Skip to main content
Log in

Spatial decay estimates for the heat equation via the maximum principle

  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

Spatial decay estimates for the solution of the heat equation, similar to those obtained by other authors using energy inequalities, are established through use of the maximum principle.

Résumé

A l'aide du principe du maximum, on obtient des évaluations pour la décroissance spatiale des solutions de l'équation de la chaleur. Ces résultats ressemblent à ceux d'autres auteurs, qui utilisaient des inégalités pour l'énergie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. S. Edelstein,A Spatial Decay Estimate for the Heat Equation, Z. angew. Math. Phys.20, 900–905 (1969).

    Google Scholar 

  2. V. G. Sigillito,On the Spatial Decay of Solutions of Parabolic Equations, Z. angew. Math. Phys.21, 1078–1081 (1970).

    Google Scholar 

  3. J. K. Knowles,On the Spatial Decay of Solutions of the Heat Equation, Z. angew. Math. Phys.22, 1050–1056 (1971).

    Google Scholar 

  4. W. S. Edelstein,Further Study of Spatial Decay Estimates for Semilinear Parabolic Equations, J. Math. Anal. Appl.35, 577–590 (1971).

    Google Scholar 

  5. J. W. Nunziato,On the Spatial Decay of Solutions in the Nonlinear Theory of Heat Conduction, J. Math. Anal. Appl.48, 687–698 (1974).

    Google Scholar 

  6. C. O. Horgan andL. T. Wheeler,A Spatial Decay Estimate for Pseudoparabolic Equations, Lett. Appl. Eng. Sci.3, 237–243 (1975).

    Google Scholar 

  7. M. E. Gurtin,The Linear Theory of Elasticity, Handbuch der Physik, S. Flügge and C. Truesdell Eds. Vol. 6a/2, 1–295 (Springer, Berlin, 1972).

    Google Scholar 

  8. L. T. Wheeler, M. J. Turteltaub andC. O. Horgan,A Saint-Venant Principle for the Gradient in the Neumann Problem, Z. angew. Math. Phys.26, 141–154 (1975).

    Google Scholar 

  9. L. T. Wheeler andC. O. Horgan,A Two-Dimensional Saint-Venant Principle for Second-Order Linear Elliptic Equations, Quart. Appl. Math. (to appear).

  10. A. Friedman,Partial Differential Equations of Parabolic Type, (Prentice-Hall, Englewood Cliffs, N.J. 1964).

    Google Scholar 

  11. M. H. Protter andH. F. Weinberger,Maximum Principles in Differential Equations, (Prentice-Hall, Englewood Cliffs, N.J. 1967).

    Google Scholar 

  12. R. Courant andD. Hilbert,Methods of Mathematical Physics, Vol. I (Interscience, New York 1953).

    Google Scholar 

  13. J. Serrin,A Remark on the Preceding Paper of Amann, Arch. Rat. Mech. Anal.44, 182–186 (1972).

    Google Scholar 

  14. J. P. G. Ewer andL. A. Peletier,On the Asymptotic Behavior of Solutions of Semilinear Parabolic Equations, SIAM J. Appl. Math.28, 43–53 (1975).

    Google Scholar 

  15. C. O. Horgan andL. T. Wheeler,On Maximum Principles and Spatial Decay Estimates for Heat Conduction, Proc. 12th Ann. Meeting Soc. Eng. Sci., Austin, Texas, Oct. 1975, pp. 331–339.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horgan, C.O., Wheeler, L.T. Spatial decay estimates for the heat equation via the maximum principle. Journal of Applied Mathematics and Physics (ZAMP) 27, 371–376 (1976). https://doi.org/10.1007/BF01590509

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01590509

Keywords

Navigation