Skip to main content
Log in

Transient creep and semibrittle behavior of crystalline rocks

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

We review transient creep and semibrittle behavior of crystalline solids. The results are expected to be pertinent to crystalline rocks undergoing deformation in the depth range 5 to 20 km, corresponding to depths of focus of many major earthquakes. Transient creep data for crystalline rocks at elevated temperatures are analyzed but are poorly understood because of lack of information on the deformation processes which, at low to moderate pressure, are likely to be semibrittle in nature. Activation energies for transient creep at high effective confining pressure are much higher than those found for atmospheric pressure tests in which thermally-activated microfracturing probably dominates the creep rate. Empirical transient creep equations are extrapolated at 200° to 600°C, stresses from 0.1 to 1.0 kbar, to times ranging from 3.17×102 to 3.17×108 years. At the higher temperatures, appreciable transient creep strains may take place but the physical significance of the results is in question because the flow mechanisms have not been determined. The purpose of this paper is to stimulate careful research on this important topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afrouz, A. andHarvey, J. (1974),Rheology of rocks within the soft to medium strength range, Int. J. Rock Mech. Min. Sci.11, 281–290.

    Google Scholar 

  • Amin, K. E., Mukherjee, A. K. andDorn, J. E. (1970),A universal law for high-temperature diffusioncontrolled transient creep, J. Mech. Phys. Solids18, 413–426.

    Google Scholar 

  • Andrade, C. N. CAC. (1910),Viscous flow in metals, Proc. Roy. Soc. Lon., A.84, 1–12.

    Google Scholar 

  • Argon, A. S. andOrowan, E. (1964),Plastic deformation in MgO single crystals, Phil. Mag.,9, 1003–1021.

    Google Scholar 

  • Boullier, A. M. andGueguen, Y. (1975),SP-mylonites: Origin of some mylonites by superplastic flow, Contrib. Mineral. Petrol.50, 93–104.

    Google Scholar 

  • Brace, W. F., Paulding, B. W. andScholz, C. (1966),Dilatancy in the fracture of crystallne rocks, J. Geophys. Res.71, 3939–3953.

    Google Scholar 

  • Carter, N. L. (1976),Steady state flow of rocks, Rev. Geophys. Space Phys.14, 301–360.

    Google Scholar 

  • Carter, N. L. andHeard, H. C. (1970),Temperature and rate dependent deformation of halite, Amer. J. Sci.269, 193–249.

    Google Scholar 

  • Carter, N. L. andFriedman, M. (1965),Dynamic analysis of deformed quartz and calcite from the Dry Creek Ridge anticline, Montana, Amer. J. Sci.263, 747–785.

    Google Scholar 

  • Carter, N. L. andRaleigh, C. B. (1969),Principal stress directions from plastic flow in crystals, Geol. Soc. Amer. Bull.80, 1213–1264.

    Google Scholar 

  • Chen, P. W., Young, C. T., andLytton, J. L. (1975),Effect of dislocation substructure on the primary creep behavior of aluminum at elevated temperatures, inRate Processes in Plastic Deformation of Metals (eds. J. C. M. Li and A. K. Mukherjee) (Amer. Soc. Metals), pp. 605–628.

  • Christie, J. M., Griggs, D. T. andCarter, N. L. (1964),Experimental evidence of basal slip in quartz, J. Geol.72, 734–756.

    Google Scholar 

  • Coble, R. L. (1963),A model for boundary diffusion controlled creep in polycrystalline materials, J. Appl. Phys.34, 1679–1682.

    Google Scholar 

  • Coble, R. L. andParikh, N. M.,Fracture in polycrystalline ceramics, inFracture VII (ed. H. Liebowitz) (Academic Press, 1972), 243–314.

  • Coe, R. S., andKirby, S. H. (1975),The orthoenstatite to clinoenstatite transformation by shearing and reversion by annealing: mechanism and potential application, Contrib. Mineral. Petrol.52, 29–55.

    Google Scholar 

  • Conway, J. B. andMullikin, M. J. (1966),A graphical test of the Garofalo equation, Trans. Metall. Soc., AIME236, 940.

    Google Scholar 

  • Cottrell, A. H.,The Mechanical Properties of Matter, (John Wiley and Sons, New York, 1964), 430 pp.

    Google Scholar 

  • Cruden, D. M. (1970),A theory of brittle creep in rocks under uniaxial compression, J. Geophys. Res.,75, 3431–3442.

    Google Scholar 

  • Cruden, D. M. (1974),The static fatigue of brittle rock under uniaxial compression, Int. J. Rock. Mech. Min. Sci.11, 67–73.

    Google Scholar 

  • Dorn, J. E. (1954),Some fundamental experiments on high-temperature creep, J.Mech. Phys. Solids19, 77–83.

    Google Scholar 

  • Eaton, S. F.,The high temperature creep of dunite, Ph. D. Thesis (Princeton Univ., Princeton, N.J. 1968).

    Google Scholar 

  • Elliot, D. (1973),Diffusion flow laws in metamorphic rocks, Geol. Soc. Amer. Bull.84, 2645–2664.

    Google Scholar 

  • Etheridge, M. A., Hobbs, B. E., andPaterson, M. S. (1973),Experimental deformation of single crystals of biotite, Contrib. Mineral. Petrol.38, 21–36.

    Google Scholar 

  • Evans, H. E. andWilliams, K. R. (1972),A physical basis for primary recovery creep, Phil. Mag.25, 1399–1408.

    Google Scholar 

  • Evans, H. E. (1936),The elasticity and plasticity of rocks and artificial stone, Proc. Leeds Phil. Lit. Soc.3, pt. 3, 145–158.

    Google Scholar 

  • Evans, W. J. andWilshire, B. (1968a),Work-hardening and recovery during transient and steady state creep, Trans. Metall. Soc. AIME,242, 2514–2515.

    Google Scholar 

  • Evans, W. J. andWilshire, B. (1968b),Transient and steady state creep behavior of nickel. zinc, and iron, Trans. Metall. Soc. AIME,242, 1303–1307.

    Google Scholar 

  • Garofalo, F.,Fundamentals of creep and creep-rupture in metals (MacMillan, 1965), 258 pp.

  • Goetze, C. (1971),High temperature rheology of Westerly granite, J. Geophys. Res.,76, 1223–1230.

    Google Scholar 

  • Goetze, C. andBrace, W. F. (1972),Laboratory observations of high-temperature rheology of rocks, Tectonophysics13, 583–600.

    Google Scholar 

  • Green, H. W. (1970),Diffusional flow in polycrystalline materials, J. Appl. Phys.41, 3899–3902.

    Google Scholar 

  • Griggs, D. T. (1936),Deformation of rocks at high confining pressure, J. Geol.44, 541–577.

    Google Scholar 

  • Griggs, D. T. (1939),Creep of rocks, J. Geol.47, 225–251.

    Google Scholar 

  • Griggs, D. T. (1940),Experimental flow of rocksunder conditions favoring recrystallization, Geol. Soc. Amen. Bull.51, 1001–1022.

    Google Scholar 

  • Griggs, D. T. andHandin, J. W. (1960),Observations on fracture and a hypothesis of earthquakes, Geol. Soc. Amer. Mem.79, 347–364, 1960.

    Google Scholar 

  • Handin, J. W., Hager, R. V., Jr., Friedman, M. andFeather, J. N. (1963),Experimental deformation of sedimentary rocks under confining pressure: pore pressure tests, Am. Assoc. Petrol. Geol. Bull.47, 717–755.

    Google Scholar 

  • Handin, J. W. andCarter, N. L. (1977),Rheology of rocks, inEncyclopedia of Structural Geology and Plate Tectonics (ed. Dowdenet al.), Penna., in press.

  • Hardy, H. R., Kim, R. Y., Stefanko, R. andWang, Y. J.,Creep and microseismic activity in geological materials, in:Proc. 11th Symp. on Rock Mech. (Univ. Calif., Berkeley, Calif., 1969), 377–413.

    Google Scholar 

  • Heard, H. C. (1976),Comparison of the flow properties of rocks at crustal conditions, Phil. Trans. roy. Soc. London, A283, 173–186.

    Google Scholar 

  • Hendron, A. J.,Mechanical properties of rocks inRock Mechanics in Engineering Practice (eds. K. C. Stagg and O. C. Zienkiewicz) (John Wiley, New York, 1968).

    Google Scholar 

  • Iida, K. andKumazawa, M. (1957),Viscoelastic properties of rocks, J. Earth Sci., Nagoya Univ.5, 68–80.

    Google Scholar 

  • Iida, K., Wada, Y. andShani, R. (1960),Measurement of creep in igneous rocks, J. Earth Sci., Nagoya Univ.8, 1–16.

    Google Scholar 

  • Kirby, S. H. (1977),State of stress in the lithosphere: Inference from the flow laws of olivine, Pure Appl. Geophys.115, 245–258.

    Google Scholar 

  • Kirby, S. H. andRaleigh, C. B. (1973),Mechanisms of high-temperature, solid-state flow in minerals and ceramics and their bearing on creep behaviour of the mantle, Tectonophysics19, 165–197.

    Google Scholar 

  • Kirby, S. H. andChristie, J. M. (1977),Mechanical twinning in diopside Ca(Mg, Fe) SiO 6 Structural mechanism and associated crystal defects, Phys. Chem. Minerals.1, 137–163.

    Google Scholar 

  • Krantz, R. L. andScholz, C. (1977),Critical dilatant volume of rocks at the onset of tertiary creep, J. Geophys. Res.82, 4893–4898.

    Google Scholar 

  • Lindholm, U. S., Yeokley, L. M. andNagy, A. (1974),The dynamic strength and fracture properties of Dresser basalt, Int. J. Rock Mech. Min Sci.11, 181–192.

    Google Scholar 

  • Lockner, D. andByerlee, J. (1977),Acoustical emission and creep in rocks at high confining pressure and differential stress, Seis. Soc. Am. Bull.67, 243–258.

    Google Scholar 

  • Lomnitz, C. (1956),Creep measurements in igneous rocks, J. Geol.64, 473–479.

    Google Scholar 

  • Matsushima, S. (1960),On the flow and fracture of rocks, Disast. Prev. Res. Inst. Kyoto Univ., Bull.36, 1.

    Google Scholar 

  • McKenzie, D. P. (1968),The geophysical importance of high temperature creep, inThe History of the Earth's Crust (ed. R. A. Phinney), 28–44.

  • Mercier, J-C. C. andCarter, N. L. (1975),Pyroxene geotherms, J. Geophys. Res.80, 3349–3362.

    Google Scholar 

  • Mercier, J-C. C., Anderson, D. A. andCarter, N. L. (1977),Stress in the lithosphere: Inferences from steady-state flow of rocks, Pure and Appl. Geophys.115, 199–226.

    Google Scholar 

  • Michelson, A. A. (1917),The laws of elastic-viscous flow, Pt. 1, J. Geol.25, 405–410.

    Google Scholar 

  • Misra, A. K. andMurrell, S. A. F. (1965),An experimental study of the effect of temperature and stress on the creep of rocks, Geophys. J. roy. Astr. Soc.9, 509–535.

    Google Scholar 

  • Mohamed, F. A., Murty, K. L. andMorris, J. W., Jr., (1975),Harper-Dorn creep of metals at high temperatures, inRate Processes in Plastic Deformation of Materials (eds. J. C. M. Li and A. K. Mukheryee), Amer. Soc. Metals,4, 459–477.

  • Mott, N. F. (1953),A theory of work-hardening of metals: II: Flow without slip-lines, recovery and creep, Philos. Mag.44, 742–765.

    Google Scholar 

  • Murrell, S. A. F. (1976),Rheology of the lithosphere-experimental indications, Tectonophysics.36, 5–24.

    Google Scholar 

  • Murrell, S. A. F. andChakravarty, S. (1973),Some new rheological experiments on igneous rocks at temperatures up to 1120°C, Geophys. J. Roy. Astr. Soc.34, 211–250.

    Google Scholar 

  • Packer, C. M. andSherby, O. D. (1967),Interpretation of superplasticity phenomenon in two phase alloys Trans. Am. Soc. Metals,60, 21.

    Google Scholar 

  • Parrish, D. K. andGangi, A. F. (1977),A non-linear, least-squares fiting approach for determining activation energies for high-temperature creep (Abs.), EOS, Trans. Amer. Geophys. Un.58, 514.

    Google Scholar 

  • Patterson, R. L., andWilsdorf, H. G. F.,Experimental observations of dislocations, inFracture, I (ed. H. Liebowitz) (Academic Press, 1969), 184–242.

  • Post, R. L., Jr. (1970),The flow laws of Mt. Burnett dunite at 750°C to 1150°C, Trans. Am. Geophys. Un.51, 424.

    Google Scholar 

  • Post, R. L., Jr. (1971),Analysis of primary creep in Mt.Burnett dunite. Trans. Am. Geophys. Un.52, 347.

    Google Scholar 

  • Post, R. L., Jr.,The flow laws of Mt. Burnett dunite, Ph.D. Thesis (Univ. Calif. at Los Angeles, 1973), 272 pp.

  • Post, R. L., Jr. (1977),High-temperature creep of Mt. Burnett dunite, inTectonophysics, in press.

  • Price, N. J. (1964),A study of time-strain behavior in coal measure rocks, Int. J. Rock Mech. Min. Sci.1, 277–303.

    Google Scholar 

  • Raleigh, C. B., Kirby, S. H., Carter, N. L. andAve'Lallemant, H. G. (1971),Slip and the clinoenstatite transformation as competing rate processes in enstatite, J. Geophys. Res.76, 4011–4022.

    Google Scholar 

  • Rice, J. R.,Ceramic Microstructures— Their Analysis, Significance and Production (Wiley & Sons, 1968), 579 pp.

  • Rice, J. R. andThomson, R. (1974),Ductile vs. brittle behavior of crystals, Phil. Mag.29, 73–97.

    Google Scholar 

  • Robertson, E. C. (1960),Creep of Solenhofen limestone under moderate hydrostatic pressure, Geol. Soc. Amer. Mem.79, 227–244.

    Google Scholar 

  • Robertson, E. C.,Viscoelasticity of rocks, inState of Stress in the Earth's Crust (ed. W. R. Judd) (Elsevier, 1964), 181–224.

  • Rümmel, F. (1965),The rheological behavior of some quartz-phyllite and limestone. Jura specimens under uniaxial static pressure. Geof. Team Appl.7, 165–174.

    Google Scholar 

  • Rümmel, F. (1969),Studies of time dependent deformation of some granite and eclogite rock samples under uniaxial constant compressive stress and temperature up to 400°C, Z. Geofiz35, 17–42.

    Google Scholar 

  • Rutter, E. H. (1972),On the creep testing of rocks at constant stress and constant force, Int. J. Rock. Mech. Min. Sci.9, 191–195.

    Google Scholar 

  • Scholz, C. H. (1968a),Microfracturing and inelastic deformation of rock in compression, J. Geophys. Res73, 1417–1432.

    Google Scholar 

  • Scholz, C. H. (1968b),Experimental study of the fracture process in brittle rock, J. Geophys. Res.73, 1447–1454.

    Google Scholar 

  • Scholz, C. H. (1968c),Mechanism of creep in brittle rock, J. Geophys. Res.73, 3295–3302.

    Google Scholar 

  • Sherby, O. D. andBurke, P. M. (1968),Mechanical behavior of crystalline solids at elevated temperature, Prog. Met. Sci.13, 325–390.

    Google Scholar 

  • Stokes, R. J.,Microscopic aspects of fracture in ceramics, inFracture, VII (ed. H. Lieberowitz) (Academic Press, 1972), 157–241.

  • Webster, G. A., Cox, A. P. D. andDorn, J. E. (1969),A relationship between transient and steady state creep at elevated temperatures, Metals Sci. Journ.3, 221–225.

    Google Scholar 

  • Weertman, J. (1968),Dislocation climb theory of steady-state creep, Trans. ASME,61, 681–694.

    Google Scholar 

  • Weertman, J. (1970),The creep strength of the earth's mantle, Rev. Geophys. Space Phys.8, 145–168.

    Google Scholar 

  • Weertman, J. andWeertman, J. R.,Mechanical properties, strongly temperature-dependent, inPhysical Metallurgy (ed. R. W. Cahn) (1970), 983–1010.

  • Weertman, J. andWeertman, J. R.,High temperature creep of rock and mantle viscosity, inAnn. Rev. of Earth and Planet. Sci., Vol. 3 (ed. F. A. Donath) (1975), 293–315.

  • Williams, F. T. andElizzi, M. A. (1976),An apparatus for the determination of time dependent behavior of rock under triaxial loading, Int. J. Rock Mech. Min. Sci.13, 245–248.

    Google Scholar 

  • Zener, C.,Elasticity and anelasticity of metals (Chicago Univ. Press, 1948).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, N.L., Kirby, S.H. Transient creep and semibrittle behavior of crystalline rocks. PAGEOPH 116, 807–839 (1978). https://doi.org/10.1007/BF00876540

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00876540

Key words

Navigation