Skip to main content
Log in

Role of erythropoietin in adaptation to hypoxia

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

The glycoprotein hormone erythropoietin (EPO) counteracts tissue hypoxia by increasing the systemic oxygen-carrying capacity. It induces augmentation of red blood cell mass by stimulating the formation and differentiation of erythroid precursor cells in the bone marrow.

EPO production is increased under various forms of diminished oxygen supply such as anemic or hypoxic hypoxia. In the adult organism, the kidneys are the major source of EPO. The precise nature of the cells responsible for renal EPO production, however, has not yet been elucidated. Most likely, peritubular cortical cells, e.g. interstitial or endothelial cells, are involved in the elaboration of the hormone. From the observation that isolated perfused rat kidneys produce EPO in an oxygen-dependent fashion we conclude that the ‘oxygen sensor’ that controls hypoxia-induced EPO synthesis is located in the kidney itself. Within the kidneys, the local venous oxygen tension which reflects the ratio of oxygen supply to oxygen consumption is measured and transformed into a signal that regulates the formation of EPO. However, the mechanism by which a decrease of oxygen delivery to the kidneys is linked to an enhanced EPO gene expression is not yet known. Two possible mechanisms of regulation are discussed: First, renal hypoxia could lead to enhanced formation of metabolic mediators, for example prostaglandins or adenosine, which might stimulate EPO gene transcription by increasing cellular levels of second messenger molecules. Second, some kind of molecular ‘oxygen receptor’ such as a heme protein, that controls EPO formation by an oxygen-dependent conformational change, could mediate signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, C., Metabolic events that may activate erythropoietin production in the hypoxic kidney, in: Oxygen Sensing in Tissues, pp. 93–101. Ed. H. Acker. Springer-Verlag, Berlin 1988.

    Chapter  Google Scholar 

  2. Bauer, C., and Kurtz, A., Oxygen sensing in the kidney and its relation to erythropoietin production. A. Rev. Physiol.51 (1989) 845–856.

    Article  CAS  Google Scholar 

  3. Beru, N., Mc Donald, J., Lacombe, C., and Goldwasser, E., Expression of the erythropoietin gene. Molec. cell. Biol.6 (1986) 2571–2575.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bondurant, M. C., and Koury, M. J., Anemia induces accumulation of erythropoietin mRNA in the kidney and liver. Molec. cell. Biol.6 (1986) 2731–2733.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. D'Andrea, A. D., Lodish, H. F., and Wong, G. G., Expression cloning of the murine erythropoietin receptor. Cell57 (1989) 277–285.

    Article  CAS  PubMed  Google Scholar 

  6. Deetjen, P., and Kramer, K., Die Abhängigkeit des O2-Verbrauchs der Niere von der Na-Rückresorption. Pflügers Arch.273 (1961) 636–650.

    Article  CAS  Google Scholar 

  7. Eckardt, K. U., Kurtz, A., Hirth, P., Scigalla, P., Wieczorek, L., and Bauer, C., Evaluation of the stability of human erythropoietin in samples for radioimmunoassay. Klin. Wochenschr.66 (1988) 241–245.

    Article  CAS  PubMed  Google Scholar 

  8. Eckardt, K. U., Kurtz, A., and Bauer, C., Regulation of erythropoietin production is related to proximal tubular function. Am. J. Physiol.256 (1989) F942–F947.

    CAS  PubMed  Google Scholar 

  9. Eckardt, K. U., Möllmann, M., Neumann, R., Brunkhorst, R., Burger, H. U., Lonnemann, G., Scholz, H., Keusch, G., Buchholz, B., Frei, U., Bauer, C., and Kurtz, A., Erythropoietin in polycystic kidneys. J. clin. Invest.84 (1989) 1160–1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Erslev, A. J., In vitro production of erythropoietin by kidneys perfused with a serum-free solution. Blood44 (1974) 77–85.

    Article  CAS  PubMed  Google Scholar 

  11. Erslev, A. J., Caro, J., Miller, O., and Silver, R., Plasma erythropoietin in health and disease. Ann. clin. Lab. Sci.10 (1980) 250–257.

    CAS  PubMed  Google Scholar 

  12. Fisher, J. W., and Birdwell, B. J., The production of an erythropoietic factor by the in situ perfused kidney. Acta haemat.26 (1961) 224–232.

    Article  CAS  PubMed  Google Scholar 

  13. Fisher, J. W., Mc Gonigle, R., and Beckman, R., Control mechanisms in kidney erythropoietin production, in: Kidney Hormones, pp. 463–474. Ed. J. W. Fischer. Academic Press, London 1986.

    Google Scholar 

  14. Fisher, J. W., Pharmacologic modulation of erythropoietin production. A. Rev. Pharmac. Toxic.28 (1988) 101–122.

    Article  CAS  Google Scholar 

  15. Fried, W., The liver as a source of extrarenal erythropoietin. Blood40 (1972) 671–677.

    Article  CAS  PubMed  Google Scholar 

  16. Gietzen, K., Sadorf, I., and Bader, H., A model for the regulation of the calmodulin-dependent enzymes erythrocyte Ca2+-transport ATPase and the brain phosphodiesterase by activators and inhibitors. Biochem. J.207 (1982) 541–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goldberg, M. A., Dunning, S. P., and Bunn, H. F., Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science242 (1988) 1412–1415.

    Article  CAS  PubMed  Google Scholar 

  18. Jacobs, K., Shoemaker, C., Rudersdorf, R., Neill, S., Kaufmann, J., Mufson, A., Seehra, J., Jones, S. S., Hewick, R., Fritsch, E. F., Kawakita, M., Shimizu, T., and Miyake, T., Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature313 (1985) 806–810.

    Article  CAS  PubMed  Google Scholar 

  19. Jacobson, L. O., Goldwasser, E., Fried, W., and Plzak, L., Role of the kidney in erythropoiesis. Nature179 (1957) 633–634.

    Article  CAS  PubMed  Google Scholar 

  20. Jelkmann, W., Temporal patterns of erythropoietin titers in kidney tissue during hypoxic hypoxia. Pflügers Arch.393 (1982) 88–91.

    Article  CAS  PubMed  Google Scholar 

  21. Jelkmann, W., Renal erythropoietin: properties and production. Rev. Physiol. Biochem. Pharmac.104 (1986) 140–215.

    Google Scholar 

  22. Jones, D. P., Renal metabolism during normoxia, hypoxia and ischemic injury. A. Rev. Physiol.43 (1986) 33–50.

    Article  Google Scholar 

  23. Koury, S. T., Bondurant, M. C., and Koury, M. J., Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood71 (1988) 524–527.

    Article  CAS  PubMed  Google Scholar 

  24. Koury, S. T., Koury, M. J., Bondurant, M. C., Caro, J., and Graber, S. E., Quantitation of erythropoietin-producing cells in kidneys of mice by in situ hybridization: correlation with hematocrit, renal erythropoietin mRNA, and serum erythropoietin concentration. Blood74 (1989) 645–651.

    Article  CAS  PubMed  Google Scholar 

  25. Kuratowska, Z., Lewartowski, B., and Michalak, E., Studies on the production of erythropoietin by isolated perfused organs. Blood18 (1961) 527–534.

    Article  CAS  PubMed  Google Scholar 

  26. Kurtz, A., Eckardt, K. U., Tannahill, L., and Bauer, C., Regulation of erythropoietin production. Contr. Nephrol.66 (1988) 1–16.

    Article  CAS  Google Scholar 

  27. Lacombe, C., da Silva, J. L., Bruneval, P., Fournier, J. G., Wendling, F., Casadevall, N., Camilleri, J. P., Bariety, J., Varet, B., and Tambourin, P., Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney. J. clin. Invest.81 (1988) 620–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lai, P. H., Everett, R., Wang, F. F., Arkawa, T., and Goldwasser, E., Structural characterization of human erythropoietin. J. biol. Chem.261 (1986) 3116–3121.

    Article  CAS  PubMed  Google Scholar 

  29. Le Hir, M., and Kaissling, B., Distribution of 5′-nucleotidase in the renal interstitium of the rat. Cell Tissue Res.258 (1989) 177–182.

    Article  PubMed  Google Scholar 

  30. Lin, F. K., Suggs, S., Lin, C. H., Browne, J., Smalling, R., Egrie, J. C., Chen, K. K., Fox, G. M., Martin, F., Stabinski, Z., Badrawi, M., Lai, P. H., and Goldwasser, E., Cloning and expression of the human erythropoietin gene. Proc. natl Acad. Sci. USA82 (1985) 7580–7584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mc Donald, J. D., Lin, F. K., and Goldwasser, E., Cloning, sequencing, and evolutionary analysis of the mouse erythropoietin gene. Molec. cell. Biol.6 (1986) 842–848.

    CAS  PubMed  Google Scholar 

  32. Mc Gonigle, J. S., Brookins, J., Pegram, B. L., and Fisher, J. W., Enhanced erythropoietin production by calcium channel blockers in rats exposed to hypoxia. J. Pharmac. exp. Ther.241 (1987) 428–432.

    CAS  Google Scholar 

  33. Miller, B. A., Scaduto, R. C., Tillotson, D. L., Botti, J. J., and Cheung, J. Y., Erythropoietin stimulates a rise in the intracellular free calcium concentration in single early human erythroid precursors. J. clin. Invest.82 (1988) 309–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nijhof, W., and Wierenga, P. K., Isolation and characterization of the erythroid progenitor cell CFU-E. J. Cell Biol.96 (1983) 386–392.

    Article  CAS  PubMed  Google Scholar 

  35. Osswald, H., Adenosine and renal function, in: Regulatory Function of Adenosine, pp. 399–415. Eds R. M. Berne, T. W. Roll and R. Rubio. Nijhof, London 1983.

    Chapter  Google Scholar 

  36. Pagel, H., Jelkmann, W., and Weiss, C., A comparison of the effects of renal artery constriction and anemia on the production of erythropoietin. Pflügers Arch.413 (1988) 62–66.

    Article  CAS  PubMed  Google Scholar 

  37. Paul, P., Rothmann, S. A., and Meagher, R. C., Modulation of erythropoietin production by adenosine. J. Lab. clin. Med.112 (1988) 168–173.

    CAS  PubMed  Google Scholar 

  38. Powell, J. S., Berkner, K. L., Lebo, R. V., and Adamson, J. W., Human erythropoietin gene: High level expression in stably transfected mammalian cells and chromosome localization. Proc. natl Acad. Sci. USA83 (1986) 6465–6469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramos-Salazar, A., and Baines, A. D., Role of 5′-nucleotidase in adenosine-mediated renal vasoconstriction during hypoxia. J. Pharmac. exp. Ther.236 (1986) 494–499.

    CAS  Google Scholar 

  40. Ratcliffe, P. J., Endre, Z. H., Scheinman, S. J., Tange, J. D., Ledingham, J. G. G., and Radda, G. K.,31P nuclear magnetic resonance study of steady-state adenosine 5′-triphosphate levels during graded hypoxia in the isolated perfused rat kidney. Clin. Sci.74 (1988) 437–448.

    Article  CAS  Google Scholar 

  41. Recny, M. A., Scoble, H. A., and Kim, Y., Structural characterization of natural human urinary and recombinant DNA-derived erythropoietin. J. biol. Chem.262 (1987) 17 156–17 163.

    Article  CAS  Google Scholar 

  42. Riabowol, K. T., Fink, J. S., Gilman, M. Z., Walsh, D. A., Goodman, R. H., and Feramisco, J. R., The catalytic subunit of cAMP-dependent protein kinase induces expression of genes containing cAMP-responsive enhancer elements. Nature336 (1988) 83–86.

    Article  CAS  PubMed  Google Scholar 

  43. Roesler, W. J., Vandenbark, G. R., and Hanson, R. W., Cyclic AMP and the induction of eucaryotic gene transcription. J. biol. Chem.263 (1988) 9063–9066.

    Article  CAS  PubMed  Google Scholar 

  44. Sasaki, H., Bothner, B., Dell, A., and Fukuda, M., Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. J. biol. Chem.262 (1987) 12 059–12 076.

    Article  CAS  Google Scholar 

  45. Schurek, H. J., and Alt, J. M., Effect of albumin on the function of perfused rat kidney. Am. J. Physiol.240 (1981) F569–F576.

    CAS  PubMed  Google Scholar 

  46. Schuster, S. J., Wilson, J. H., Erslev, A. J., and Caro, J., Physiologic regulation and tissue localization of renal erythropoietin messenger RNA. Blood70 (1987) 316–318.

    Article  CAS  PubMed  Google Scholar 

  47. Schuster, S. J., Badiavas, P., Costa-Giomi, P., Weinmann, R., Erslev, A. J., and Caro, J., Stimulation of erythropoietin gene transcription during hypoxia and cobalt exposure. Blood73 (1989) 13–16.

    Article  CAS  PubMed  Google Scholar 

  48. Sherwood, J. B., and Goldwasser, E., Extraction of erythropoietin from normal kidneys. Endocrinology103 (1978) 866–870.

    Article  CAS  PubMed  Google Scholar 

  49. Smith Dordal, M., Wang, F. F., and Goldwasser, E., The role of carbohydrate in erythropoietin action. Endocrinology116 (1985) 2293–2299.

    Article  Google Scholar 

  50. Stohlman, F., Rath, C. E., and Rose, J. C., Evidence for a humoral regulation of erythropoiesis. Blood9 (1954) 712–733.

    Article  Google Scholar 

  51. Ueno, M., Brookins, J., Beckman, B., and Fisher, J. W., A1 and A2 adenosine receptor regulation of erythropoietin production. Life Sci.43 (1988) 229–237.

    Article  CAS  PubMed  Google Scholar 

  52. Walker, B. R., Diuretic response to acute hypoxia in the conscious dog. Am. J. Physiol.243 (1982) F440–F446.

    CAS  PubMed  Google Scholar 

  53. Walker, B. R., and Fröhlich, J. C., Renal prostaglandins and leucotrienes. Rev. Physiol. Biochem. Pharmac.107 (1987) 2–72.

    Google Scholar 

  54. Yen, Y. P., Zabala, P., Doney, K., et al., Hematopoietic growth factors in human serum. Erythroid burst-promoting activity in normal subjects and in patients with severe aplastic anemia. J. Lab. clin. Med.106 (1985) 384–392.

    CAS  PubMed  Google Scholar 

  55. Zangheri, E. O., Campana, H., Ponce, F., Silva, J. C., Fernandez, F. O., and Suarez, J. R. E., Production of erythropoietin by anoxic perfusion of the isolated kidney of a dog. Nature199 (1963) 572–573.

    Article  CAS  PubMed  Google Scholar 

  56. Zanjani, E. D., Peterson, E. N., Gordon, A. S., and Wasserman, L. R., Erythropoietin production in the fetus: role of the kidney and maternal anemia. J. Lab. clin. Med.83 (1974) 281–287.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, H., Schurek, H.J., Eckardt, K.U. et al. Role of erythropoietin in adaptation to hypoxia. Experientia 46, 1197–1201 (1990). https://doi.org/10.1007/BF01936936

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01936936

Key words

Navigation