Skip to main content
Log in

Equation of state and thermodynamics of fcc transition metals: A pseudopotential approach

  • Original Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

A simple pseudopotential model is used for the calculation of the phonon spectra at the equilibrium volume and under pressure. The model is based on the secondorder perturbation theory with the local pseudopotential acting on thes electrons while thed electrons contribution is simulated by the repulsive Born-Mayer interatomic potential. Pressure influence on the lattice properties was studied for small compressions (mode Grüneisen parameters) as well as for ultrahigh pressure (equation of state up to 1 TPa). Results of the lattice dynamics calculations were used for determining temperature dependence of the lattice heat capacity and of the macroscopic Grüneisen parameter. The Kohn anomaly at the small wave vectors obtained previously in palladium, platinum and rhodium affects strongly the temperature dependence at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonov, V.N., Milman, V.Yu., Nemoshkalenko, V.V., Zhalko-Titarenko, A.V.: (to be published)

  2. Hultgren, R., Orr, R.L., Anderson, P.D., Kelley, K.K.: Selected values of thermodynamical properties of metals and alloys. New York: John Wiley 1963

    Google Scholar 

  3. Gshneider, K.A.: Solid State Phys.16, 276 (1964); here only room-temperature values of\(\bar \gamma\), α and Θ were given Full set of α(T) experimental data though without\(\bar \gamma\)(T) evaluation may be found in Touloukian, Y.S., Kirby, R.K., Taylor, R.E., Desai, P.D.: Thermal expansion: Metallic elements and alloys. New York: Plenum Press 1975

    Google Scholar 

  4. Experimental\(\bar \gamma\)(T) data for Pd are given in Waterhouse, N., Yates, B.: Cryogenics8, 267 (1968).

    Google Scholar 

  5. Less detailed data may be found also in White, G.K., Pawlowicz, A.T.: J. Low Temp. Phys.2, 631 (1970) and in Ref. 18; all these data confirm the presence of low-temperature fall of\(\bar \gamma\)

    Google Scholar 

  6. White, G.K.: J. Phys. D6, 2070 (1973); more recent data for copper which agree with White's results are given in Kroeger, F.R., Swensson, C.A.: J. Appl. Phys.48, 853 (1977)

    Google Scholar 

  7. Brovman, E.G., Kagan, Yu.M.: In: Dynamical properties of solids. Horton, G.K., Maradudin, A.A. (eds.) Vol. 1, p. 191. Amsterdam: 1974

  8. Rice, M.H., McQueen, R.G., Walsh, J.M.: Solid State Phys.6, 1 (1956)

    Google Scholar 

  9. Al'tshuler, L.V., Bakanova, A.A., Trunin, R.F.: Sov. Phys. JETP11, 65 (1962)

    Google Scholar 

  10. Mao, H.K., Bell, P.M., Shaner, J.W., Steinberg, D.J.: J. Appl. Phys.49, 3276 (1978)

    Google Scholar 

  11. Morgan, J.A.: High Temp. High Press.6, 195 (1974)

    Google Scholar 

  12. Al'tshuler, L.V., Bakanova, A.A.: Sov. Phys. Usp.11, 678 (1969)

    Google Scholar 

  13. Rayne, J.A., Kemp, W.R.G.: Philos Mag.1, 918 (1956)

    Google Scholar 

  14. George, P.K., Thomson, E.D.: J. Phys. Chem. Solids28, 2539 (1967)

    Google Scholar 

  15. Busey, R.H., Glauque, W.F.: J. Am. Chem. Soc.74, 3157 (1952)

    Google Scholar 

  16. Boerstoer, B.M., Zwart, J.J., Hansen, J.: Physica54, 442 (1971)

    Google Scholar 

  17. Weal, B.W., Rayne, J.A.: Phys. Rev.135, 442A (1964)

    Google Scholar 

  18. Miller, A.P., Brockhouse, B.N.: Can. J. Phys.49, 704 (1972); here Θ(T) was calculated using experimental phonon dispersion and density of states calculated in Born-von Karman model

    Google Scholar 

  19. Bailey, A.C., Waterhouse, N., Yates, B.: J. Phys. C2, 769 (1969)

    Google Scholar 

  20. Gupta, O.P.: J. Chem. Phys.82, 927 (1985)

    Google Scholar 

  21. Berg, W.T.: J. Phys. Chem. Solids30, 69 (1969)

    Google Scholar 

  22. Dutton, D.H., Brockhouse, B.N., Miiller, A.P.: Can. J. Phys.50, 2915 (1972); Θ(T) for Pt was calculated in a manner similar to that for Pd (Ref. 17)

    Google Scholar 

  23. Schoemake, G.E., Rayne, J.H.: Phys. Lett.26A, 222 (1968)

    Google Scholar 

  24. Svistunov, V.M., Belogolovskii, M.A., Chernyak, O.I.: Usp. Phys. Nauk (in Russian)151, 31 (1987)

    Google Scholar 

  25. Fraser, D.B., Hollis-Hallett, A.C.: Can. J. Phys.43, 1933 (1965)

    Google Scholar 

  26. Kos, J.F., Lamarshe, J.G.L., Savary, L.: Phys. Lett.28A, 219 (1968).

    Google Scholar 

  27. In the next work, Kos, J.F., Lamarshe, J.G.L.: Can. J. Phys.47, 2509 (1969), it was pointed out that anomalous thermal expansion was inherent only for gold among other noble metals. This fact we attribute to the presence of negative dispersion found later for gold (Ref. 26)

    Google Scholar 

  28. Lynn, J.W., Smith, H.G., Nicklow, R.M.: Phys. Rev.B8, 3493 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonov, V.N., Milman, V.Y., Nemoshkalenko, V.V. et al. Equation of state and thermodynamics of fcc transition metals: A pseudopotential approach. Z. Physik B - Condensed Matter 79, 233–239 (1990). https://doi.org/10.1007/BF01406589

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01406589

Keywords

Navigation