Skip to main content
Log in

Recent advances in the use of selective neuron-destroying agents for neurobiological research

  • Published:
Experientia Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Auker, C.R., Braitman, D.J., and Rubinstein, S.L., Electrophysiological action of kainic acid and folates in thein vitro olfactory cortex. Nature297 (1982) 583–584.

    Article  CAS  PubMed  Google Scholar 

  2. Baumgarten, H.G., Bjorklund, A., Lachenmayer, L., Rensch, A., and Rosengren, E., De- and regeneration of the bulbospinal serotonin neurons in the rat following 5,6- or 5,7-dihydroxytryptamine treatment. Cell Tissue Res.152 (1974) 271–281.

    Article  CAS  PubMed  Google Scholar 

  3. Ben-Ari, Y., Tremblay, E., Ottersen, O.P., and Naquet, R., Evidence suggesting secondary epileptogenic lesions after kainic acid: Pretreatment with diazepam reduces distant but not local brain damage. Brain Res.165 (1979) 362–365.

    Article  CAS  PubMed  Google Scholar 

  4. Ben-Ari, Y., Tremblay, E., and Otterse, O.P., Injections of kainic acid into the rat amygdaloid complex of the rat: an electrographic, clinical and histological study in relation to the pathology of epilepsy. Neuroscience5 (1980) 515–528.

    Article  CAS  PubMed  Google Scholar 

  5. Berger, M., Sperk, G., and Hornykiewicz, O., Serotonergic denervation partially protects rat striatum for kainic acid toxicity. Nature299 (1982) 254–256.

    Article  CAS  PubMed  Google Scholar 

  6. Bird, S.J., and Gulley, R.L., Evidence against a presynaptic mechanism for kainate neurotoxicity in the cochlear nucleus. Neurosci. Lett.15 (1979) 55–60.

    Article  CAS  PubMed  Google Scholar 

  7. Biziere, K., and Coyle, J.T., Effects of kainic acid on ion distribution and ATP levels of striatal slices incubatedin vitro. J. Neurochem.31 (1978) 513–520.

    Article  CAS  PubMed  Google Scholar 

  8. Biziere, K., and Coyle, J.T., Influence of cortico-striatal afferents on striatal kainic acid neurotoxicity. Neurosci. Lett.8 (1978) 303–310.

    Article  CAS  PubMed  Google Scholar 

  9. Brennan, M.J.W., Costa, J., Ruff, P., and Sutej, P., Elevation of CSF folate levels following grand mal seizures in untreated patients. Soc. Neurosci. Abstr.8 (1982) 506.

    Google Scholar 

  10. Britt, M.D., and Wise, R.A., Kainic acid spares fibers of the dorsal noradrenergic bundle. Brain Res. Bull.7 (1981) 437–440.

    Article  CAS  PubMed  Google Scholar 

  11. Brookes, N., and Wierwille, R.C., On the mechanism of glutamate neurotoxicity. Soc. Neurosci. Abstr.8 (1982) 84.

    Google Scholar 

  12. Burde, R.M., Schainker, B., and Kayes, J., Acute effect of oral and subcutaneous administration of monosodium glutamate on the arcuate nucleus of the hypothalamus in mice and rats. Nature233 (1971) 58–60.

    Article  CAS  PubMed  Google Scholar 

  13. Clifford, D.B., Lothman, E.W., and Ferrendelli, J.A., Effects of amino acid antagonists on epileptiform bursts induced by folic acid, kainic acid and N-methyl-D, L-aspartic acid,in vitro. Soc. Neurosci. Abstr.8 (1982) 882.

    Google Scholar 

  14. Collingridge, G.L., and McLennan, H., The effect of kainic acid on excitatory synaptic activity in the rat hippocampal slice preparation. Neurosci. Lett.27 (1981) 31–36.

    Article  CAS  PubMed  Google Scholar 

  15. Contestabile, A., and Flumerfelt, B.A., Afferent connections of the interpeduncular nucleus and the topographic organization of the habenulointerpeduncular pathway: An HRP study in the rat. J. comp. Neurol.196 (1981) 253–270.

    Article  CAS  PubMed  Google Scholar 

  16. Contestabile, A., and Fonnum, F., Cholinergic and GABAergic forebrain projections to the habenula and nucleus interpeduncularis: Surgical and kainic acid lesions. Brain Res., in press.

  17. Contestabile, A., Migani, P., Poli, A., Villani, L., Bissoli, R., and Cristini, G., Pattern of neurotransmitter function in the optic tectum of teleosts. Adv. physiol. Sci.31 (1981) 75–94.

    CAS  Google Scholar 

  18. Contestabile, A., and Villani, L., The use of kainic acid for tracing neuroanatomical connections in the septohabenulointerpeduncular system of the rat. J. comp. Neurol.214 (1983) 459–469.

    Article  Google Scholar 

  19. Coyle, J.T., Neurotoxic action of kainic acid. J. Neurochem.41 (1983) 1–11.

    CAS  PubMed  Google Scholar 

  20. Coyle, J.T., Bird, S.J., Evans, R.H., Gulley, R.L., Nadler, V., Nicklas, W.J., and Olney, J.W., Excitatory amino acid neurotoxins: selectivity, specificity and mechanisms of action. Neurosci. Res. Bull.19 (1981) 337–427.

    Google Scholar 

  21. Coyle, J.T., Molliver, M.E., Kuhar, M.J., In situ injection of kainic acid: a new method for selectively lesioning neuronal cell bodies while sparing axons of passage. J. comp. Neurol.180 (1978) 301–324.

    Article  CAS  PubMed  Google Scholar 

  22. Coyle, J.T., Sandberg, K., Fisher, A., and Hanin, I., AF64A: Selective cholinergic toxin in rat striatum. Trans. Am. Soc. Neurochem.13 (1982) 271.

    Google Scholar 

  23. Coyle, J.T., and Schwarcz, R., Model for Huntington's chorea: Lesion of striatal neurons with kainic acid. Nature263 (1976) 244–246.

    Article  CAS  PubMed  Google Scholar 

  24. Coyle, J.T., Zaczek, R., Slevin, J., and Collins, J., Neuronal receptor sytes for kainic acid: correlations with neurotoxicity. In: Glutamate as a neurotransmitter, pp. 337–346. Eds G. Di Chiara and G.L. Gessa. Raven Press, New York 1981.

    Google Scholar 

  25. Curtis, D.R., and Watkins, J.C., The excitation and depression of spinal neurones by structurally related amino acids. J. Neurochem.6 (1960) 117–141.

    Article  CAS  PubMed  Google Scholar 

  26. Davies, J., and Watkins, J.R., Facilitatory and direct excitatory effects of folate and folinate on single neurons of cat cerebral cortex. Biochem. Pharmac.22 (1973) 1167–1168.

    Article  Google Scholar 

  27. Day, T.A., Oliver, J.R., Menadue, M.F., Davies, B., and Willoughby, J.O., Stimulatory role for medial preoptic/anterior hypothalamic area neurones in growth hormone and prolactin secretion. A kainic acid study. Brain Res.238 (1982) 55–63.

    Article  CAS  PubMed  Google Scholar 

  28. Dellmann, H.D., and Sikora-Vanmeter, K.C., Reversible fine structural changes in the supraoptic nucleus of the rat following intraventricular administration of colchicine. Brain Res. Bull.8 (1982) 171–182.

    Article  CAS  PubMed  Google Scholar 

  29. Derenzini, M., Bonetti, E., Marinozzi, V., and Stirpe, F., Toxic effects of ricin. Studies on the pathogenesis of the liver lesions. Virchows Arch. B, Cell Path.20 (1976) 15–28.

    Article  CAS  Google Scholar 

  30. Di Chiara, G., and Gessa, G.L., Glutamate as a neurotransmitter. Raven Press, New York 1981.

    Google Scholar 

  31. Di Chiara, G., Morelli, M., Imperato, A., Faa, G., Fossarello, M., and Porceddu, M.L., Effect of barbiturates and benzodiazepines on local kainate toxicity in the striatum and retina. In: Glutamate as a neurotransmitter. pp. 355–373. Eds G. Di Chiara and G.L. Gessa. Raven Press, New York 1981.

    Google Scholar 

  32. Dumas, M., Schawab, M.E., and Ihoenen, H., Retrograde axonal transport of specific macromolecules as a tool for characterizing nerve terminal membranes. J. Neurobiol.10 (1979) 179–197.

    Article  CAS  PubMed  Google Scholar 

  33. Ferkany, J.W., Slevin, J.T., Zaczek, R., and Coyle, J.T., Tailure of folic acid derivates to mimic the actions of kainic acid in brainin vitro andin vivo. Neurobehav. Toxicol. Teratol.4 (1982) 573–579.

    CAS  PubMed  Google Scholar 

  34. Ferkany, J.W., Zaczek, R., and Coyle, J.T., Kainic acid stimulates excitatory amino acid neurotransmitter release at presynaptic receptors in the cerebellum. Nature298 (1982) 757–759.

    Article  CAS  PubMed  Google Scholar 

  35. Fisher, A., Mantione, C.R., Abraham, D.J., and Hanin, I., Long term central cholinergic hypofunction induced in mice by ethylcholine aziridium ion (AF64A)in vivo. J. Pharmac. exp. Ther.222 (1982) 140–145.

    CAS  Google Scholar 

  36. Flumerfelt, B.A., and Contestabile, A., Acetylcholinesterase histochemistry of the habenulo-interpeduncular pathway in the rat and the effects of electrolytic and kainic acid lesions. Anat. Embryol.163 (1982) 435–446.

    Article  CAS  Google Scholar 

  37. Fonnum, F., and Walaas, I., The effect of intrahippocampal kainic acid injection and surgical lesions on neurotransmitters in hippocampus and septum. J. Neurochem.31 (1978) 1173–1181.

    Article  CAS  PubMed  Google Scholar 

  38. Foster, A. C., and Schwarcz R., Excitotoxicity: structure-activity relationships of pyridine and piperidine carboxylic acids. Soc. Neurosci. Abstr.8 (1982) 879.

    Google Scholar 

  39. Fuller, T.A., and Olney, J.W., Only certain anticonvulsants protect against kainate neurotoxicity. Neurobehav. Toxicol. Teratol.3 (1981) 355–361.

    CAS  PubMed  Google Scholar 

  40. Goldschmidt, R.B., and Steward, O., Preferential neurotoxicity of colchicine for granule cells of the dentate gyrus of the adult rat. Proc. natl Acad. Sci. USA77 (1980) 3047–3051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goldschmidt, R.B., and Steward, O., Neurotoxic effects of colchicine: differential susceptibility of CNS neuronal populations. Neuroscience7 (1982) 695–714.

    Article  CAS  PubMed  Google Scholar 

  42. Gottesfeld, Z., and Jacobowitz, D.M., Kainic acid-induced neurotoxicity in the striatum: A histofluorescent study. Brain Res.169 (1979) 513–518.

    Article  CAS  PubMed  Google Scholar 

  43. Greatrex, R.M., and Phillipson, O.T., Demonstration of synaptic input from prefrontal cortex to the habenula in the rat. Brain Res.238 (1982) 192–197.

    Article  CAS  PubMed  Google Scholar 

  44. Griesser, C.A.V., Cuenod, M., and Henke, H., Kainic acid receptor sites in the cerebellum of nervous, Purkinje cell degeneration, reeler, staggerer and weaver mice mutant strains. Brain Res.246 (1982) 265–271.

    Article  CAS  PubMed  Google Scholar 

  45. Guldin, W.O., and Markowitsch, H.J., No detectable remote lesions following massive intrastriatal injections of ibotenic acid. Brain Res.225 (1981) 446–451.

    Article  CAS  PubMed  Google Scholar 

  46. Guldin, W.O., and Markowitsch, H.J., Epidural kainate, but not ibotenate, produces lesions in local and distant regions of the brain. A comparison of the intracerebral actions of kainic acid and ibotenic acid. J. neurosci. Meth.5 (1982) 83–93.

    Article  CAS  Google Scholar 

  47. Guldin, W.O., Markowitsch, H.J., and Emmans, D., Interspecies differences in the extent of distant lesions after kainic acid injections in the cats, rats, mice and Guinea pigs. Neurosci. Lett., suppl. 10 (1982) S223.

    Google Scholar 

  48. Hanley, M.R., and Emson, P.C., Neuronal degeneration induced by stereotaxic injection of β-bungarotoxin into rat brain. Neurosci. Lett.11 (1979) 143–148.

    Article  CAS  PubMed  Google Scholar 

  49. Hannson, H.A., and Sjostrand, J., Ultrastructural effect of colchicine on the hypoglossal and dorsal vagal neurons of the rabbit. Brain Res.35 (1971) 379–396.

    Article  Google Scholar 

  50. Hattori, T., and McGeer, E.G., Fine structural changes in the rat striatum after local injections of kainic acid. Brain Res.129 (1977) 174–180.

    Article  CAS  PubMed  Google Scholar 

  51. Heggli, D.E., and Malthe-Sorenssen, D., Systemic injection of kainic acid: effect on neurotransmitter markers in piriform cortex, amygdaloid complex and hippocampus and protection by cortical lesioning and anticonvulsants. Neuroscience7 (1982) 1257–1264.

    Article  CAS  PubMed  Google Scholar 

  52. Henke, H., Streit, P., Reubi, J.C., and Cuénod, M., Kainic acid toxicity and binding in the optic tectum. Progr. Brain Res.51 (1979) 497–503.

    Article  CAS  Google Scholar 

  53. Herndon, R.M., Addicks, E., and Coyle, J.T., Ultrastructural analysis of kainic acid lesion to cerebellar cortex. Neuroscience5 (1980) 1015–1026.

    Article  CAS  PubMed  Google Scholar 

  54. Herndon, R.M., and Coyle, J.T., Selective destruction of neurons by a transmitter agonist. Science198 (1977) 71–72.

    Article  CAS  PubMed  Google Scholar 

  55. Hirokawa, N., Characterization of various nervous tissues of the chick embryo through responses to chronic application and immunocytochemistry of β-bungarotoxin. J. comp. Neurol.180 (1978) 446–466.

    Article  Google Scholar 

  56. Hummes, O.R., and Obbens, E.A.M.T., The epileptogenic action of Na-folate in the rat. J. neurol. Sci.16 (1972) 271–281.

    Article  Google Scholar 

  57. Hokfelt, T., and Ungerstedt, V., Specificity of 6-hydroxydopamine induced degeneration of central monoamine neurons: an electron and fluorescence microscopic study with special reference to intracerebral injection of the nigro-striatal dopamine system. Brain Res.60 (1973) 269–297.

    Article  CAS  PubMed  Google Scholar 

  58. Imperato, A., Porceddu, M.L., Morelli, M., Fossarello, M., and Di Chiara, G., Benzodiazepines prevent kainate-induced loss of GABAergic and cholinergic neurons in the chick retina. Brain Res.213 (1981) 205–210.

    Article  CAS  PubMed  Google Scholar 

  59. Jancso, G., Intracisternal capsaicin: selective degeneration of chemosensitive primary sensory afferents in the adult rat. Neurosci. Lett.27 (1981) 41–45.

    Article  CAS  PubMed  Google Scholar 

  60. Johnston, G.A.R., Curtis, D.R., Davies, J., and McCulloch, R.M., Excitation of spinal interneurones by some conformationally restricted analogues of L-glutamic acid. Nature248 (1974) 804–805.

    Article  CAS  PubMed  Google Scholar 

  61. Johnston, M.V., and Coyle, J.T., Histological and neurochemical effects of fetal treatment with methylazoxymethanol on rat neocortex in adulthood. Brain Res.170 (1979) 135–155.

    Article  CAS  PubMed  Google Scholar 

  62. Johnston, M.V., and Coyle, J.T., A ontogeny of neurochemical markers for noradrenergic, GABAergic, and cholinergic neurons in neocortex lesioned with methylazoxymethanol acetate. J. Neurochem.34 (1980) 1429–1441.

    Article  CAS  PubMed  Google Scholar 

  63. Johnston, M.V., and Coyle, J.T., Cytotoxic lesions and the development of transmitter systems. Trends Neurosci.5 (1982) 153–156.

    Article  CAS  Google Scholar 

  64. Jones, M., and Gardner, E., Pathogenesis of methylazoxymethanol-induced lesions in the postnatal mouse cerebellum. J. Neuropath. exp. Neurol.35 (1976) 431–443.

    Article  Google Scholar 

  65. Jonsson, G., Studies on the mechanisms of 6-hydroxydopamine cytotoxicity. Med. Biol.54 (1976) 406–420.

    CAS  PubMed  Google Scholar 

  66. Jonsson, G., Chemical neurotoxins as denervation tools in neurobiology. A. Rev. Neurosci.3 (1980) 169–187.

    Article  CAS  Google Scholar 

  67. Kohler, C., and Schwarcz, R., Comparison of ibotenate and kainate neurotoxicity in rat brain: a histological study. Neuroscience8 (1983) 819–835.

    Article  CAS  PubMed  Google Scholar 

  68. Kohler, C., Schwarcz, R., and Fuxe, K., Perforant path transection protect hippocampal granule cell from kainate lesion. Neurosci. Lett.10 (1978) 241–246.

    Article  CAS  PubMed  Google Scholar 

  69. Kohler, C., Schwarcz, R., and Fuxe, K., Intrahippocampal injections of ibotenic acid provide histological evidence for a neurotoxic mechanism different from kainic acid. Neurosci. Lett.15 (1979) 223–228.

    Article  CAS  PubMed  Google Scholar 

  70. Krammer, E.B., Anterograde and transsynaptic degeneration ‘en cascade’ in basal ganglia induced by intrastriatal injection of kainic acid: an animal analogue of Huntington's disease. Brain Res.196 (1980) 209–221.

    Article  CAS  PubMed  Google Scholar 

  71. Krammer, E.B., Lischka, M.F., Karobath, M., and Schonbeck, G., Is there a selectivity of neuronal degeneration induced by intrastriatal injection of kainic acid? Brain Res.177 (1979) 577–582.

    Article  CAS  PubMed  Google Scholar 

  72. Krammer, E.B., Lischka, M.F., and Sigmund, R., Neurotoxicity of kainic acid: evidence against an interaction with excitatory glutamate receptors in rat olfactory bulbs. Neurosci. Lett.16 (1980) 329–334.

    Article  CAS  PubMed  Google Scholar 

  73. Krogsgaard-Larsen, P., Honoré, T., and Hanse, J.J., New class of glutamate agonist structurally related to ibotenic acid. Nature284 (1980) 64–66.

    Article  CAS  PubMed  Google Scholar 

  74. Lambert, J.D.C., Flatman, J.A., and Engberg, I., Actions of excitatory amino acids on membrane conductance and potential in motoneurones. In: Glutamate as a neurotransmitter, pp. 205–216. Eds G. Di Chiara and L.G. Gessa. Raven Press, New York 1981.

    Google Scholar 

  75. Laughton, W., and Powley, T.L., Bipiperidyl mustard produces brain lesions and obesity in the rat. Brain Res.221 (1981) 415–420.

    Article  CAS  PubMed  Google Scholar 

  76. Levine, S., and Sowinski, R., Localization of goldthioglucose and bipiperidyl mustard lesions near artificial disruptions of the blood-brain barrier. Exp. Neurol.79 (1983) 462–471.

    Article  CAS  PubMed  Google Scholar 

  77. London, E.D., and Coyle, J.T., Specific binding of (3H)kainic acid to receptor sites in rat brain. Molec. Pharmac.15 (1979) 492–505.

    CAS  Google Scholar 

  78. Longoni, R., Mulas, A., Spina, L., Loi, I., Di Chiara, G., and Spano, P.F., Interaction of folates with kainate binding sites in various brain areas. Neurosci. Lett., suppl. 10 (1982) 297.

    Google Scholar 

  79. Lothman, E.W., Stein, D.A., Wooten, G.F., and Zucker, D.K., Potential mechanisms underlying the destruction of dentate gyrus granule cells by colchicine. Exp. Neurol.78 (1982) 293–302.

    Article  CAS  PubMed  Google Scholar 

  80. Malmfors, T., and Thoenen, H., 6-Hydroxydopamine and catecholamine neurons. North-Holland Publ., Amsterdam 1971.

    Google Scholar 

  81. Mantione, C.R., Fisher, A., and Hanin, I., AF64A neurotoxicity: a potential animal model of central cholinergic hypofunction. Science213 (1981) 579–580.

    Article  CAS  PubMed  Google Scholar 

  82. Mantione, C.R., Zigmond, M.J., Fisher, A., and Hanin, I., Selective presynaptic cholinergic neurotoxicity following intrahippocampal AF64A injections in rats. J. Neurochem.41 (1983) 251–255.

    Article  CAS  PubMed  Google Scholar 

  83. Marchand, R.E., Riley, J.N., and Moore, R.Y., Interpeduncular nucleus afferents in the rat. Brain Res.193 (1980) 339–352.

    Article  CAS  PubMed  Google Scholar 

  84. Mason, S.T., and Fibiger, H.C., On the specificity of kainic acid. Science204 (1979) 1339–1341.

    Article  CAS  PubMed  Google Scholar 

  85. Matsutani, T., Nagayoshi, M., Tamaru, M., and Tsukada, Y., Elevated monoamine levels in the cerebral hemispheres of microencephalic rats treated prenatally with methylazoxymethanol or cytosine arabisonide. J. Neurochem.34 (1980) 950–956.

    Article  CAS  PubMed  Google Scholar 

  86. McGeer, E.G., and McGeer, P.L., Duplication of biochemical changes of Huntington's chorea by intrastriatal injections of glutamic and kainic acids. Nature263 (1976) 517–519.

    Article  CAS  PubMed  Google Scholar 

  87. McGeer, E.G., Olney, J.W., and McGeer, P.L., Kainic acid as a tool in neurobiology. Raven press, New York 1978.

    Google Scholar 

  88. McGeer P.L., McGeer, E.G., and Nagai, T., GABAergic and cholinergic indices in various regions of rat brain after intracerebral injections of folic acid. Brain Res.260 (1983) 107–116.

    Article  CAS  PubMed  Google Scholar 

  89. McLennan, H., On the nature of the receptors for various excitatory amino acids in the mammalian central nervous system. In: Glutamate as a neurotransmitter, pp. 253–262. Eds G. Di Chiara and G. L. Gessa. Raven Press, New York 1981.

    Google Scholar 

  90. Migani, P., Contestabile, A., Cristini, G., and Labanti, V., Evidence of intrinsic cholinergic circuits in the optic tectum of teleosts. Brain Res.194 (1980) 125–135.

    Article  CAS  PubMed  Google Scholar 

  91. Migani, P., Poli, A., Contestabile, A., Bissoli, R., Cristini, G., and Barnabei, O., Effect of kainic acid, glutamate and aspartate on CO2 production by goldfish tectal slices. J. Neurochem.39 (1982) 970–975.

    Article  CAS  PubMed  Google Scholar 

  92. Migani, P., Virgili, A., Poli, A., Contestabile, A., and Barnabei, O., Binding of kainic acid on synaptosomes and slices from goldfish brain. Neurosci. Lett., suppl. 14 (1983) S248.

    Google Scholar 

  93. Morelli, M. Porceddu, M.L., Di Chiara, G., Loss of striatal neurons after local microinjection of colchicine. Neurosci. Lett.16 (1980) 131–135.

    Article  CAS  PubMed  Google Scholar 

  94. Munoz, C., and Grossman, S.P., Some behavioral effects of selective neuronal depletion by kainic acid in the dorsal hippocampus of rats. Physiol. Behav.25 (1980) 581–587.

    Article  CAS  PubMed  Google Scholar 

  95. Nadler, J.V., and Cuthbertson, G.J., Kainic acid neurotoxicity toward hippocampal formation: dependence on specific excitatory pathways. Brain Res.195 (1980) 47–56.

    Article  CAS  PubMed  Google Scholar 

  96. Nagy, J.I., Capsaicin's action on the nervous system. Trends Neurosci.5 (1982) 362–365.

    Article  CAS  Google Scholar 

  97. Nieto-Sampedro, M., Shelton, D., and Cotman, C.W., Specific binding of kainic acid to purified subcellular fractions from rat brain. Neurochem. Res.5 (1980) 591–604.

    Article  CAS  PubMed  Google Scholar 

  98. Nistri, A., MacDonald, J.F., and Barker, J.L., Effects of ibotenic acid on amphibian and mammalian spinal neuronesin vitro. In: Glutamate as a neurotransmitter, pp. 245–252. Eds G. Di Chiara and G.L. Gessa. Raven Press, New York 1981.

    Google Scholar 

  99. Nygren, L., Olson, G., and Seiger, Å., Regeneration of monoamine-containing axons in the developing and adult spinal cord of the rat following intraspinal 6-OH-dopamine injections or transections. Histochemie28 (1971) 1–15.

    Article  CAS  PubMed  Google Scholar 

  100. Oderfeld-Novak, B., Narkiewicz, O., Bialowas, J., Dabrowska, J., Wieraszko, A., and Gradowska, M., The influence of septal nuclei lesions on the activity of acetylcholinesterase and choline acetyltransferase in the hippocampus of the rat. Acta neurobiol.34 (1974) 583–601.

    Google Scholar 

  101. O'Leary, M.E., and Suszkiw, J.B., Effect of colchicine on45Ca and choline uptake, and acetylcholine release in the rat brain synaptosomes. J. Neurochem.40 (1983) 1192–1195.

    Article  CAS  PubMed  Google Scholar 

  102. Olney, J.W., Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science164 (1969) 719–721.

    Article  CAS  PubMed  Google Scholar 

  103. Olney, J.W., Collins, J.F., and De Gubareff, T., Dipiperidinoethane neurotoxicity clarified. Brain Res.249 (1982) 195–197.

    Article  CAS  PubMed  Google Scholar 

  104. Olney, J.W., and De Gubareff, T., Extreme sensitivity of olfactory cortical neurons to kainic acid toxicity. In: Kainic acid as a tool in neurobiology, pp. 201–217. Eds E.G. McGeer, J.W. Olney and P.L. McGeer. Raven Press, New York 1978.

    Google Scholar 

  105. Olney, J.W., De Gubareff, T., and Labruyere, J., Seizure-related brain damage induced by cholinergic agents. Nature301 (1983) 520–522.

    Article  CAS  PubMed  Google Scholar 

  106. Olney, J.W., Fuller, T.A., Collins, R.C., and De Gubareff, T., Systemic dipiperidinoethane mimics the convulsant and neurotoxic actions of kainic acid. Brain Res.200 (1980) 231–235.

    Article  CAS  PubMed  Google Scholar 

  107. Olney, J.W., Fuller, T.A., and De Gubareff, T., Acute dendrotoxic changes in the hippocampus of kainate treated rats. Brain Res.176 (1979) 91–100.

    Article  CAS  PubMed  Google Scholar 

  108. Olney, J.W., Fuller, T.A., and De Gubareff, T., Kainate-like neurotoxicity of folates. Nature292 (1981) 165–167.

    Article  CAS  PubMed  Google Scholar 

  109. Olney, J.W., Fuller, T.A., De Gubareff, T., and Labruyere J., Intrastriatal folic acid mimics the distant but not local brain damaging properties of kainic acid. Neurosci. Lett.25 (1981) 185–191.

    Article  CAS  PubMed  Google Scholar 

  110. Olney, J.W., Rhee, V., and Ho, O.L., Kainic acid: a powerful neurotoxic analogue of glutamate. Brain Res.77 (1974) 507–512.

    Article  CAS  PubMed  Google Scholar 

  111. Olney, J.W., Sharpe, L.G., and Feigin, R.D., Glutamate-induced brain damage in infant primates. J. Neuropath. exp. Neurol.31 (1972) 464–488.

    Article  CAS  PubMed  Google Scholar 

  112. Onténiente, B., Konig, N., Sievers J., Jenner, S., Klemm, H.P., and Marty, R., Structural and biochemical changes in rat cerebral cortex after neonatal 6-hydroxydopamine administration. Anat. Embryol.159 (1980) 245–255.

    Article  Google Scholar 

  113. Otten, U., Lorez, H.P., and Businger, F., Nerve growth factor antagonizes the neurotoxic action of capsaicin on primary sensory neurones. Nature301 (1983) 515–517.

    Article  CAS  PubMed  Google Scholar 

  114. Perkins, M.N., and Stone, T.W., An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res.247 (1982) 184–187.

    Article  CAS  PubMed  Google Scholar 

  115. Perkins, M.N., and Stone, T.W., Quinolinic acid: regional variations in neuronal sensitivity. Brain Res.259 (1983) 172–176.

    Article  CAS  PubMed  Google Scholar 

  116. Peter, R.E., Paulencu, C.R., Cook, H., and Kyle, A.L., Brain lesions and short-term endocrine effects of monosodium L-glutamate in goldfish,Carassius auratus. Cell Tissue Res.212 (1980) 429–442.

    Article  CAS  PubMed  Google Scholar 

  117. Pittman, R., Oppenheim, R.W., and Chu-Wang, J.W., Betabungarotoxin induced neuronal degeneration in the chick embryo spinal cord. Brain Res.153 (1978) 199–204.

    Article  CAS  PubMed  Google Scholar 

  118. Poli, A., Migani, P., Contestabile, A., and Barnabei, O., Differential effect of kainic acid on the metabolic rate from exogenous or endogenous substrates in rat brain slices. J. Neurochem. (1983) in press.

  119. Poli, A., Migani, P., Cristini, G., Bissoli, R., and Contestabile, A., Kainic acid neurotoxicity does not depend on intact retinal input in the goldfish optic tectum. Brain Res.222 (1981) 277–284.

    Article  CAS  PubMed  Google Scholar 

  120. Potashner, S.J., and Gerard, D., Kainate-enhanced release of D-3H aspartate from cerebral cortex and striatum: reversal by baclofen and pentobarbital. J. Neurochem.40 (1983) 1548–1557.

    Article  CAS  PubMed  Google Scholar 

  121. Rehm, H., Schafer, T., and Betz, H., β-bungarotoxin-induced celldeath of neurons in chick retina. Brain Res.250 (1982) 309–319.

    Article  CAS  PubMed  Google Scholar 

  122. Retz, K.C., and Coyle, J.T., Kainic acid lesion of mouse striatum: Effects on energy metabolites. Life Sci.27 (1980) 2495–2500.

    Article  CAS  PubMed  Google Scholar 

  123. Rieke, G.K., and Bowers, D.E. Jr, Necrotizing effects of kainic acid on neurons in the pigeon brain: Histological observations. Brain Res.212 (1981) 411–423.

    Article  CAS  PubMed  Google Scholar 

  124. Rieke, G.K., and Bowers, D.E. Jr, Acute effects of the neurotoxin kainic acid on neurons of the pigeon basal ganglia. Acta neuropath.56 (1982) 123–135.

    Article  CAS  PubMed  Google Scholar 

  125. Rieke, G.K., and Hunter, J.F., Huntington's disease and L-pyroglutamic acid: A behavioral, electrophysiological and morphological evaluation of the possible role of this imino acid in Huntington's disease. Soc. Neurosci. Abstr.8 (1982) 249.

    Google Scholar 

  126. Robinson, J.H., and Deadwyler, S.A., Kainic acid produces depolarization of CA3 pyramidal cells in the in vitro hippocampal slice. Brain Res.221 (1981) 117–127.

    Article  CAS  PubMed  Google Scholar 

  127. Rubinstein, S.L., Braitman, D.J., and Auker, C.R., Effects of amino acid agonists and folates on electro-physiological activity in the prepyriform cortex slice. Soc. Neurosci. Abstr.8 (1982) 880.

    Google Scholar 

  128. Ruck, A., Kramer, S., Metz, J., and Brennan, M.J.W., Methyltetrahydrofolate is a potent and selective agonist for kainic acid receptors. Nature287 (1980) 852–853.

    Article  CAS  PubMed  Google Scholar 

  129. Ruth, R.E., Kainic-acid lesions of hippocampus produced iontophoretically: The problem of distant damage. Exp. Neurol.76 (1982) 508–527.

    Article  CAS  PubMed  Google Scholar 

  130. Ruth, R.E., Kainate iontophoresis and remote damage Anat. Rec.202 (1982) 164A.

    Google Scholar 

  131. Sachs, C., and Jonsson, G., Effects of 6-hydroxydopamine on central noradrenaline neurons during ontogeny. Brain Res.99 (1975) 277–291.

    Article  CAS  PubMed  Google Scholar 

  132. Sachs, C., and Jonsson, G., 5,7-Dihydroxytryptamine induced changes in the postnatal development of central 5-hydroxytryptamine neurons. Med. Biol.53 (1975) 156–164.

    CAS  PubMed  Google Scholar 

  133. Sandberg, K., Schnaar, R.L., Hanin, I., and Coyle, J.T., Effect of AF64A on neuroblastoma X glioma hybrid cell line NG-108-15: A neurotoxin selective for cholinergic cells. Soc. Neurosci. Abstr.8 (1982) 516.

    Google Scholar 

  134. Sarvey, C., Stork, J., Childs, J.A., Yalisove, B.L., Dayhoff, R.E., and Gale, K., Quantitative histochemical measurement of GABA-transaminase: Method for evaluation of intracerebral lesions produced by excitotoxic agents. Soc. Neurosci. Abstr.8 (1982) 663.

    Google Scholar 

  135. Schwab, M.E., Suda, K., and Thoenen, H., Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport. J. Cell Biol.82 (1979) 798–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Schwarcz, R., and Coyle, J.T., Striatal lesions with kainic acid: neurochemical characteristics. Brain Res.127 (1977) 235–249.

    Article  CAS  PubMed  Google Scholar 

  137. Schwarcz R., and Kohler, C., Differential vulnerability of central neurons of the rat to quinolinic acid. Neurosci. Lett.38 (1983) 85–90.

    Article  CAS  PubMed  Google Scholar 

  138. Schwarcz, R., Kohler, C., Mangano, R.M., and Neophytides, A.N., Glutamate induced neuronal degeneration: Studies on the role of glutamate re-uptake. In: Glutamate as a neurotransmitter, pp. 403–412. Eds G. Di Chiara and G.L. Gessa. Raven Press, New York 1981.

    Google Scholar 

  139. Schwarcz, R., and Whettsell, W.O., Excitotoxic characteristics of intracerebral quinolinic acid. Soc. Neurosci. Abstr.8 (1982) 404.

    Google Scholar 

  140. Schwarcz, R., Whetsell, W.O., and Mangano, R.M., Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science219 (1983) 316–318.

    Article  CAS  PubMed  Google Scholar 

  141. Schwob, J.E., Fuller, T., Price, J.L., and Olney, J.W., Widespread patterns of neuronal damage following systemic or intracerebral injections of kainic acid: a histological study. Neuroscience5 (1980) 991–1014.

    Article  CAS  PubMed  Google Scholar 

  142. Segal, M., The actions of glutamic acid on neurons in the rat hippocampal slice. In: Glutamate as a neurotransmitter, pp. 217–226. Eds G. Di Chiara and G.L. Gessa. Raven Press, New York 1981.

    Google Scholar 

  143. Shinozaki, H., and Ishida, M., Electro physiological studies of kainate, quisqualate, and ibotenate action on the crayfish neuromuscular junction. In: Glutamate as a neurotransmitter, pp. 327–336. Eds G. Di Chiara and G.L. Gessa. Raven Press, New York 1981.

    Google Scholar 

  144. Shinozaki, H., and Shibuya, I., Potentiation of glutamate-induced depolarization by kainic acid in the crayfish opener muscle. Neuropharmacology13 (1974) 1057–1065.

    Article  CAS  PubMed  Google Scholar 

  145. Simon, J.R., Contrera, J.F., and Kuhar, M.J., Binding of (3H) kainic acid, an analogue of L-glutamate, to brain membranes. J. Neurochem.26 (1976) 141–147.

    CAS  PubMed  Google Scholar 

  146. Slevin, J.T., and Coyle, J.T., Ontogeny of receptor binding sites for (3H)glutamic acid and (3H)kainic acid in the rat cerebellum. J. Neurochem.37 (1981) 531–533.

    Article  CAS  PubMed  Google Scholar 

  147. Slevin, J.T., Johnston, M.V., Biziere, K., and Coyle, J.T., Methylazoxymethanol acetate ablation of mouse cerebellar granule cells: effects on synaptic neurochemistry. Dev. Neurosci.5 (1982) 3–12.

    Article  CAS  PubMed  Google Scholar 

  148. Stirpe, F., On the action of ribosome-inactivating proteins: are plant ribosomes species specific. Biochem. J.202 (1982) 279–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Stone, W.E., and Javid, M.J., Effects of anticonvulsants and glutamate antagonists on the convulsive action of kainic acid. Archs int. Pharmacodyn. Thér.243 (1980) 56–65.

    CAS  Google Scholar 

  150. Streit, P., Stella, M., and Cuénod, M., Kainate-induced lesion in the optic tectum: dependency upon optic nerve afferents or glutamate. Brain Res.187 (1980) 47–57.

    Article  CAS  PubMed  Google Scholar 

  151. Strocchi, P., Novello, F., Montanaro, N., and Stirpe, F., Effect of intraventricularly injected ricin on protein synthesis in rat brain. Neurochem. Res.4 (1979) 259–268.

    Article  CAS  PubMed  Google Scholar 

  152. Sutula, T., Goldschmidt, R., and Steward, O., Effect of colchicine on synaptic transmission and long-term potentiation in the dentate gyrus. Soc. Neurosci. Abstr.8 (1982) 740.

    Google Scholar 

  153. Swanson, L.W., and Cowan, W.M., The connections of the septal region in the rat. J. comp. Neurol.186 (1979) 621–656.

    Article  CAS  PubMed  Google Scholar 

  154. Tapia, R., and Arias, C., Selective stimulation of neurotransmitter release from chick retina by kainic acid and glutamic acid. J. Neurochem.39 (1982) 1169–1178.

    Article  CAS  PubMed  Google Scholar 

  155. Ungersted, U., 6-Hydroxydopamine induced degeneration of central monoamine neurons. Eur. J. Pharmac.5 (1969) 107–119.

    Article  Google Scholar 

  156. Villani, L., and Contestabile, A., Experimental use of colchicine neurotoxicity for tracing neuronatomical connections. Neurosci. Lett. suppl. 14 (1983) S392.

    Google Scholar 

  157. Villani, L., Migani, P., Poli, A., Niso, R., and Contestabile, A., Neurotoxic effect of kainic acid on ultrastructure and GABAergic parameters in the goldfish cerebellum. Neuroscience7 (1982) 2515–2524.

    Article  CAS  PubMed  Google Scholar 

  158. Villani, L., Poli, A., Contestabile, A., Migani, P., Cristini, G., and Bissoli, R., Effect of kainic acid on ultrastructure and γ-aminobutirate-related circuits in the optic tectum of the goldfish. Neuroscience6 (1981) 1393–1405.

    Article  CAS  PubMed  Google Scholar 

  159. Whetsell, W.O., and Schwarcz, R., Kainate-like neurotoxicity of quinolinic acid in organotypic cultures of rat corticostriatal system. Soc. Neurosci. Abstr.8 (1982) 404.

    Google Scholar 

  160. Wiley, R.G., Blessing, W.W. and Reis, D.J., Suicide transport: destruction of neurons by retrograde transport of ricin, abrin and modeccin. Science216 (1982) 179–197.

    Article  Google Scholar 

  161. Wiley, R.G., Talman, W.T., and Reis, D.J., Ricin transport distinguishes between central and peripheral neurons. Brain Res.269 (1982) 357–360.

    Article  Google Scholar 

  162. Wisniewski, H., and Terry, R.D., Experimental colchicine encephalopathy. Induction of neurofibrillar degeneration. Lab. Invest.17 (1967) 577–587.

    CAS  PubMed  Google Scholar 

  163. Woodward, W.R., and Coull, B.M., Studies of effects of kainic acid lesions in the dorsal lateral geniculate nucleus of rat. J. comp. Neurol.211 (1982) 93–103.

    Article  CAS  PubMed  Google Scholar 

  164. Zaczek, R., Nelson, M.F., and Coyle, J.T., Effects of anaesthetics and anticonvulsants on the action of kainic acid in the rat hippocampus. Eur. J. Pharmac.52 (1978) 323–327.

    Article  CAS  Google Scholar 

  165. Zaczek, R., Nelson, M.F., and Coyle, J.T., Kainic acid neurotoxicity and seizures. Neuropharmacology20 (1981) 183–189.

    Article  CAS  PubMed  Google Scholar 

  166. Yamamura, H.I., and Snyder, S.H., Postsynaptic localization of muscarinic cholinergic receptor binding in rat hippocampus. Brain Res.78 (1979) 320–326.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contestabile, A., Migani, P., Poli, A. et al. Recent advances in the use of selective neuron-destroying agents for neurobiological research. Experientia 40, 524–534 (1984). https://doi.org/10.1007/BF01982314

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01982314

Keywords

Navigation