Skip to main content
Log in

Anisotropy of magnetic remanence: A brief review of mineralogical sources, physical origins, and geological applications, and comparison with susceptibility anisotropy

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

The magnetic fabric of rocks and sediments is most commonly characterized in terms of the anisotropy of low-field magnetic susceptibility (AMS). However, alternative methods based on remanent magnetization (measured in the absence of a magnetic field) rather than induced magnetization (measured in the applied field) have distinct advantages for certain geological applications. This is particularly true for; (1) adjunct studies in paleomagnetism, in order to assess the fidelity with which a natural remanence records the paleofield orientation; (2) studies of weakly magnetic or weakly deformed rocks, for which susceptibility anisotropy is very difficult to measure precisely; and (3) quantitative applications such as strain estimation. The fundamental differences between susceptibility and remanence (and their respective anisotropies) are due to several factors: (1) susceptibility arises from all of the minerals present in a sample, whereas remanence is carried exclusively by a relatively small number of ferromagnetic minerals; (2) ferromagnetic minerals are generally more anisotropic than para- and diamagnetic minerals; (3) for ferromagnetic minerals, remanence is inevitably more anisotropic than susceptibility; and (4) a number of common minerals, including single-domain magnetites, possess an inverse anisotropy of susceptibility, i.e., they tend to have minimum susceptibility parallel to the long axis of an individual particle; remanence is immune to this phenomenon. As a consequence of all these factors, remanence anisotropy may generally provide a better quantitative estimate of the actual distribution of particle orientations in a rock sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anson, G. L., andKodama, K. P. (1987),Compaction-induced Inclination Shallowing of the Postdepositional Remanent Magnetization in a Synthetic Sediment, Geophys. J. R. Astr. Soc.88, 673–692.

    Google Scholar 

  • Arason, P., andLevi, S. (1990a),Models of Inclination Shallowing during Sediment Compaction, J. Geophys. Res.95, 4481–4500.

    Google Scholar 

  • Arason, P., andLevi, S. (1990b),Compaction and Inclination Shallowing in Deep-sea Sediments from the Pacific Ocean. J. Geophys. Res.95, 4501–4510.

    Google Scholar 

  • Argyle, K. S., andDunlop, D. J. (1990),Low-temperature and High-temperature Hysteresis of Small Multidomain Magnetites (215–540 nm), J. Geophys. Res.95, 7069–7083.

    Google Scholar 

  • Banerjee, S. K. (1970),Origin of Thermoremanence in Geothite, Earth Planet. Sci. Lett.8, 197–201.

    Google Scholar 

  • Banerjee, S. K., andStacey, F. D., The high field torque meter method of measuring magnetic anisotropy of rocks, InMethods of Paleomagnetism (eds. Collinson, D. W., Creer, K. M., and Runcorn, S. K.) (Elsevier 1967).

  • Barton, C. E., McElhinny, M. W., andEdwards, D. J. (1980),Laboratory Studies of Depositional DRM, Geophys. J. R. Astr. Soc.61, 355–377.

    Google Scholar 

  • Blow, R. A., andHamilton, N. (1978),Effect of Compaction on the Acquisition of a Detrital Remanent Magnetization in Fine-grained Sediments, Geophys. J. R. Astr. Soc.52, 13–23.

    Google Scholar 

  • Borradaile, G. (1987),Anisotropy of Magnetic Susceptibility: Rock Composition Versus Strain, Tectonophys.138, 327–329.

    Google Scholar 

  • Borradaile, G. (1988),Magnetic Susceptibility, Petrofabrics and Strain—A Review, Tectonophys.156, 1–20.

    Google Scholar 

  • Borradaile, G., Mothersill, J., Tarling, D., andAlford, C. (1986),Sources of Magnetic Susceptibility in a Slate, Earth and Planet. Sci. Lett.76, 336–340.

    Google Scholar 

  • Borradaile, G., Keeler, W., Alford, C., andSarvas, P. (1987),Anisotropy of Magnetic Susceptibility of Some Metamorphic Minerals, Phys. Earth and Planet. Int.48, 161–166.

    Google Scholar 

  • Celaya, M., andClement, B. M. (1988),Inclination Shallowing in Deep-sea Sediments from the North Atlantic, Geophys. Res. Lett.15, 52–55.

    Google Scholar 

  • Clark, D. A. (1984),Hysteresis Properties of Sized Dispersed Monoclinic Pyrrhotite Grains, Geophys. Res. Lett.11, 173–176.

    Google Scholar 

  • Cogné, J. P. (1987),TRM Deviations in Anisotropic Assemblages of Multidomain Magnetites, Geophys. J. R. Astr. Soc.90, 1013–1023.

    Google Scholar 

  • Cogné, J. P. (1988),Strain-induced AMS in the Granite of Flammanville and its Effects upon TRM Acquisition, Geophys. J. Internat.92, 445–453.

    Google Scholar 

  • Collombat, H., Rochette, P., andKent, D. V. (1990),Detection and Correction of Inclination Errors in Deep-sea Sediments Using the Anisotropy of Anhysteretic Remanence, Earth Planet Sci. Lett., in press.

  • Cox, A., andDoell R. R. (1967),Measurement of High-coercivity anisotropy, Methods in Paleomagnetism, 477–482.

  • Craddock, J. P., andvan der Pluijm, B. A. (1989),Late Paleozoic Deformation of the Cratonic Carbonate Cover of Eastern North America, Geology17, 416–419.

    Google Scholar 

  • Daly, L. (1967),Possibilitié d'existence dan les roches de plusieurs anisotropies magnétiques superposées; leur séparation, C. R. Acad. Sc. Paris, Ser, B, 1377–1380.

  • Daly, L., andZinsser, H. (1973),Etude comparative des anisotropies de susceptibilité et d'aimantation remanente isotherme: Conséquences pour l'analyse structurale et le paléomagnetisme, Annales de Géophysique29, 189–200.

    Google Scholar 

  • Dankers, P.,Magnetic Properties of Dispersed Natural Iron-oxides of Known Grain-size, Ph.D. Thesis, Univ. of Utrecht, Utrecht, 1978.

    Google Scholar 

  • Dankers, P. H. (1981),Relationship Between Median Destructive Field and Coercive Forces for Dispersed Natural Magnetite, Titanomagnetite, and Hematite, Geophys. J. R. Astr. Soc.64, 447–461.

    Google Scholar 

  • Deamer, G. A., andKodama, K. P. (1990), Compaction-induced Inclination Shallowing in Synthetic and Natural Clay-rich Sediments, J. Geophys. Res.95, 4511–4530.

    Google Scholar 

  • Dekkers, M. J.,Some Rockmagnetic Parameters for Natural Geothite, Pyrrhotite, and Fine-grained Hematite, Ph.D. Thesis, University of Utrecht, 1988.

  • Dunlop, D. J. (1971),Magnetic Properties of Fine-particle Hematite, Annales de Géophysique27, 269–293.

    Google Scholar 

  • Dunlop, D. J. (1986a),Hysteresis Properties of Magnetite and their Dependence on Particle Size: A Test of Pseudo-single-domain Remanence Models, J. Geophys. Res.91, 9569–9584.

    Google Scholar 

  • Dunlop, D. J. (1986b),Coercive Forces and Coercivity Spectra of Submicron Magnetites, Earth Planet. Sci. Lett.78, 288–295.

    Google Scholar 

  • Edwards, J. (1982),Gyroremanent Magnetization Produced by Specimen Rotation between Successive Alternating Field Treatments, Geophys. J. R. Astr. Soc.71, 199–214.

    Google Scholar 

  • Edwards, J. (1984),Partial Anhysteretic Remanent Magnetization Produced Rotating Samples and Comparison with RRM, Geophys. J. R. Astr. Soc.77, 619–637.

    Google Scholar 

  • Engelder, T. (1979),The Nature of Deformation within the Outer Limits of the Central Appalachian Foreland Fold and Thrust Belt in New York State, Tectonophys.55, 289–310.

    Google Scholar 

  • Fuller, M. (1963),Magnetic Anisotropy and Paleomagnetism, J. Geophys. Res.68, 293–309.

    Google Scholar 

  • Geiser, P., andEngelder, T. (1983),The Distribution of Layer-parallel Shortening Fabrics in the Appalachian Foreland of New York and Pennsylvania: Evidence for two Non-coaxial Phases of the Alleghenian Orogeny, Geol. Soc. Am. Mem.158, 161–175.

    Google Scholar 

  • Girdler, R. W. (1961),The Measurement and Computation of Anisotropy of Magnetic Susceptibility in Rocks, Geophys. J. R. Astr. Soc.5, 34–44.

    Google Scholar 

  • Griffiths, D. H., King, R. F., Rees, A. I., andWright, A. E. (1960),Remanent Magnetism of Some Recent Varved Sediments, Proc. R. Soc. A256, 359–383.

    Google Scholar 

  • Hartstra, R. L. (1982),Grain-size Dependence of Initial Susceptibility and Saturation Magnetizationrelated Parameters of Four Natural Magnetites in the PSD-MD Range, Geophys. J. R. Astr. Soc.71, 477–495.

    Google Scholar 

  • Heckel, P. (1977),Origin of Phosphatic Black Shale Facies in Pennsylvanian Cyclothems of Mid-Continent North America, Am. Assoc. Petr. Geol.61, 1045–1068.

    Google Scholar 

  • Hedley, I. G. (1971),The Weak Ferromagnetism of Geothite, Zeit. Geophys.37, 409–420.

    Google Scholar 

  • Heider, F., Dunlop, D. J., andSugiura, N. (1987),Magnetic Properties of Hydrothermally Recrystallized Magnetite Crystals, Science236, 1287–1290.

    Google Scholar 

  • Henry, B. (1989),Magnetic Fabric and Orientation Tensor of Minerals in Rocks, Tectonophys.165, 21–28.

    Google Scholar 

  • Henry, B. (1983),Interpretation quantitative de l'anisotropie de susceptibilité magnétique, Tectonophys.91, 165–177.

    Google Scholar 

  • Henry, B., andDaly, L. (1983),From Qualitative to Quantitative Magnetic Anisotropy Analysis: The Prospect of Finite Strain Calibration, Tectonophys.98, 327–336.

    Google Scholar 

  • Hounslow, M. W. (1985),Magnetic Fabric Arising from Paramagnetic Phyllosilicate Minerals in Mudrocks, J. Geol. Soc. London142, 995–1006.

    Google Scholar 

  • Housen, B. A., andvan der Pluijm, B. A. (1989),AMS and AAS of a Shale-to-slate Transition in the Martinsburg Formation, Lehigh Water Gap, Pennsylvania (abstr.), EOS Trans. Am. Geophys. Union70, 317.

    Google Scholar 

  • Housen, B. A., andvan der Pluijm, B. A. (1990),Chlorite Control of Correlations between Strain and Anisotropy of Magnetic Susceptibility, Phys. Earth Planet. Int.61, 315–323.

    Google Scholar 

  • Housen, B. A., andvan der Pluijm, B. A. (1991),Slaty Cleavage Development and Magnetic Anisotropy Fabrics, J. Geophys. Res., in press.

  • Hrouda, F. (1982),Magnetic Anisotropy of Rocks and its Application in Geology and Geophysics, Geophys. Surveys5, 37–82.

    Google Scholar 

  • Hrouda, F. (1987),Mathematical Model Relationship between the Paramagnetic Anisotropy and Strain in Slates, Tectonophys.142, 323–327.

    Google Scholar 

  • Hrouda, F., Stephenson, A., andWoltar, L. (1983),On the Standardization of the Anisotropy of Magnetic Susceptibility, Phys. Earth and Planet. Int.32, 203–208.

    Google Scholar 

  • Jackson, M., Gruber, W., Marvin, J., andBanerjee, S. K. (1988),Partial Anhysteretic Remanence and its Anisotropy: Applications and Grain-size Dependence, Geophys. Res. Lett.15, 440–443.

    Google Scholar 

  • Jackson, M., Sprowl, D., andEllwood, B. (1989),Anisotropies of Partial Anhysteretic Remanence and Susceptibility in Compacted Black Shales: Grain Size- and Composition-dependent Magnetic Fabric, Geophys. Res. Lett.16, 1063–1066.

    Google Scholar 

  • Jackson, M., Banerjee, S. K., Marvin, J., Lu, R., andGruber, W. (1991),Detrital Remanence, Inclination Errors, and Anisotropy of Anhysteretic Remanence: Quantitative Model and Experimental Results, Geophys. J. Internat.104, 95–103.

    Google Scholar 

  • Kean, W. F., Day, R., Fuller, M., andSchmidt, V. A. (1976),The Effect of Uniaxial Compression on the Initial Susceptibility of Rocks as a Function of Grain Size and Composition of their Constituent Titanomagnetites, J. Geophys. Res.81.

  • King, J., Banerjee, S. K., andMarvin, J. (1983),A New Rock Magnetic Approach to Selecting Sediments for Geomagnetic Paleointensity Studies, Application to Paleointensity for the Last 4000 Years, J. Geophys. Res.88, 5911–5921.

    Google Scholar 

  • King, R. F. (1955),The Remanent Magnetism of Artificially Deposited Sediments, Mon. Not. R. Astr. Soc. Geophys. Suppl.7, 115–134.

    Google Scholar 

  • King, R. F., andRees, A. I. (1966),Detrital Magnetism in Sediments: An Examination of Some Theoretical Models, J. Geophys. Res.71, 561–571.

    Google Scholar 

  • Kodama, K. P., andSun, W. W. (1990),SEM and Magnetic Fabric Study of a Compacting Sediment, Geophys. Res. Lett.17, 795–798.

    Google Scholar 

  • Levi, S., andBanerjee, S. K. (1976),On the Possibility of Obtaining Relative Paleointensities from Lake Sediments, Earth Planet. Sci. Lett.29, 219–226.

    Google Scholar 

  • Levi, S., andBanerjee, S. K. (1990),On the Origin of Inclination Shallowing in Redeposited Sediments, J. Geophys. Res.95, 4383–4390.

    Google Scholar 

  • Lu, R., Banerjee, S. K., andMarvin, J. (1990),The effects of Clay Mineralogy and the Electrical Conductivity of Water on the Acquisition of DRM in Sediments, J. Geophys. Res.95, 4531–4538.

    Google Scholar 

  • MacDonald, W. D., andEllwood, B. B. (1987),Anisotropy of Magnetic Susceptibility: Sedimentological, Igneous, and Structural-tectonic Applications, Rev. Geophys.25, 905–909.

    Google Scholar 

  • Maher, B. A. (1988),Magnetic Properties of Some Synthetic Sub-micron Magnetites, Geophys. J. Int.94, 83–96.

    Google Scholar 

  • McCabe, C., Jackson, M., andEllwood, B. B. (1985),Magnetic Anisotropy in the Trenton Limestone: Results of a New Technique, Anisotropy of Anhysteretic Susceptibility Geophys. Res. Lett.12, 333–336.

    Google Scholar 

  • Melton, F. A. (1929),A Reconnaissance of the Joint-systems in the Ouachita Mountains and Central Plains of Oklahoma, J. Geol.37, 729–746.

    Google Scholar 

  • Nye, J. F.,Physical Properties of Crystals (Oxford Univ. Press, London 1957) 322 pp.

    Google Scholar 

  • O'Reilly, W.:Rock and Mineral Magnetism (Blackie, Glasgow 1984) 230 pp.

    Google Scholar 

  • Owens, W. H. (1974),Mathematical Model Studies on Factors Affecting the Magnetic Anisotropy of Deformed Rocks, Tectonophys.24, 115–131.

    Google Scholar 

  • Özdemir, Ö., andBanerjee, S. K. (1982),A Preliminary Magnetic Study of Soil Samples in West-central Minnesota, Earth Planet. Sci. Lett.59.

  • Park, J. K., Tanczyk, E. I., andDesbarats, A. (1988),Magnetic Fabric and its Significance in the 1400 Mg Mealy Diabase Dykes of Labrador, Canada, J. Geophys. Res.93, 13689–13704.

    Google Scholar 

  • Pearce, G. W., andFueten, F. (1989),An Intensive Study of Magnetic Susceptibility Anisotropy of Amphibolite Layers of the Thompson Belt, North Manitoba, Tectonophys.162, 315–329.

    Google Scholar 

  • Potter, D. K., andStephenson, A. (1988),Single-domain Particles in Rocks and Magnetic Fabric Analysis, Geophys. Res. Lett.15, 1097–1100.

    Google Scholar 

  • Rochette, P. (1987),Magnetic Susceptibility of the Rock Matrix Related to Magnetic Fabric Studies, J. Struct. Geol.9, 1015–1020.

    Google Scholar 

  • Rochette, P. (1988),Inverse Magnetic Fabric in Carbonate-bearing Rocks, Earth Planet. Sci. Lett.90, 229–237.

    Google Scholar 

  • Rochette, P. (1989),Susceptibility of Matrix Materials and the AMS-strain Relationship (abstr.), EOS Trans. Am. Geophys. Union70, 318.

    Google Scholar 

  • Rochette, P., andFillion, G. (1988),Identification of Multicomponent Anisotropies in Rocks Using Various Field and Temperature Values in a Cryogenic Magnetometer, Phys. Earth Planet. Int.51, 379–386.

    Google Scholar 

  • Roperch, P., andTaylor, G. K. (1986),The Importance of Gyromagnetic Remanence in Altermating Field Demagnetization; Some New Data and Experiments on GRM and RRM, Geophys. J. R. Astr. Soc.87, 949–965.

    Google Scholar 

  • Schmidbauer, E., andSchembera, E. (1987),Magnetic Hysteresis Properties and Anhysteretic Remanent Magnetization of Spherical Fe 3 O 4 Particles in the Grain Size Range 60–160 nm, Phys. Earth Planet. Int.46, 77–83.

    Google Scholar 

  • Stacey, F. D. (1960),Magnetic Anisotropy of Igneous Rocks, J. Geophys. Res.65, 2429–2442.

    Google Scholar 

  • Stacey, F. D., andBanerjee, S. K.,Physical Principles of Rock Magnetism (Elsevier 1974).

  • Stephenson, A. (1980),A Gyroremanent Magnetization in Anisotropic Magnetic Material, Nature284, 49–51.

    Google Scholar 

  • Stephenson, A. (1981a),Gyroremanent Magnetization in a Weakly Anisotropic Rock Sample, Phys. Earth Planet. Int.25, 163–166.

    Google Scholar 

  • Stephenson, A. (1981b),Gyromagnetic Remanence and Anisotropy in Single-domain Particles, Rocks, and Magnetic Recording Tape, Philos. Mag. B44, 635–664.

    Google Scholar 

  • Stephenson, A., Sadikun, S., andPotter, D. K. (1986),A Theoretical and Experimental Comparison of the Anisotropies of Magnetic Susceptibility and Remanence in Rocks and Minerals, Geophys. J. R. Astr. Soc.84, 185–200.

    Google Scholar 

  • Syono, Y. (1965),Magnetocrystalline Anisotropy and Magnetostriction of Fe3Or−Fe2TiO4 Series, with Special Application to Rock Magnetism, Japan. J. Geophys.4, 71–143.

    Google Scholar 

  • Tarduno, J. A. (1990),Absolute Inclination Values from Deep-sea Sediments: A Re-examination of the Cretaceous Pacific Record, Geophys. Res. Lett.17, 101–104.

    Google Scholar 

  • Tauxe, L., andKent, D. V. (1984),Properties of a Detrital Remanence Carried by Hematite from a Study of Modern River Deposits and Laboratory Redeposition Experiments, Geophys. J. R. Astr. Soc.77, 543–561.

    Google Scholar 

  • Tucker, P., (1980),Stirred Remanent Magnetization: A Laboratory Analogue of Post-depositional Remanent Magnetization, J. Geophys.48, 153–157.

    Google Scholar 

  • Tucker, P. (1981),Paleointensities from Sediments: Normalization by Laboratory Redepositions, Earth Planet. Sci. Lett.56, 398–404.

    Google Scholar 

  • Verosub, K. L. (1977),Depositional and Post-depositional Processes in the Magnetization of Sediments, Rev. Geophys. Space Phys.15, 129–143.

    Google Scholar 

  • Wood, D. S., Oertel, G., Singh, J., andBennett, M. F., (1976),Strain and Anisotropy in Rocks, Philos. Trans. R. Soc. London, Ser. A283.

  • Worm, H.-U., andMarkert, H. (1987),Magnetic Hysteresis Properties of Fine Particle Titanomagnetities Precipitated in a Silicate Matrix, Phys. Earth Planet. Inter.46, 84–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution number 9102 of the Institute for Rock Magnetism, University of Minnesota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, M. Anisotropy of magnetic remanence: A brief review of mineralogical sources, physical origins, and geological applications, and comparison with susceptibility anisotropy. PAGEOPH 136, 1–28 (1991). https://doi.org/10.1007/BF00878885

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00878885

Key words

Navigation