Skip to main content
Log in

On the application of finite-element techniques to problems concerning potential distribution and stress analysis in the earth sciences

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Summary

The elastic response (i.e., displacement fields, strain and stress distributions) has been determined by structural matrix analysis for a homogeneous rock layer subjected to two-dimensional distributions of vertical displacement applied along a basal boundary. The results obtained compare favorably with biharmonic function solutions obtained bySanford [42]2) and the authors. The analysis was then extended: the effects of different magnitudes of superposed gravitationally-induced stresses, release of a constrained side boundary, and introduction of pronounced heterogeneity were each quantitatively evaluated. Each of these changed conditions effected important alterations in response characteristics, e.g., in configuration of stress trajectories, predicted locations and configurations of initial fracture surfaces, shear stress distributions, and displacement fields.

These results are cited as an example of the utility of finite-element analysis (originally developed for evaluation of aeronautical structural components) for solutions of boundary value problems of a geological/geophysical nature. The breadth of specific physical problems succeptible to evaluation by this method is large and includes (i) behavior of rocks under static/dynamic loading, (ii) seismic response, (iii) heat and fluid flow, and (iv) distribution of potential. Most of the fundamental problems in geophysics, structural geology, geohydrology, geomorphology, glaciology, and engineering geology involve the above categories either directly or otherwise. The finite-element approach to these problems if bound to have enormous significance, for unlike classical mechanics, it can be readily adapted to solution of systems characterized by non-linear, anisotropic, heterogeneous material properties, of any exterior configuration, containing structural discontinuities, and subjected to any viable combinations of load/displacement boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Turner, R. W. Clough, H. C. Martin andL. J. Topp, J. Aeronautical Sci.23 (1956), 805.

    Google Scholar 

  2. R. K. Livesley,Matrix Methods in Structural Analysis (Pergamon Press, 1964).

  3. J. S. Robinson,Structural Matrix Analysis for the Engineer (Wiley, 1966).

  4. O. C. Zienkiewicz andY. K. Cheung, Water Power16 (1964), 193;17 (1965), 69.

    Google Scholar 

  5. O. C. Zienkiewicz, andY. K. Cheung, Proc. Insti. Civil Eng.28 (1964), 471.

    Google Scholar 

  6. E. P. Popov, J. Penzien andZ. A. Lu, Proc. ASCE (EM)119 (1964).

  7. D. J. Dawe, J. Mech. Eng. Sci7 (1965), 28.

    Google Scholar 

  8. R. W. Clough andA. K. Chopra, Structures and Materials Report 65-8 (Univ. California, Berkeley 1965).

    Google Scholar 

  9. R. W. Clough, Ch. 7 inStress Analysis, edit. byO. C. Zienkiewicz andG. S. Holister (Wiley, 1965).

  10. O. C. Zienkiewicz andY. K. Cheung, Ch. 8 inStress Analysis, edit. byO. C. Zienkiewicz andG. S. Holister (Wiley, 1965).

  11. R. W. Clough andJ. L. Tocher, Proc. Symp. Arch Dams. (Pergamon Press, 1965).

  12. J. H. Argyris, J.A.I.A.A.3 (1965), 45.

    Google Scholar 

  13. J. H. Argyris, Ingeniour Archiv.34 (1965), 33.

    Google Scholar 

  14. Proc. Conf. Matrix Methods in Structural Mechanics (Wright-Patterson AFB, Ohio 1965).

  15. J. H. Argyris, J. Roy. Aero. Soc.69 (1965), 711.

    Google Scholar 

  16. E. L. Wilson, J.A.I.A.A.3 (1965), 2269.

    Google Scholar 

  17. R. W. Clough andY. Rashid, Proc. ASCE (EM)91 (1965), 71.

    Google Scholar 

  18. O. C. Zienkiewicz andY. K. Cheung, The Engineer24 (1965), 507.

    Google Scholar 

  19. O. C. Zienkiewicz, P. Mayer andY. K. Cheung, Proc. ASCE (EM)92 (1966), 111.

    Google Scholar 

  20. O. C. Zienkiewicz andY. K. Cheung,The Finite Element Method in Structural and Continuum Mechanics (McGraw-Hill, 1967).

  21. W. Blake, Int. J. rock Mech. Min. Sci3 (1966), 169.

    Google Scholar 

  22. W. Blake, USBM R.I. 7002 (1967).

  23. E. L. Wilson, Proc. 2nd ASCE Conf. on Electronic Computation (1960), 415.

  24. J. E. Goldberg andR. M. Richard, Proc. ASCE (structural)89 (1963), 333.

    Google Scholar 

  25. G. Isakson, G. Armen andA. Pifko, Grumman Research Rept. RE-287 (1967).

  26. S. F. Reyes andD. U. Deere, Proc. 1st Congress, Int. Soc. Rock Mechanics2 (1966), 477.

    Google Scholar 

  27. R. E. Goodman andT. L. Taylor, 8th Symp. Rock Mechanics, AIME (1967), 303.

  28. H. W. Anderson andJ. S. Dodd, Proc. 1st Congress, Int. Soc. Rock Mechanics2 (1966), 317.

    Google Scholar 

  29. R. E. Goodman, Proc. 1st Congress, Int. Soc. Rock Mechanics2 (1966), 249.

    Google Scholar 

  30. W. D. Liam-Finn, Proc. 1st Congress, Int. Soc. Rock Mechanics2 (1967), 167.

    Google Scholar 

  31. D. H. Trollope, Proc. 1st Congress, Int. Soc. Rock Mechanics3 (1967), 478.

    Google Scholar 

  32. B. Voight, Proc. 1st Congress, Int. Soc. Rock Mechanics3 (1967), 332.

    Google Scholar 

  33. O. C. Zienkiewicz, S. Valliapan andI. P. King, Geotechnique18 (1968), 56.

    Google Scholar 

  34. R. E. Goodman, R. L. Taylor andT. L. Brekke Proc. ASCE (SM)94 (1968), 637.

    Google Scholar 

  35. I. M. Idriss, Proc. ASCE (SM)94 (1968), 617.

    Google Scholar 

  36. G. V. Girijavallabhan andL. C. Reese, Proc. ASCE (SM),94 (1968), 473.

    Google Scholar 

  37. F.-D. Wang, 1968,Analysis of Slopes in a Discontinuous Rock Mass (in press).

  38. W. D. Liam-Finn, Proc. ASCE (SM)93 (1967), 41.

    Google Scholar 

  39. N. Carter, Trans. AGU (1968), 49.

  40. W. Hafner, Bull. Geol. Soc. America62 (1951), 373.

    Google Scholar 

  41. E. M. Anderson,Dynamics of Faulting (Oliver and Boyd, 1942).

  42. A. R. Sanford, Bull. Geol. Soc. America70 (1959), 19.

    Google Scholar 

  43. J. H. Howard, Bull. Geol. Soc. America77 (1966), 1247.

    Google Scholar 

  44. C. B. Brown, andI. P. King, Geotechnique3 (1966), 209.

    Google Scholar 

  45. J. J. Prucha, J. A. Graham andR. P. Nickelsen, Bull. Amer. Assoc. Pet. Geol.49 (1965), 966.

    Google Scholar 

  46. A. J. Hendron,Behavior of Sand in One-Dimensional Compression (unpublished Ph. D. Thesis, University of Illinois, 1963).

  47. O. C. Zienkiewicz, Y. K. Cheung andK. G. Stagg, Jour. Strain Anal.1 (1966), 172.

    Google Scholar 

  48. E. D. Morgan andH. W. Anderson, USBR Report SA-1 (1965).

  49. B. Fraeijs de Veubeke, Ch. 9 inStress Analysis, edit. byO. C. Zienkiewicz andG. S. Holister (Wiley, 1965).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voight, B., Samuelson, A.C. On the application of finite-element techniques to problems concerning potential distribution and stress analysis in the earth sciences. PAGEOPH 76, 40–55 (1969). https://doi.org/10.1007/BF00877835

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877835

Keywords

Navigation