Skip to main content
Log in

The interaction of elastic waves with a solid-liquid interface, with applications to the core-mantle boundary

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

The paper discusses basic ideas and principles underlying methods, which have proved useful in the interpretation of diffraction and scattering phenomena by a smooth or slightly rough solid-liquid interface. Generally, the wave interaction may be formulated as an excitation problem; it involves (1) finding an equivalent dislocation or source distribution on the interface, and (2) evaluating the excited wave field. These steps are taken through perturbation theory and/or adopting the appropriate generalization of ray theory. In this context an explicit form of Green's function is also given. The methods have been applied to the core-mantle boundary, with a view toward the interpretation of recent data: (a) diffracted P and S waves around the core (in particular, their attenuation); (b) scattered short-period core phases (in particular, precursors to PKP and PKKP). Other types of wave interaction, and implications for models of the core-mantle boundary structure, are briefly mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, R. D. (1972),Multiple inner core reflections of a Novaya Zemlya explosion, Bull. seism. Soc. Am.62, 1063–1071.

    Google Scholar 

  • Backus, G. andMulcahy, M. (1976),Moment tensors and other phenomenological descriptions of seismic sources — I. Continuous displacements, Geophys. J. R. astr. Soc.46, 341–361.

    Google Scholar 

  • Ben-Menahem, A. andSingh, S. J. (1972), ‘Computation of models of elastic dislocations in the Earth’, inMethods in Computational Physics, Vol. 12, ed. by B. A. Bolt, pp. 299–375.

  • Bessonova, E. N., Fishman, V. M., Shnirman, M. G., Sitnikova, G. A. andJohnson, L. R. (1976),The tau method for inversion of travel times — II. Earthquake data, Geophys. J. R. astr. Soc.46, 87–108.

    Google Scholar 

  • Bolt, B. A. andQamar, A. (1972),Observations of pseudo-aftershocks from underground nuclear explosions, Phys. Earth Planet. Int.5, 400–402.

    Google Scholar 

  • Bremmer, H. (1949),Terrestrial Radio Waves, Elsevier Publishing Company, Amsterdam-New York.

    Google Scholar 

  • Bremmer, H. (1960),On the theory of wave propagation through a concentrically stratified troposphere with a smooth profile, I. Discussion of the extended W.K.B. approximation, J. Res. natn. Bur. Stand.64D, 467–482.

    Google Scholar 

  • Bremmer, H. (1962),Part II. Expansion of the rigorous solution, J. Res. natn. Bur. Stand.66D, 31–52.

    Google Scholar 

  • Bremmer, H. (1976),A historical survey of the mathematical theories of radio-wave propagation, Ist. Naz. di Alta Mat., Symp. Math.18, 57–83.

    Google Scholar 

  • Bullen, K. E. (1965),An Introduction to the Theory of Seismology, 3rd edn., Cambridge University Press.

  • Burridge, R. andKnopoff, L. (1964),Body force equivalents for seismic dislocations, Bull. seism. Soc. Am.54, 1875–1888.

    Google Scholar 

  • Chang, A. C. andCleary, J. R. (1978),Precursors to PKKP, Bull. seism. Soc. Am.68, 1059–1079.

    Google Scholar 

  • Chapman, C. H. (1973),The Earth flattening transformation in body wave theory, Geophys. J. R. astr. Soc.35, 55–70.

    Google Scholar 

  • Chapman, C. H. (1978),A new method for computing theoretical seismograms, Geophys. J. R. astr. Soc.54, 481–518.

    Google Scholar 

  • Chapman, C. H. andPhinney, R. R. (1972), ‘Diffracted seismic signals and their numerical solution’, inMethods in Computational Physics, Vol. 12, ed. by B. A. Bolt, pp. 165–230.

  • Chernov, L. A. (1960),Wave Propagation in a Random Medium, translated by R. A. Silverman, McGraw-Hill, New York.

    Google Scholar 

  • Choy, G. L. (1977),Theoretical seismograms of core phases calculated by frequency-dependent full wave theory, and their interpretation, Geophys. J. R. astr. Soc.51, 275–312.

    Google Scholar 

  • Cisternas, A. andJobert, G. (1977),Extension of matrix methods to structures of slightly irregular stratification, J. Geophys.43, 59–74.

    Google Scholar 

  • Cormier, V. F. andRichards, P. G. (1976),Comments on ‘The damping of core waves’ by Anthony Qamar and Alfredo Eisenberg, J. Geophys. Res.81, 3066–3068.

    Google Scholar 

  • Cormier, V. F. andRichards, P. G. (1977),Full wave theory applied to a discontinuous velocity increase: The inner core boundary, J. Geophys.43, 3–31.

    Google Scholar 

  • Doornbos, D. J. (1974),Seismic wave scattering near caustics: Observations of PKKP precursors, Nature247, 352–353.

    Google Scholar 

  • Doornbos, D. J. (1976),Characteristics of lower mantle inhomogeneities from scattered waves, Geophys. J. R. astr. Soc.44, 447–470.

    Google Scholar 

  • Doornbos, D. J. (1978),On seismic-wave scattering by a rough core-mantle boundary, Geophys. J. R. astr. Soc.53, 643–662.

    Google Scholar 

  • Doornbos, D. J. andMondt, J. C. (1979a),Attenuation of P and S waves diffracted around the core, Geophys. J. R. astr. Soc.57, 353–379.

    Google Scholar 

  • Doornbos, D. J. andMondt, J. C. (1979b),P and S waves diffracted around the core and the velocity structure at the base of the mantle, Geophys. J. R. astr. Soc.57, 381–395.

    Google Scholar 

  • Engdahl, E. R. (1968),Core phases and the Earth's core, Ph.D. Thesis, Saint Louis University.

  • Fuchs, K. (1971),The method of stationary phase applied to the reflection of spherical waves from transition zones with arbitrary depth-dependent elastic moduli and density, J. Geophys.37, 89–117.

    Google Scholar 

  • Fuchs, K. andMüller, G. (1971),Computation of synthetic seismograms with the reflectivity method and comparison with observations, Geophys. J. R. astr. Soc.23, 417–433.

    Google Scholar 

  • Fuchs, K. andSchulz, K. (1976),Tunneling of low-frequency waves through the subcrustal lithosphere, J. Geophys.42, 175–190.

    Google Scholar 

  • Gilbert, F. andKnopoff, L. (1960),Seismic scattering from topographic irregularities, J. geophys. Res.65, 3437–3444.

    Google Scholar 

  • Gilbert, F. andDziewonski, A. M. (1975),An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra, Phil. Trans. R. Soc. London, A.278, 187–269.

    Google Scholar 

  • Haddon, R. A. W. (1972),Corrugations on the mantle core boundary or transition layers between inner and outer core? (abstract), Trans. Am. geophys. Un.53, 600.

    Google Scholar 

  • Haddon, R. A. W. andCleary, J. R. (1974),Evidence for scattering of seismic PKP waves near the mantle-core boundary, Phys. Earth Planet. Int.8, 211–234.

    Google Scholar 

  • Hill, D. P. (1972),An earth-flattening transformation for waves from a point source, Bull. seism. Soc. Am.62, 1195–1210.

    Google Scholar 

  • Hudson, J. A. (1969),A quantitative evaluation of seismic signals at teleseismic distance — II. Body waves and surface waves from an extended source, Geophys. J. R. astr. Soc.18, 353–370.

    Google Scholar 

  • Hudson, J. A. (1977),Scattered waves in the code of P, J. Geophys.43, 359–374.

    Google Scholar 

  • Hudson, J. A. andKnopoff, L. (1967),Statistical properties of Rayleigh waves due to scattering by topography, Bull. seism. Soc. Am.57, 83–90.

    Google Scholar 

  • Husebye, E. S., King, D. W. andHaddon, R. A. W. (1976),Precursors to PKIKP and seismic wave scattering near the mantle-core boundary, J. geophys. Res.81, 1870–1882.

    Google Scholar 

  • Kennett, B. L. N. (1972a),Seismic wave scattering by obstacles on interfaces, Geophys. J. R. astr. Soc.28, 249–266.

    Google Scholar 

  • Kennett, B. L. M. (1972b),The connection between elastodynamic representation theorems and propagator matrices, Bull. seism. Soc. Am.62, 973–983.

    Google Scholar 

  • Kind, R. andMüller, G. (1977),The structure of the outer core from SKS amplitudes and travel times, Bull. seism. Soc. Am.67, 1541–1554.

    Google Scholar 

  • Knopoff, L. andHudson, J. A. (1964),Scattering of elastic waves by small inhomogeneities, J. acoust. Soc. Am.36, 338–343.

    Google Scholar 

  • Ludwig, D. (1970),Diffraction by a circular cavity, J. Math. Phys.11, 1617–1629.

    Google Scholar 

  • Mondt, J. C. (1977a),SH waves: theory and observations for epicentral distances greater than 90 degrees, Phys. Earth Planet. Int.15, 46–59.

    Google Scholar 

  • Mondt, J. C. (1977b),Full wave theory and the structure of the lower mantle, Ph.D. Thesis, University of Utrecht.

  • Mondt, J. C. andPootjes, H. J. (1980),A comparison of the reflectivity method and full wave theory, as applied to SH diffraction around the core, Pure Appl. Geophys,118, this issue.

  • Müller, G. (1973),Amplitude studies of core phases, J. geophys. Res.78, 3469–3490.

    Google Scholar 

  • Müller, G. (1977),Earth-flattening transformation for body waves derived from geometric ray theory — Improvements, corrections and range of applicability, J. Geophys.42, 429–436.

    Google Scholar 

  • Müller, G., Mula, A. H. andGregersen, S. (1977),Amplitudes of long-period PcP and the core-mantle boundary, Phys. Earth Planet. Int.14, 30–40.

    Google Scholar 

  • Nussenzweig, H. M. (1965),High frequency scattering by an impenetrable sphere, Ann. Phys.34, 23–95.

    Google Scholar 

  • Phinney, R. A. andAlexander, S. S. (1969),The effect of a velocity gradient at the base of the mantle on diffracted P waves in the shadow, J. geophys. Res.74, 4967–4971.

    Google Scholar 

  • Richards, P. G. (1970),A contribution to the theory of high frequency elastic waves, with applications to the shadow boundary of the earth's core, Ph.D. Thesis, Cal. Inst. Techn.

  • Richards, P. G. (1973),Calculation of body waves for caustics and tunnelling in core phases, Geophys. J. R. astr. Soc.35, 243–264.

    Google Scholar 

  • Richards, P. G. (1974),Weakly coupled potentials for high-frequency elastic waves in continuously stratified media, Bull. seism. Soc. Am.64, 1575–1588.

    Google Scholar 

  • Richards, P. G. (1976),On the adequacy of plane-wave reflection/transmission coefficients in the analysis of seismic body waves, Bull. seism. Soc. Am.66, 701–717.

    Google Scholar 

  • Scholte, J. G. J. (1956),On seismic waves in a spherical Earth, Koninkl. Ned. Meteor. Inst. Publ.65, 1–55.

    Google Scholar 

  • Teng, T. andRichards, P. G. (1969),Diffracted P, SV and SH waves and their shadow boundary shifts, J. geophys. Res.74, 1537–1555.

    Google Scholar 

  • Van den Berg, A. P., Cloetingh, S. A. P. L. andDoornbos, D. J. (1978),A comparison of PKP precursor data from several seismic arrays, J. Geophys.44, 499–510.

    Google Scholar 

  • Wait, J. R. (1962),Electromagnetic Waves in Stratified Media, Pergamon Press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doornbos, D.J., Mondt, J.C. The interaction of elastic waves with a solid-liquid interface, with applications to the core-mantle boundary. PAGEOPH 118, 1293–1309 (1980). https://doi.org/10.1007/BF01593068

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01593068

Key words

Navigation