N. D. Spencer, Trib. Lett. 3 (1997) 359.

    Google Scholar 

  16. H. V. Boenig, in “Fundamentals of plasma chemistry and technology,” (Technomic Publishing Company Inc., Lancaster, 1988).

    Google Scholar 

  17. S. Evans, R. G. Pritchard and J. M. Thomas, J Electr. Spectrosc. Relat. Phenom. 14 (1978) 341.

    Google Scholar 

  18. D. Briggs and M. P. Seah, in “Practical surface analysis,” 2nd edn, vol 1 (John Wiley & Sons, Chichester, Salle+Sauerländer, Aarau, 1990) p. 247.

    Google Scholar 

  19. G. D. Parfitt, Prog. Surf. Membrane Sci. 11 (1976) 181.

    Google Scholar 

  20. G. A. Parks, Chem. Rev. 65 (1965) 177.

    Google Scholar 

  21. T. W. Healy and L. R. White, Adv. Colloid Interface Sci. 9 (1978) 303.

    Google Scholar 

  22. M. Kosmulski, Langmuir 13 (1997) 6315.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sittig, C., Ha¨hner, G., Marti, A. et al. The implant material, Ti6Al7Nb: surface microstructure, composition and properties. Journal of Materials Science: Materials in Medicine 10, 191–198 (1999). https://doi.org/10.1023/A:1008997726370

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008997726370

Keywords

Navigation