Skip to main content
Log in

Energetics and regulation of crossbridge states in mammalian smooth muscle

  • Published:
Experientia Aims and scope Submit manuscript

Conclusion

On the basis of measurements of the high energy phosphate usage associated with different mechanical states, as well as the degree of myosin light chain phosphorylation and mechanical properties, information has been gained concerning the existence and regulation of different crossbridge states in smooth muscle. Although incomplete, a general operational scheme is shown in figure 5. At very low intracellular calcium concentrations, actin and myosin are dissociated, as shown by a loss of resistance to stretch in resting muscles. At somewhat higher intracellular calcium concentrations in atonic, resting muscles, crossbridges can attach and be manifest mechanically as an increased resistance to stretch without ATP-driven crossbridge cycling and active force production. When the muscle is activated, intracellular calcium increases further, the light chains of myosin are phosphorylated through the calcium-calmodulin activation of myosin light chain kinase, actin-activated myosin ATPase activity increases and crossbridges cycle. Calcium also appears to modulate the ATPase activity and the rate of cycling of the phosphorylated crossbridge. The crossbridge cycling rate is highest during force development and slows with time as maximum isometric force is maintained reflecting a change in the rate at which phosphorylated crossbridges cycle. This may result from a decrease in the intracellular free calcium concentration with continued stimulation. During relaxation, the intracellular calcium concentration decreases, there is net dephosphorylation of the myosin light chains, the rate at which phosphorylated crossbridges cycle slows further with a gradual return to the attached, but non-cycling state or the detached state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott, B.C., and Aubert, X.M., Changes of energy in a muscle during very slow stretches. Proc. R. Soc. Lond. B139 (1951) 104–126.

    Article  CAS  PubMed  Google Scholar 

  2. Abbott, B.C., Aubert, X.M., and Hill., A.V., The absorption of work by a muscle stretched during a single twitch or a short tetanus. Proc. R. Soc. Lond. B139 (1951) 86–117.

    Article  CAS  PubMed  Google Scholar 

  3. Aksoy, M.O., Mras, S., Kamm, K.E., and Murphy, R.A., Ca++ cAMP and changes in myosin phosphorylation during contraction of smooth muscle. Am. J. Physiol.245 (1983) C255–270.

    Article  CAS  PubMed  Google Scholar 

  4. Arner, A., Mechanical characteristics of chemically skinned guinea pig taenia coli. Pflügers Arch.395 (1982) 277–284.

    Article  CAS  PubMed  Google Scholar 

  5. Arner, A., Force-velocity relation in chemically skinned rat portal vein: Effects of Ca++ and Mg++. Pflügers Arch.397 (1983) 6–12.

    Article  CAS  PubMed  Google Scholar 

  6. Arner, A., and Hellstrand, P., Activation of contraction and ATPase activity in intact and chemically skinned smooth muscle of rat portal vein. Circulation Res.53 (1983) 695–702.

    Article  CAS  PubMed  Google Scholar 

  7. Ashton, F.T., Somlyo, A.V., and Somlyo, A.P., The contractile apparatus of vascular smooth muscle: intermediate high voltage electron microscopy. J. molec. Biol.98 (1975) 17–29.

    Article  CAS  PubMed  Google Scholar 

  8. Baguet, F., and Gillis, J. M., Energy cost of tonic contraction in a lamellibranch catch muscle. J. Physiol., Lond.198 (1968) 127–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bozler, E., Mechanical Properties of Contractile Elements of Smooth Muscle, in: Physiology of Smooth Muscle, pp. 217ff. Eds E. Bulbring and M.F. Shuba. Raven Press, New York 1974.

    Google Scholar 

  10. Brutsaert, D.L., and Housmans, P.R. Load clamp analysis of maximal force potential of mammalian cardiac muscle. J. Physiol., Lond.271 (1977) 587–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Butler, T.M., Siegman, M.J., and Davies, R.E., Rigor and resistance to stretch in vertebrate smooth muscle. Am. J. Physiol.281 (1976) 1509–1514.

    Article  Google Scholar 

  12. Butler, T.M., Siegman, M.J., Mooers, S.U., and Davies, R.E., Chemical energetics of single isometric tetani in mammalian smooth muscle. Am. J. Physiol.253 (1978) C1-C7.

    Article  Google Scholar 

  13. Butler, T.M., and Siegman, M.J., Chemical energy usage and myosin light chain phosphorylation in mammalian smooth muscle. Fed. Proc.42 (1983) 57–61.

    CAS  PubMed  Google Scholar 

  14. Butler, T.M., Siegman, M.J., and Mooers, S.U., Chemical energy usage during shortening and work production in mammalian smooth muscle. Am. J. Physiol.244 (1983) C234–242.

    Article  CAS  PubMed  Google Scholar 

  15. Butler, T.M., Siegman, M.J., and Mooers, S.U., Chemical energy usage during stimulation and stretch of mammalian smooth muscle. Pflügers Arch.401 (1984) 391–395.

    Article  CAS  PubMed  Google Scholar 

  16. Chacko, S., and Rosenfeld, A., Regulation of actin-activated ATP hydrolysis by arterial myosin. Proc. natn. Acad. Sci. USA79 (1982) 292–296.

    Article  CAS  Google Scholar 

  17. Curtin, N.A., and Davies, R.E., Chemical and mechanical changes during stretching of activated frog skeletal muscle. Cold Spring Harb. Symp. Quant. Biol.37 (1973) 619–626.

    Article  Google Scholar 

  18. Curtin, N.A., and Davies, R.E., Very high tension with very little ATP breakdown by active skeletal muscle. J. Mechanochem. Cell Motility3 (1975) 147–154.

    CAS  Google Scholar 

  19. Davies, R.E., Energy-rich phosphagens, in: Muscle metabolism during exercise, pp. 327–339. Eds B. Pernow and B. Saltin. Plenum Press, New York 1971.

    Chapter  Google Scholar 

  20. Dillon, P.F., Aksoy, M.O., Driska, S.P., and Murphy, R.A., Myosin phosphorylation and the crossbridge cycle in arterial smooth muscle. Science.211 (1981) 495–497.

    Article  CAS  PubMed  Google Scholar 

  21. Edman, K.A.P., The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres. J. Physiol., Lond.291 (1979) 143–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guth, K., and Mrwa, U., Maximum force is generated in chemially skinned taenia coli at lower Ca++ concentrations than maximum ATPase activity. Pflügers Arch.394 (1982) R44 (abstract).

    Article  Google Scholar 

  23. Hellstrand, P., and Johansson, B., The force-velocity relation in phasic contractions of venous smooth muscle. Acta physiol. scand93 (1975) 157–166.

    Article  CAS  PubMed  Google Scholar 

  24. Hill, A.V., and Howarth, J.V., The reversal of chemical reactions in contracting muscle during an applied stretch. Proc. R. Soc. Lond. B151 (1959), 169–193.

    Article  Google Scholar 

  25. Infante, A.A., Klaupiks, D., and Davies, R.E., Adenosine triphosphate: Changes in muscles doing negative work. Science144 (1964) 1577–1578.

    Article  CAS  PubMed  Google Scholar 

  26. Lowy, J., and Hanson, J., Ultrastructure of invertebrate smooth muscle. Physiol. Rev.42 (1962) 34–47.

    Google Scholar 

  27. Maréchal, G., Le métabolisme de la phosphorylcréatine et de l'adenosine triphosphate durant la contraction musculaire. Arscia, Brussels 1964.

    Google Scholar 

  28. Nag, S., and Seidel, N.C., Dependence on Ca++ and tropomyosin of the actin-activated ATPase activity of phosphorylated gizzard myosin in the presence of low concentrations of Mg++. J. biol. Chem.258 (1983) 6444–6449.

    Article  CAS  PubMed  Google Scholar 

  29. Paul, R.J., Doerman, G., Zeugner, C., and Ruegg, J.C., The dependence of unloaded shortening velocity on Ca++, calmodulin and duration of contraction in ‘chemically skinned’ smooth muscle. Circulation Res.53 (1983) 342–351.

    Article  CAS  PubMed  Google Scholar 

  30. Siegman, M.J., Butler, T.M., Mooers, S.U., and Davies, R.E., Calcium-dependent resistance to stretch and stress relaxation in resting smooth muscles. Am. J. Physiol.231 (1976) 1501–1508.

    Article  CAS  PubMed  Google Scholar 

  31. Siegman, M.J., Butler, T.M., Mooers, S.U., and Davies, R.E., Mechanical and energetic correlates of isometric relaxation in mammalian smooth muscle, in: Excitation-Contraction Coupling in Smooth Muscle, pp. 449ff. Eds R. Casteels, T. Godfraind and J.C. Ruegg. Elsevier/North Holland Biomedical Press, Amsterdam 1977.

    Google Scholar 

  32. Siegman, M.J., Butler, T.M., Mooers, S.U., and Davies, R.E., Chemical energetics of force development, force maintenance and relaxation in mammalian smooth muscle. J. gen. Physiol.76 (1980) 609–629.

    Article  CAS  PubMed  Google Scholar 

  33. Siegman, M.J., Butler, T.M., Mooers, S.U., and Michalek, A., Ca++ can affect Vmax without changes in myosin light chain phosphorylation in smooth muscle. Pflügers Arch.401 (1984) 385–390.

    Article  CAS  PubMed  Google Scholar 

  34. Uvelius, B., Shortening velocity, active force and homogeneity of contraction during electrically evoked twitches in smooth muscle. Acta physiol. scand106 (1979) 481–486.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegman, M.J., Butler, T.M. & Mooers, S.U. Energetics and regulation of crossbridge states in mammalian smooth muscle. Experientia 41, 1020–1025 (1985). https://doi.org/10.1007/BF01952125

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01952125

Key words

Navigation