Skip to main content
Log in

Fractures: Finite-size scaling and multifractals

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

The distributions of contact area and void space in single fractures in granite rock have been determined experimentally by making metal casts of the void spaces between the fracture surfaces under normal loads. The resulting metal casts on 52 cm diameter core samples show a complex geometry for the flow paths through the fracture. This geometry is analyzed using finite-size scaling. The spanning probabilities and percolation probabilities of the metal casts are calculted as functions of observation scale. Under the highest stresses of 33 MPa and 85 MPa there is a significant size-dependence of the geometric flow properties for observation scales smaller than 2 mm. Based on this data, the macroscopic percolation properties of the extended fracture can be well represented by relatively small core samples, even under normal stresses larger than 33 MPa. The metal casts also have rich multifractal structure that changes with changing stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armitrano, C., Coniglio, A., andDi Liberto, F. (1986),Growth Probability Distribution in Kinetic Aggregation Processes, Phys. Rev. Lett.57, 1016.

    Google Scholar 

  • Benzi, R., Paladin, G., Parisi, G., andVulpiani, A. (1984),On the Multifractal Nature of Fully Developed Turbulence and Chaotic Systems, J. Phys. A17, 3521–3531.

    Google Scholar 

  • Bhatti, F. M., andEssam, J. W. (1986),Series Expansion Study of the Distribution of Currents in the Elements of a Random Diode-insulator Network, J. Phys. A19, L519-L525.

    Google Scholar 

  • Blumenfield, R., Meir, Y., Harris, A. B., andAharony, A. (1986),Infinite Set of Exponents Describing Physics on Fractal Networks, J. Phys. A19, L791.

    Google Scholar 

  • Brown, S. R., andScholz, C. H. (1985),Closure of Random Elastic Surfaces in Contact, J. Geophys. Res.90, 5531–5545.

    Google Scholar 

  • Brown, S. R., Kranz, R. L., andBonner, B. P. (1986),Correlation between the Surfaces of Natural Rock Joints, Geophys. Res. Lett.13, 1430–1434.

    Google Scholar 

  • de Arcangelis, L., Redner, S., andConiglio, A. (1985),Anomalous Voltage Distribution of Random Resistor Networks and a New Model for the Backbone at the Percolation Threshold, Phys. Rev. B31, 4725.

    Google Scholar 

  • de Arcangelis, L., Redner, S., andConiglio, A. (1986),Multiscaling Approach in Random Resistor and Random Superconducting Networks, Phys. Rev. B34, 4656.

    Google Scholar 

  • Dullien, F. A. L. (1981),Wood's Metal Porosimetry and its Relation to Mercury Porosimetry, Powder Technology29, 109–116.

    Google Scholar 

  • Feder, J.,Fractals (Plenum Press, New York 1988).

    Google Scholar 

  • Frisch, U., andParisi, G. (1983),Turbulence and Predictability of Geophysical Flows and Climate Dynamics, Varenna Summer School LXXXVIII.

  • Grassberger, P., andProcaccia, I. (1983),Characterization of Strange Attractors, Phys. Rev. Lett.50, 346–349.

    Google Scholar 

  • Grassberger, P., andProcaccia, I. (1984),Dimensions and Entropies of Strange Attractors from a Fluctuating Dynamics Approach, Physica D13, 34–54.

    Google Scholar 

  • Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., andShraiman, B. I. (1986),Fractal Measures and their Singularities: The Characterization of Strange Sets, Phys. Rev. A33, 1141.

    Google Scholar 

  • Hao, L., andYang, Z. R. (1987),Lacunarity and Universality, J. Phys. A., Math Gen.20, 1627–1631.

    Google Scholar 

  • Hopkins, D. L., andCook, N. G. W.,Fracture stiffness and aperture as a function of applied stress and contact geometry. InRock Mechanics (eds. Farmer, I., Daemen, J., Desai, C., Glass, C., and Neuman S.) (A. A. Balkema, Rotterdam 1987) pp. 673–680.

    Google Scholar 

  • Hopkins, D. L., Cook, N. G. W., andMyer, L. R.,Normal joint stiffness as a function of spatial geometry and surface roughness. InRock Joints (eds. Barton, N., and Stephansson, O. (A. A. Balkema, Rotterdam) pp. 203–210.

  • Hoshen, J., andKopelman, R. (1976),Percolation and Cluster Distribution. I. Cluster Multiple Labeling Technique and Critical Concentration Algorithm, Phys. Rev. B14, 3438.

    Google Scholar 

  • Lin, B., andYang, Z. R. (1986),A Suggested Lacunarity Expression for Sierpinski Carpets, J. Phys. A., Math Gen.19, L49-L52.

    Google Scholar 

  • Mandelbrot, B. B.,The Fractal Geometry of Nature (W. H. Freeman and Company, New York 1983) 468 pp.

    Google Scholar 

  • Mandelbrot, B. B. (1989),The Multifractal Measures, Especially for the Geophysicist, Pure and Appl. Geophys.131 (1/2), 5–42.

    Google Scholar 

  • Meakin, P., Coniglio, A., Stanley, H. E., andWitten, T. A. (1986),Scaling Properties for the Surfaces of Fractal and Nonfractal Objects: An Infinite Hierarchy of Critical Exponents, Phys. Rev. A34, 3325.

    Google Scholar 

  • Neuzil, C. E., andTracey, J. V. (1981),Flow Through Fractures, Water Resources Res.17 (1), 191–199.

    Google Scholar 

  • Nolte, D. D. (1989),Invariant Fixed Point in Stratified Continuum Percolation, Phys. Rev. A40 (8), 4817–4819.

    Google Scholar 

  • Nolte, D. D., Pyrak-Nolte, L. J., andCook, N. G. W. (1989),The Fractal Geometry of Flow Paths in Natural Fractures in Rock and the Approach to Percolation, Pure and Appl. Geophys.131 (1/2), 271.

    Google Scholar 

  • Nolte, D. D., andPyrak-Nolte, L. J. (1991),Stratified Continuum Percolation: Scaling Geometry of Hierarchical Cascades, Phys. Rev. A44, 6320–6333.

    Google Scholar 

  • Paladin, G., andVulpiani, A. (1984),Characterization of Strange Attractors as Inhomogeneous Fractals, Lett. Nuovo Cimento41, 82–89.

    Google Scholar 

  • Pfeuty, P., andToulouse, G.,Introduction to the Renormalization Group and to Critical Phenomena (John Wiley and Sons, London 1975).

    Google Scholar 

  • Pyrak-Nolte, L. J., Meyer, L. R., Cook, N. G. W., andWitherspoon, P. A.,Hydraulic and mechanical properties of natural fractures in low permeability rock. InProceedings, International Society for Rock Mechanics, 6th International Congress on Rock Mechanics, Montreal, Canada, August 1987 (A. A. Balkema, Rotterdam 1987) pp. 225–231.

    Google Scholar 

  • Pyrak-Nolte, L. J. (1991),The Feasibility of Using Wood's Metal Porosimetry to Measure the Fracture Void Geometry of Cleats in Coal, Topical Report, Gas Research Institute GRI-91-0373, 22 pp.

  • Rammal, R., Tannous, C., Breton, P., andTremblay, A. M. S. (1985),Flicker (1/f) Noise in Percolation Networks: A New Hierarchy of Exponents, Phys. Rev. Lett.54, 1718.

    Google Scholar 

  • Rammal, R., Tannous, C., andTremblay, A. M. S. (1986),1/f Noise in Random Resistor Networks: Fractals and Percolating Systems, Phys. Rev. A31, 2662.

    Google Scholar 

  • Raven, K. G., andGale, J. E. (1985),Water Flow in a Natural Rock Fracture as a Function of Stress and Sample Size, Internat. J. Rock Mechanics and Mining Sc. and Geomech. Abstracts22 (4), 251–261.

    Google Scholar 

  • Redner, S. (1990),Random Multiplicative Processes: An Elementary Tutorial, Am. J. Phys.58, 267–273.

    Google Scholar 

  • Stanley, H. E.,Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, New York 1971).

    Google Scholar 

  • Stauffer, D.,Introduction to Percolation Theory (Taylor and Francis, London 1985).

    Google Scholar 

  • Swan, G. (1983),Determination of Stiffness and Other Joint Properties from Roughness Measurements, Rock Mechanics and Engineering6, 19–38.

    Google Scholar 

  • Swanson, B. F. (1979),Visualizing Pores and Non-wetting Phase in Porous Rock, J. Petroleum Technology31, 10–18.

    Google Scholar 

  • Taguchi, Y. (1987),Lacunarity and Universality, J. Phys. A., Math Gen.20, 6611–6616.

    Google Scholar 

  • Tsang, Y. W., andWitherspoon, P. A., (1983),The Dependence of Fracture Mechanical and Fluid Flow Properties on Surface Roughness and Sample Size, J. Geophys. Res.88 (B3), 2359–2366.

    Google Scholar 

  • Wilson, K. G., andKogut, J. (1974),The Renormalization Group and the Epsilon Expansion, Physics Reports12C, 75–200.

    Google Scholar 

  • Wilson, K. G. (1975),The Renormalization Group: Critical Phenomena and the Kondo Problem, Adv. Phys.47 (4), 773–840.

    Google Scholar 

  • Wilson, K. G. (1979),Problems in Physics with Many Scales of Length, Scientific America241 (2), 158–179.

    Google Scholar 

  • Witherspoon, P. A., Amick, C. H., Gale, J. E., andIwai, K. (1979),Observations of a Potential Size Effect in Experimental Determination of the Hydraulic Properties of Fractures, Water Resources Res.15 (5), 1142.

    Google Scholar 

  • Yadav, G. D., Dullien, F. A. L., Chatzis, I., andMacDonald, I. F. (1984),Microscopic Distribution of Wetting and Non-wetting Phases in Sandstones during Immiscible Displacements, SPE 13212, Society of Petroleum Engineers of AIME, Dallas, Texas.

    Google Scholar 

  • Zheng, Z. (1989),Compressive Stress-induced Microcracks in Rocks and Applications to Seismic Anisotropy and Borehole Stability, Ph.D. Thesis, University of California, Berkeley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyrak-Nolte, L.J., Myer, L.R. & Nolte, D.D. Fractures: Finite-size scaling and multifractals. PAGEOPH 138, 679–706 (1992). https://doi.org/10.1007/BF00876344

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00876344

Key words

Navigation