Skip to main content
Log in

Jump conditions in hypersonic shocks

Quantitative effects of ionic excitation and radiation

  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

We study the quantitative effects of excitation, ionization, radiation energy and pressure, on the jump conditions in hypersonic shocks in a real gas. The ionization structure and excitation energies are calculated from the local temperature and density, using the Screened Hydrogenic Model. We assume an optically thick medium and no radiation flux through the shock front. We investigate the jump conditions in different gases and propose a phenomenological description of compression for different shock velocities. We find that the excitation energy term is the dominant term in ionized gases at low velocities. Consequently, higher shock velocities than the values predicted by standard calculations in a perfect gas must be reached in order to observe the effects of radiation in the compression ratio. Our results provide constraints for the design of future radiative shock experiments on the next generation of powerful nanosecond lasers or on Z-pinches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Mihalas, B. Weibel-Mihalas, Foundations of Radiation Hydrodynamics (Dover Pub. Inc., Mineola, New York, 1999)

  2. A.B. Fokin, D. Gillet, Astron. Astrophys. 325, 1013 (1997)

    ADS  Google Scholar 

  3. P. Mathias, D. Gillet, A. Lebre, Astron. Astrophys. 341, 853 (1999)

    ADS  Google Scholar 

  4. M. Scholz, P.R. Wood, Astron. Astrophys. 362, 1065 (2000)

    ADS  Google Scholar 

  5. C. Stehlé, J.P. Chiéze, Scientific Highlights 2002, edited by D. Barret, F. Combes (EDP-Sciences, Les Ulis, 2002), p. 493

  6. H.A. Bethe, Astrophys. J. 490, 765 (1997)

    Article  ADS  Google Scholar 

  7. A. Calder, B. Fryxell, T. Plewa, R. Rosner, L.J. Dursi, V.G. Weirs, T. Dupont, H.F. Robey, J.O. Kane, B.A. Remington, R.P. Drake, G. Dimonte, M. Zingale, F.X. Timmes, K. Olson, P. Ricker, P. MacNeice, H.M. Tufo, Astrophys. J. Suppl. 143, 201 (2002)

    Article  ADS  Google Scholar 

  8. K. Shigemori, R. Kodama, D.R. Farley, T. Koase, K.G. Estabrook, B.A. Remington, D.D. Ryutov, Y. Ochi, H. Azechi, J. Stone, N. Turner, Phys. Rev. E 62, 8838 (2000)

    Article  ADS  Google Scholar 

  9. J.M. Laming, J. Grun, Phys. Rev. Lett. 89, 125002 (2002)

    Article  ADS  Google Scholar 

  10. K.S. Budil, M. Gold, K.G. Estabrook, B.A. Remington, J. Kane, P.M. Bell, D.M. Pennington, C. Brown, S.P. Hatchett, J.A. Koch, M.H. Key, M.D. Perry, Astrophys. J. Suppl. 127, 261 (2000)

    Article  ADS  Google Scholar 

  11. X. Fleury, S. Bouquet, C. Stehlé, M. Koenig, D. Batani, A. Benuzzi-Mounaix, J.-P. Chiéze, N. Grandjouan, J. Grenier, T. Hall, E. Henry, J.-P.J. Lafon, S. Leygnac, B. Marchet, H. Merdji, C. Michaut, F. Thais, Las. Part. Beams 20, 263 (2002)

    ADS  Google Scholar 

  12. P.A. Keiter, R.P. Drake, T.S. Perry, H.F. Robey, B.A. Remington, C.A. Iglesias, R.J. Wallace, J. Knauer, Phys. Rev. Lett. 89, 165003 (2002)

    Article  ADS  Google Scholar 

  13. J.E. Bailey, G.A. Chandler, S.A. Slutz, G.R. Bennett, G. Cooper, J.S. Lash, S. Lazier, R. Lemke, T.J. Nash, D.S. Nielsen, T.C. Moore, C.L. Ruiz, D.G. Scroen, R. Smelser, J. Torres, R.A. Vesey, Phys. Rev. Lett. 89, 095004 (2002)

    Article  ADS  Google Scholar 

  14. S. Bouquet, R. Teyssier, J.-P. Chiéze, Astrophys. J. Suppl. 127, 245 (2000)

    Article  ADS  Google Scholar 

  15. Ya.B. Zel’dovich, Yu.P. Raizer, Physics of Shock Waves and high-Temperature Hydrodynamic Phenomena, edited by W.D. Hayes, R.F. Probstein (Dover Pub. Inc., Mineola, New York, 2001)

  16. S.I. Pai, A.I. Speth, Phys. Fluid. 4, 1232 (1961)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. R.A. Alpher, H.D. Greyber, Phys. Fluid. 1, 160 (1958)

    Article  ADS  Google Scholar 

  18. R.G. Sachs, Phys. Rev. 69, 514 (1946)

    Article  ADS  Google Scholar 

  19. H. Nieuwenhuijzen, C. de Jager, M. Cuntz, A. Lobel, L. Achmad, Astron. Astrophys. 280, 195 (1993)

    ADS  Google Scholar 

  20. K. Eidmann, Las. Part. Beams 12, 223 (1994)

    Article  ADS  Google Scholar 

  21. B. Kärcher, Atomphysikalische Beschreibung Ionenstrahl-erzeugter Plasmen (MPQ report, 1991), p. 158

  22. R.M. More, Adv. At. Mol. Phys. 21, 305 (1985)

    Article  ADS  Google Scholar 

  23. G.C. Pomraning, The equations of Radiation Hydrodynamics (Pergamon Press, Oxford, 1973)

  24. C. Stehlé, S. Jacquemot, Astron. Astrophys. 271, 348 (1993)

    ADS  Google Scholar 

  25. D.G. Hummer, D. Mihalas, Astrophys. J. 331, 794 (1988)

    Article  ADS  Google Scholar 

  26. C. Michaut, L. Boireau, M. Cornille, S. Leygnac, C. Stehlé, Scientific Highlights 2002, edited by D. Barret, F. Combes (EDP-Sciences, Les Ulis, 2002), p. 543

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Michaut.

Additional information

Received: 3 October 2003, Published online: 6 January 2004

PACS:

52.35.Tc Shock waves and discontinuities - 95.30.Dr Atomic processes and interactions - 95.30.Lz Hydrodynamics

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michaut, C., Stehlé, C., Leygnac, S. et al. Jump conditions in hypersonic shocks. Eur. Phys. J. D 28, 381–392 (2004). https://doi.org/10.1140/epjd/e2003-00322-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2003-00322-3

Keywords

Navigation