Skip to main content
Log in

Hydrothermal studies in a new diamond anvil cell up to 10 GPa and from −190°C to 1200°C

  • Diamond-anvil Cell Experiments
  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

The new hydrothermal diamond anvil cell (HDAC) has been designed for optical microscopy and X-ray diffraction at pressures up to 10 GPa and temperatures between −190°C and 1200°C. Laser light reffected from the top and bottom anvil faces and the top and bottom solid sample faces produce interference fringes that provide a very sensitive means of monitoring the volume of sample chamber and for observing volume and refractive index changes in solid samples due to transitions and reactions. Synchrotron radiation has been used to make X-ray diffraction patterns of samples under hydrothermal conditions. Individual heaters and individual thermocouples provide temperature control with an accuracy of ±0.5°C. Liquid nitrogen directly introduced into the HDAC has been used to reduce the sample temperature to −190°C. The α-β phase boundary of quartz has been used to calculate the transition pressures from measured transition temperatures. With this method we have redetermined 5 isochores of H2O up to 850°C and 1.2 GPa at which the solution rate of the quartz became so rapid that the quartz dissolved completely before the α-β transition could be observed. When silica solutions were cooled, opal spherules and rods formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Duan, Z.-H., Møller, N., andWeare, J. H. (1992), An Equation of State for the CH4−CO2−H2O System: I. Pure Systems from 0° to 1000°C and 0 to 8000 bar, Geochim. Cosmochim. Acta56, 2605–2617.

    Google Scholar 

  • Haar, L., Gallagher, J. S., andKell, G. S.,NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units (Hemisphere Publ. Corp., Washington, D.C. 1984).

    Google Scholar 

  • Kerrick, D. M., andJacobs, G. K. (1981), A Modified Redlich-Kwong Equation for H2O, CO2, and H2O−CO2 Mixtures at Elevated Pressures and Temperatures, Am. J. Sci.281, 735–767.

    Google Scholar 

  • Mirwald, P. W., andMassonne, H.-J. (1980), The Low-high Quartz and Quartz-coesite Transition to 40 kbar between 600°C and 1600°C and some Reconnaissance Data on the Effect of NaAlO2 Component on the Low Quartz-coesite Transition, J. Geophys. Research85, 6983–6990.

    Google Scholar 

  • Saul, A., andWagner, W. (1989),A Fundamental Equation for Water Covering the Range from the Melting Line to 1273 K at Pressures up to 25000 MPa, J. Phys. Chem. Ref. Data18, 1537–1565.

    Google Scholar 

  • Shen, A. H., Bassett, W. A., andChou, I-Ming, Hydrothermal studies in a diamond anvil cell: Pressure determination using the equation of state of H2O. InHigh-pressure Research: Application to Earth and Planetary Sciences (eds. Syono, Y., and Manghnani, M. H.) (Terra Sci. Publ. Co./AGU, Tokyo/Washington, D.C. 1992a) pp. 61–68.

    Google Scholar 

  • Shen, A. H., Chou, I-Ming, andBassett, W. A. (1992b), Experimental Determination of the Equation of State of H2O Using α-β Quartz Transition in a Diamond Anvil Cell, 29th International Geological Congress, Kyoto, Japan, Aug. 23–Sep. 5, 1992, Abstract Volume, 207 (Abstract).

  • Shen, A. H., Bassett, W. A., Chou, I-Ming (1993),The α-β Quartz Transition at Simultaneous High Temperatures and High Pressures in a Diamond Anvil Cell by Laser Interferometry, American Mineralogist78, 694–698.

    Google Scholar 

  • Van Valkenburg, A., Bell, P. M., andMao, H. K.,High-pressure mineral solubility experiments in the diamond-window cell. InHydrothermal Experimental Techniques (eds. Ulmer, G. C., and Barnes, H. L.) (J. Wiley and Sons, New York 1987) pp. 458–468.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassett, W.A., Shen, A.H., Bucknum, M. et al. Hydrothermal studies in a new diamond anvil cell up to 10 GPa and from −190°C to 1200°C. PAGEOPH 141, 487–495 (1993). https://doi.org/10.1007/BF00998341

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00998341

Key Words

Navigation