Skip to main content
Log in

Evolutionary strategies of chemical defense in aposematic butterflies: Cyanogenesis in Asteraceae-feeding American Acraeinae

  • Research papers
  • Published:
CHEMOECOLOGY Aims and scope Submit manuscript

Summary

American Acraeinae butterflies often ingest large amounts of dehydropyrrolizidine alkaloids (PAs) from their Asteraceae hostplants in both larval and adult stages, but do not normally store these compounds for defence, instead biosynthesizing large amounts of the cyanogenic glucoside linamarin in all stages. This defence syndrome (rejection of plant toxins andde novo synthesis of protective chemicals) is considered to be the most evolved among aposematic (unpalatable mimicry-model) butterflies, as are the Acraeinae and Heliconiini which also synthesize cyanogens. Storage or minimal processing of larval hostplant-derived defensive chemicals is widespread and characterizes the most primitive model groups; an intermediate series (Danainae/Ithomiinae) also obtains the principal defensive chemicals (PAs) from plants, but mostly in the adult stage. These syndromes are discussed and contrasted with the pattern seen in Chrysomelidae beetles, wherede novo synthesis is widespread and considered primitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackery PR, Vane-Wright RI (1984) Milkweed Butterflies — Their Cladistics and Biology. London: British Museum (Natural History)

    Google Scholar 

  • Aplin RT, Ward RD, Rothschild M (1975) Examination of the large white and small white butterflies (Pieris spp.) for the presence of mustard oils and mustard oil glycosides. J Ent A (London) 50:73–78

    Google Scholar 

  • Bernays EA, Edgar JA, Rothschild M (1977) Pyrrolizidine alkaloids sequestered and stored by the aposematic grasshopperZonocerus variegatus. J Zool (London) 182:85–87

    Google Scholar 

  • Boppré M (1986) Insects pharmacophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids). Naturwissenschaften 73:17–26

    Google Scholar 

  • Boppré M (1990) Lepidoptera and pyrrolizidine alkaloids. Exemplification of complexity in chemical ecology. J Chem Ecol 16:165–185

    Google Scholar 

  • Bowers MD (1988) Chemistry and coevolution: iridoid glycosides, plants, and herbivorous insects. Pp 133–165in Spencer KC (ed) Chemical Mediation of Coevolution. San Diego: Academic Press

    Google Scholar 

  • Bowers MD, Larin Z (1989) Acquired chemical defence in the lycaenid butterfly,Eumaeus atala. J Chem Ecol 15:1133–1146

    Google Scholar 

  • Braekman JC, Daloze D, Pasteels JM (1982) Cyanogenic and other glucosides in a Neo-Guinean bugLeptocoris isolata: possible precursors in its host-plant. Biochem Syst Ecol 10:355–364

    Google Scholar 

  • Brower LP (1969) Ecological chemistry. Sci Amer 220(2):22–29

    Google Scholar 

  • Brower LP (1984) Chemical defense in butterflies. Pp 109–134in Vane-Wright RI, Ackery PR (eds) The Biology of Butterflies. London: Academic Press

    Google Scholar 

  • Brower LP, Brower JVZ. Corvino JM (1967) Plant poisons in a terrestrial food chain. Proc Natl Acad Sci USA 57:893–898

    Google Scholar 

  • Brower LP, Edmunds M, Moffitt CM (1975) Cardenolide content and palatability of a population ofDanaus chrysippus butterflies from West Africa. J. Ent A (London) 49:183–196

    Google Scholar 

  • Brower LP, Glazier SC (1975) Localization of heart poisons in the monarch butterfly. Science 188:19–25

    Google Scholar 

  • Brower LP, Seiber JN, Nelson CJ, Tuskes P, Lynch SP (1982) Plant-determined variation in the cardenolide content, thin layer cromatography profiles, and emetic potential of monarch butterflies,Danaus plexippus, reared on milkweed,Asclepias eriocarpa, in California. J Chem Ecol 8:579–633

    Google Scholar 

  • Brown KS Jr (1981) The biology ofHeliconius and related genera. Annu Rev Entom 26:427–456

    Google Scholar 

  • Brown KS Jr (1984) Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a spider predator. Nature 309:707–709

    Google Scholar 

  • Brown KS Jr (1985) Chemical ecology of dehydropyrrolizidine alkaloids in adult Ithomiinae (Lepidoptera: Nymphalidae). Rev bras Biol 44:435–460

    Google Scholar 

  • Brown KS Jr (1987) Chemistry at the Solanaceae/Ithomiinae interface. Ann Miss Bot Garden 74:359–397

    Google Scholar 

  • Brown KS Jr, Trigo JR, Francini RB, Morais ABB, Motta PC (1990) Aposematic insects on toxic host plants: coevolution, colonization, and chemical emancipation. In pressin Price PW, Lewinsohn TM, Fernándes GW, Benson WW (eds) Evolutionary Ecology of Plant/Animal Interactions: Tropical and Temperate Perspectives. New York: John Wiley & Sons

    Google Scholar 

  • Davis RH, Nahrstedt A (1985) Cyanogenesis in insects. Pp 635–654in Kerkut GA, Gilbert LI (eds) Comprehensive Insect Physiology, Biochemistry and Pharmacology. Oxford: Pergamon

    Google Scholar 

  • Edgar JA (1982) Pyrrolizidine alkaloids sequestered by Solomon Island danaine butterflies. The feeding preferences of the Danainae and Ithomiinae. J Zool (London) 196:385–399

    Google Scholar 

  • Edgar JA, Boppré M, Schneider D (1979) Pyrrolizidine alkaloid storage in African and Australian danaine butterflies. Experientia 35:1447–1448

    Google Scholar 

  • Edgar JA, Cockrum PA, Frahn JL (1976) Pyrrolizidine alkaloids inDanaus plexippus L. andDanaus chrysippus L. Experientia 32:1535–1537

    Google Scholar 

  • Eyjolfsson R (1970) Recent advances in the chemistry of cyanogenic glycosides. Fortschr Chem org Naturstoffe 28:74–108

    Google Scholar 

  • Fisher RA (1930) The Genetical Theory of Natural Selection. Oxford: Oxford University Press

    Google Scholar 

  • Gilbert LE (1975) Postmating female odor inHeliconius butterflies: a male-contributed antiaphrodisiac? Science 193:419–420

    Google Scholar 

  • Harvey DJ (1983)Actinote leucomelas (Mariposa, Actinote). Pp 679–680in Janzen DH (ed) Costa Rican Natural History. Chicago: Univ. Chicago Press

    Google Scholar 

  • Kelley RB, Seiber JN, Jones AD, Segall HJ, Brower LP (1987) Pyrrolizidine alkaloids in overwintering monarch butterflies(Danaus plexippus) from Mexico. Experientia 43:943–946

    Google Scholar 

  • Nahrstedt A (1985) Cyanogenic compounds as protecting agents for organisms. Plant Syst Evol 150:35–47

    Google Scholar 

  • Nahrstedt A, Davis RH (1981) The occurrence of cyanoglucosides, linamarin and lotaustralin, inAcraea andHeliconius butterflies. Comp Biochem Physiol 68B:575–577

    Google Scholar 

  • Nahrstedt A, Davis RH (1983) Occurrence, variation and biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in species of the Heliconiini (Insecta: Lepidoptera). Comp Biochem Physiol 75B:65–73

    Google Scholar 

  • Nahrstedt A, Davis RH (1985) Biosynthesis and quantitative relationships of the cyanoglucosides, linamarin and lotaustralin, in genera of the Heliconiini (Insecta: Lepidoptera). Comp. Biochem Physiol 82B:745–749

    Google Scholar 

  • Owen D (1971) Tropical Butterflies. Oxford: Clarendon Press

    Google Scholar 

  • Pasteels JM, Rowell-Rahier M, Braekman JC, Daloze D, Duffey S (1989) Evolution of exocrine chemical defense in leaf beetles (Coleoptera: Chrysomelidae). Experientia 45:295–300

    Google Scholar 

  • Pasteels JM, Duffey S, Rowell-Rahier M (1990) Toxins in chrysomelid beetles. Possible evolutionary sequence from de novo synthesis to derivation from food-plant chemicals. J Chem Ecol 16:211–222

    Google Scholar 

  • Pierre J (1983) Systématique evolutive, cladistique et mimetisme chez les lépidoptéres du genreAcraea. DSc Thesis, Université de Paris, 138 pp

  • Raubenheimer D (1989) Cyanoglycoside gynocardin fromAcraea horta (L.) (Lepidoptera: Acraeinae): possible implication for evolution of Acraeine host choice. J Chem Ecol 15:2177–2189

    Google Scholar 

  • Rothschild M (1973) Secondary plant substances and warning colouration in insects. Pp 59–83in Van Emden HF (ed) Insect/Plant Relationships. Oxford: Blackwells

    Google Scholar 

  • Rothschild M, Marsh N (1978) Some peculiar aspects of the danaid/plant relationship. Entomol exp appl 24:437–450

    Google Scholar 

  • Rothschild M, Nash RJ, Bell EA (1986) Cycasin in the endangered butterflyEumaeus atala florida. Phytochemistry 25:1853–1854

    Google Scholar 

  • Scott JA (1985) The phylogeny of butterflies. J Res Lepid 23:241–281

    Google Scholar 

  • Siegler DS (1975) Isolation and characterization of naturally occurring cyanogenic compounds. Phytochemistry 14:9–29

    Google Scholar 

  • Spencer KC (1988) Chemical mediation of coevolution in thePassiflora-Heliconius interaction. Pp 167–240in Spencer KC (ed) Chemical Mediation of Coevolution. San Diego: Academic Press

    Google Scholar 

  • Trigo JR (1988) Ecologia química na interação Ithomiinae (Lepidoptera: Nymphalidae)/Echitoideae (Angiospermae: Apocynaceae). MSc Thesis, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, 195 pp

    Google Scholar 

  • Trigo JR, Brown KS Jr (1990) Variation of pyrrolizidine alkaloids in Ithomiinae: a comparative study between species feeding on Apocynaceae and Solanaceae. Chemoecology 1:22–29

    Google Scholar 

  • Urzúa A, Priestap H (1985) Aristolochic acids fromBattus polydamas. Biochem Syst Ecol 13:169–170

    Google Scholar 

  • Urzúa A, Rodriguez R, Cassels B (1987) Fate of ingested aristolochic acids inBattus archidamas. Biochem Syst Ecol 15:687–689

    Google Scholar 

  • Urzúa A, Salgado G, Cassels BK, Eckhardt G (1983) Aristolochic acids inAristolochia chilensis and theAristolochia-feederBattus archidamas. Coll Czech Chem Comm 48:1513–1519

    Google Scholar 

  • Vane-Wright RI, Ackery PR, DeVries PJ (1984) Introduction. Pp 1–5in Vane-Wright RI, Ackery PR (eds) The Biology of Butterflies. London: Academic Press

    Google Scholar 

  • Vasconcellos-Neto J, Lewinsohn TM (1984) Discrimination and release of unpalatable butterflies byNephila clavipes, a neotropical orb-weaving spider. Ecol Entom 9:337–344

    Google Scholar 

  • Witthohn K, Naumann CM (1987) Cyanogenesis — a general phenomenon in the Lepidoptera? J Chem Ecol 13:1789–1809

    Google Scholar 

  • Wray V, Davis RH, Nahrstedt A (1983) Biosynthesis of cyanogenic glucosides in butterflies and moths: incorporation of valine and isoleucine into linamarin and lotaustralin byZygaena andHeliconius species (Lepidoptera). Z Naturforsch 38C:583–588

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, K.S., Francini, R.B. Evolutionary strategies of chemical defense in aposematic butterflies: Cyanogenesis in Asteraceae-feeding American Acraeinae. Chemoecology 1, 52–56 (1990). https://doi.org/10.1007/BF01325228

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01325228

Key words

Navigation