Skip to main content
Log in

FEATURE ARTICLE Conducting Polymer Composites

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Conducting polymer composites become increasingly important for technical applications. In this article, the resulting electrical properties of such materials are illustrated by a variety of experimental examples. It is shown that the combined mechanical, thermal and electrical interaction between the filler particles via their electrical contacts and the surrounding polymer host matrix are responsible for the properties of the composite material. A short review is given of the theoretical background for the understanding of the electrical transport in such materials. The arrangement of the filler particles and the resulting conductivity can be described either by percolation or by effective medium theories. It can also be related to different types of charge carrier transport processes depending on the internal composite structure. Special emphasis is given to the microstructure of the filler particles such as size, hardness, shape and their electrical and thermal conductivities. A detailed analysis of the physics of the contact spots and the temperature development during current flow at the contact is given. It is shown that the polymer matrix has a strong influence on the electrical conductivity due to its elastic properties and the response to external thermal and mechanical stimulation. Strong changes in the electrical conductivity of conducting polymer composites can be realized either by thermal stimuli, leading to a positive and negative temperature coefficient in resistivity, or by applying mechanical stress. By using nonlinear fillers an additional degree of functionality can be achieved with conducting polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Kusy, in Metal-Filled Polymers, edited by S.K. Battacharya (Dekker, New York, 1986) p. 1.

    Google Scholar 

  2. D. Luch, U.S. Patent 4,009,093 (Feb. 22, 1977)

  3. D.M. Lindsey, Prod. Finish July 1979, 34–43 (1979).

  4. F. Bueche, J. Appl. Phys., 44, 532 (1973).

    Google Scholar 

  5. F.A. Doljack, IEEE Trans. on Comp., Hybrids and Manufact. Techn. CHMT-4, 372 (1981).

  6. T. Fang, St Morris, Elektron, January 97, 103–104 (1997).

  7. M. Stoessl, Power Control in Motion, June 93, 50–55 (1993).

  8. T. Kobayashi and H. Endo, NEC Research and Development, 86, 81–90 (1987).

    Google Scholar 

  9. T. Hansson, ABB Review, 4/92, 35 (1992).

    Google Scholar 

  10. R.H. Norman, Conductive Rubbers and Plastics (Applied Science Publishers, London, 1970).

    Google Scholar 

  11. Carbon Black—Polymer Composites, edited by E.K. Sichel (Dekker, New York, 1982).

    Google Scholar 

  12. J. Delmonte, Metal/Polymer Composites (Van Nostrand Reinhold, New York, 1982).

    Google Scholar 

  13. L.K.H. van Beek, Progr. Dielect., 7, 69 (1967).

    Google Scholar 

  14. S. Nakamura, A. Ito, G. Sawa, and K. Kitagawa, Electronics and Communications in Jpn. 2, Electron. (USA), 75(3), 109 (1992).

    Google Scholar 

  15. K.T. Chung, Org. Coat. Appl. Polym. Sci. Proc., 48, 661 (1983).

    Google Scholar 

  16. P. Hedvig, Dielectric Spectroscopy in Polymers (Wiley, New York, 1977).

    Google Scholar 

  17. E.K. Sichel, J.I. Gittleman, and P. Sheng, Phys. Rev. B, 18, 5712–16 (1978).

    Google Scholar 

  18. A.I. Medalia, Rubber Chemistry and Technology, 59, 432–454 (1986).

    Google Scholar 

  19. P. Sheng, Phys. Rev. B, 21, 2180–95 (1980).

    Google Scholar 

  20. R.D. Sherman, L.M. Middleman, and S.M. Jakobs, Polym. Eng. and Sci., 23, 36–46 (1983).

    Google Scholar 

  21. I. Balberg, Phys. Rev. Let., 59, 1305–08 (1987).

    Google Scholar 

  22. D.S. McLachlan, M. Blaszkiewicz, and R.E. Newnham, J. Am. Ceram. Soc., 73, 2187–2203 (1990).

    Google Scholar 

  23. R.E. Newnham, D.P. Skinner, and L.E. Cross, Mat. Res. Bull., 13, 525 (1978).

    Google Scholar 

  24. R. Zallen, The physics of amorphous solids (Wiley, New York, 198) ch. 4.

  25. D. Staufer, Introduction to percolation theory (Taylor and Francis, London, U.K., 1985).

    Google Scholar 

  26. S. Kirkpatrick Rev. Mod. Phys., 45(4), 574 (1973).

    Google Scholar 

  27. W.Y. Hsu, W.G. Holtjeand, and J.R. Barkley, J. Mat Sci. Lett., 7, 459 (1988).

    Google Scholar 

  28. J.P. Straley, in Vol. 5, Annals of the Israel Physical Society: Percolation Processes and Structures, edited by G. Deutscher, R. Zallen, and J. Adler (Israel Physical Society, Jerusalem, 1983), p. 353.

    Google Scholar 

  29. G.R. Ruschau, S. Yoshikawa, and R.E. Newnham, Proceedings of the 42th Electr. Components & Technology Conf. San Diego, CA, May 18–20, p. 481 (1992).

  30. R. Landauer, in American Institute of Physics Conference Proceedings: Electrical Transport and Optical Properties of Inhomogeneous Media, edited by J.C. Garland and D.B. Tanner (American Institute of Physics, New York, 1978), No. 40, p. 2.

    Google Scholar 

  31. D.S. McLachlan, J. Phys., C21, 1521 (1988).

    Google Scholar 

  32. D.S. McLachlan, Mat. Res. Soc. Symp. Proc., 411, 309 (1996).

    Google Scholar 

  33. K.C. Kao and W. Hwang, Electrical Transport in Solids, Int. Series in the Science of the Solid State, Volume 14 (Pergamon Press, Oxford, 1981).

    Google Scholar 

  34. A.R. Blythe, Electrical properties of polymers (Cambridge University Press, Cambridge, 1979).

    Google Scholar 

  35. L.K.H. van Beek et al., J. Appl. Polymer Sci., 6(24), 651 (1962).

    Google Scholar 

  36. J. Frenkel, Physical Review, 36, 1604 (1930).

    Google Scholar 

  37. W. Imaino, K. Loeffler, and R. Balanson, in Colloids and Surface in Reprographic Technology ACS Symposium Series 200, p. 249 (American Chemical Society, Washington, 1982).

    Google Scholar 

  38. R. Holm, Electrical Contacts, Theory and Application (Springer, New York, 1967).

    Google Scholar 

  39. G.R. Ruschau, S. Yoshikawa, and R.E. Newnham, J. Appl. Phys., 81(10), 6786 (1997).

    Google Scholar 

  40. A.W. Bush, Contact Mechanics, in Rough Surfaces edited by T.R. Thomas et al. (Longman, London, 1982).

    Google Scholar 

  41. Y.A. Dzenis and V.M. Ponomarev, Mek. Komp. Mat., 1, 70 (1988).

    Google Scholar 

  42. R. Shima et al., Polymer Composites, 10(6), 409 (1989).

    Google Scholar 

  43. T.T. Wang and T.K. Kwei, J. Polym. Sci.: Polym. Phys., 7(5), 889 (1969).

    Google Scholar 

  44. B. Budiansky, J. Comp. Mat., 4, 284 (1970).

    Google Scholar 

  45. N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart & Winston, Philadelphia, 1976).

    Google Scholar 

  46. M. Heuberger, G. Dietler, R. Strümpler, J. Rhyner, and J. Isberg, J. Appl. Phys., 82(3), 1255 (1997).

    Google Scholar 

  47. K. Ohe and Naito, Jap. J. Appl. Phys., 10(1), 99 (1971).

    Google Scholar 

  48. A.D. McLeod, J.S. Haggerty, and D.R. Sadoway, J. Am. Ceram. Soc., 67, 705 (1984).

    Google Scholar 

  49. G.R. Ruschau, S. Yoshikawa, and R.E. Newnham, J. Appl. Phys., 72, 953 (1992).

    Google Scholar 

  50. R. Strümpler, G. Maidorn, and J. Rhyner, J. Appl. Phys., 81(310), 6786 (1997).

    Google Scholar 

  51. J.I. Pascual, J. Méndez, J. Gómez-Herrero, A.M. Baró, N. Garcia, U. Landman, W.D. Luedtke, E.N. Bogachek, and H.-P. Cheng, Science, 267, 1793 (1995).

    Google Scholar 

  52. L. Zimmermann, M. Weibel, W. Caseri, and U.W. Suter, Polym. for Adv. Techn., 4, 1–7 (1992).

    Google Scholar 

  53. J.P. Spatz, A. Roescher, and M. Möller, Adv. Mater., 8(4), 337 (1996).

    Google Scholar 

  54. M.P.J. van Staveren, H.B. Brom, and L.J. de Jongh, Physics Reports, 208, 1–96 (1991).

    Google Scholar 

  55. G. Schön and U. Simon, Colloid Polym. Sci., 273, 101–117 (1995).

    Google Scholar 

  56. A. Tampieri and A. Bellosi, J. Mat. Sci., 28, 649 (1993).

    Google Scholar 

  57. The Oxide Handbook, edited by G.V. Samsonov (Plenum Press, New York, 1981).

    Google Scholar 

  58. R. Strümpler, J. Appl. Phys., 80(11), 6091 (1996).

    Google Scholar 

  59. R. Strümpler, R. Loitzl, and L. Ritzer, European Patent 0 696 036 A1 (July 12, 1995).

  60. S. Littlewood and B.F.N. Briggs, J. Phys. D: Appl. Phys., 11, 1457–62 (1978).

    Google Scholar 

  61. K.-H. Möbius in Elektrisch leitende Kunststoffe, edited by H.J. Mair and S. Roth (Carl Hanser, Munich, 1989) p. 59.

    Google Scholar 

  62. D.M. Bigg and D.E. Stutz, Polym. Comp., 4, 40 (1983).

    Google Scholar 

  63. W.F. Verhelst, K.G. Wolthuis, A. Voet, P. Ehrburger, and J.B. Donnet, Rubber Chem. and Techn., 50, 735–46 (1977).

    Google Scholar 

  64. R.G. Gilg in Elektrisch leitende Kunststoffe, edited by H.J. Mair and S. Roth (Carl Hanser Verlag, München, 1989), p. 21.

    Google Scholar 

  65. C.A. Randall, D.V. Miller, J.H. Adair, and A.S. Bhalla, J. Mater. Res., 8, 899 (1993).

    Google Scholar 

  66. Y.-S. Ho and P. Schoen, J. Mater. Res., 11, 469 (1996).

    Google Scholar 

  67. V.E. Gul and M.G. Golubeva, Koll. Zh., 28, 62 (1967).

    Google Scholar 

  68. V.E. Gul and M.G. Golubeva, Koll. Zh., 30, 13 (1968).

    Google Scholar 

  69. S. Jin, R.C. Sherwood, J.J. Mottine, T.H. Tiefel, R.L. Opila, and J.A. Fulton, J. Appl. Phys., 64, 6008 (1980).

    Google Scholar 

  70. S. Jin, T.H. Tiefel, L.-H. Chen, and D.W. Dahringer, IEEE Trans. on Components, Hybrids, and Manufact. Techn., CHMT-16, 972 (1993).

    Google Scholar 

  71. R.S. Perkins, A. Rüegg, M. Fischer, P. Streit, and A. Menth, IEEE Trans. on Components, Hybrids, and Manufact. Techn, CHMT-5(2) (1982).

  72. F. Greuter and R. Strümpler, European Patent 0 649 150 B1 (1994).

  73. J. Feinleib and W. Paul, Phys. Rev., 155, 841 (1967).

    Google Scholar 

  74. D.M. Moffatt, J.P. Runt, A. Halliyal, and R.E. Newnham, J. Mat. Sci., 24, 609 (1989).

    Google Scholar 

  75. J. Pedulla and P. Malinaric in EOS/EOD Symp. Proc., (1981) 49–56.

  76. Adv. in Varistor Tech., Ceramic Transactions 3, edited by L.M. Levinson (1989).

  77. R. Strümpler, P. Kluge-Weiss, and F. Greuter, Adv. Sci. Technology 10, Int. Mat. and Syst., edited by P. Vincenzini (Techna S.r.I., Faenza, Italy, 1995) p. 15.

    Google Scholar 

  78. J. Glatz-Reichenbach, B. Meyer, R. Strümpler, P. Kluge-Weiss, and F. Greuter, J. Mat. Sci., 31, 5941 (1996).

    Google Scholar 

  79. B. Miller, J. Appl. Polymer Sci., 10, 217–228 (1966).

    Google Scholar 

  80. V.E. Gul, L.Z. Shenfil, and G.K. Melnikova, Soviet Plastics, 3, 68–70 (1960).

    Google Scholar 

  81. D. Adolf and J.E. Martin, J. of Composite Materials, 30(1), 13 (1996).

    Google Scholar 

  82. R. Strümpler, G. Maidorn, A. Garbin, and F. Greuter, Polymers and Polymer Composites, 4, 299–304 (1996).

    Google Scholar 

  83. F. Carmona, R. Canet, and P. Delhaes, J. Appl. Phys., 61, 2550 (1987).

    Google Scholar 

  84. S. Yoshikawa, T. Ota, and R. Newnham, J. Am. Ceram. Soc., 73, 263–267 (1990).

    Google Scholar 

  85. P.K. Pramanik, D. Khastagir, and T.N. Saha, J. Mat. Sci., 28, 3539–3546 (1993).

    Google Scholar 

  86. G. Pearson, US Patent 2,258,958 (Oct. 14, 1941).

  87. E. Frydman, UK Patent Spec. 604 695 I 718 14S (July 8, 1948).

  88. F. Kohler, US Patent 3,243,753 I 3/29/66 (Mar. 29, 1966).

  89. K. Ohe and Y. Natio, Jap. J. Appl. Phys., 10, 99–108 (1971).

    Google Scholar 

  90. J. Meyer, Polymer Eng. and Sci., 13, 462–468 (1973).

    Google Scholar 

  91. A. Voet, Rubber Chemistry and Technology, 54, 42–50 (1980).

    Google Scholar 

  92. K.A. Hu, J. Runt, A. Safari, and R.E. Newnham, Phase Transitions, 7, 1–4 (1986).

    Google Scholar 

  93. T.R. Shrout, D. Moffatt, and W. Huebner, J. Mat. Sci., 26, 145–154 (1991).

    Google Scholar 

  94. J. Glatz-Reichenbach, F. Greuter, J. Skindhøj, and R. Strümpler, Proc. of 5th Int. Conf. on Comp. Eng. (ICCE/5), July 5–11, 1998, edited by D. Hui, p. 321 (1998).

  95. M.B. Heaney, Appl. Phys. Lett., 69, 2602 (1996).

    Google Scholar 

  96. J. Skindhøj, J. Glatz-Reichenbach, and R. Strümpler, IEEE Trans. PWRD, 13, 489–94 (1998).

    Google Scholar 

  97. J. Glatz-Reichenbach, J. Skindhùj, and R. Strümpler, Proc. of 11th Int. Conf. on Comp. Mater., vol. 5 (ICCM-11), Gold Coast, Australia, July 14–18, 1997, edited by M.L. Scott (Woodhead Publ., 1997) pp. 749–758.

  98. V.E. Gul, L.Z. Shenfil, G.K. Melnikova, and A.S. Poluden, Soviet Plastics, 7, 60–62 (1966).

    Google Scholar 

  99. J. Meyer, Polymer Eng. and Sci., 14, 706 (1974).

    Google Scholar 

  100. H. Wagar, in Physical Design of Electronic Systems, vol. 3 (Prentice Hall, Englewood Cliffs, N.J., 1971).

    Google Scholar 

  101. W.J. Lackey, D.P. Stinton, G.A. Cerny, A.C. Schaffhauser, and L.L. Fehrenbacher, Adv. Ceram. Mat., 2, 24–30 (1987).

    Google Scholar 

  102. J. Delmonte, Metal/Polymer Composites (Van Nostrand, New York, 1998) p. 173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

stru¨mpler, R., Glatz-Reichenbach, J. FEATURE ARTICLE Conducting Polymer Composites. Journal of Electroceramics 3, 329–346 (1999). https://doi.org/10.1023/A:1009909812823

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009909812823

Navigation