Skip to main content
Log in

Time-energy budgets and optimization

  • Full Papers
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Since the process of natural selection entails a comparison of phenotypes and choosing of the best, optimality theory appears appropriate to identify selection pressures. Optimality theory doesnot test whether an organism is designed optimally — it assumes it. The ingredients of a complete optimization model are outlined and two approaches are exemplified. Both time-energy-budgeting and Pontryagin's maximum principle lead to semi-quantitative predictions about, e.g., an animal's behavior; they merely entail an inequality formalism. A discrepancy between prediction and test would not yet show a behavior to be maladaptive since several other explanations are possible. Animals optimize their behavior over intervals ranging from less than a second to months or years. It is unknown whether, with a long interval, the animal makes use of the opportunity to revise its decision(s). Present optimal foraging models predicting, e.g., diet breadth are too simple in that foragers a) may not always maximize energy intake, as postulated, b) have to allow for nutrient, toxin and remedial content of food items, and/or c) have to allow for interaction of items, annihilating their ranking along a unidimensional scale of profitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refences

  1. Altmann, S.A., Avian mobbing behavior and predator recognition. Condor58 (1956) 241–253.

    Article  Google Scholar 

  2. Askenmo, C., Reproductive effort and return rate of male pied flycatchers. Am. Nat.114 (1979) 748–752.

    Article  Google Scholar 

  3. Barash, D.P., The influence of reproductive status on foraging by hoary marmots (Marmota caligata) Behav. Ecol. Sociobiol.7 (1980) 201–205.

    Article  Google Scholar 

  4. Barnard, C.J., and Brown, C.A.J., Prey size selection and competition in the common shrew (Sorex araneus L.). Behav. Ecol. Sociobiol.8 (1981) 239–243.

    Article  Google Scholar 

  5. Belovsky, G.E., Diet optimization in a generalist herbivore: the moose. Theor. Pop. Biol.14 (1978) 105–134.

    Article  CAS  Google Scholar 

  6. Brockhusen, F.v., Untersuchungen zur individuellen Variabilität der Beuteannahme vonAnolis lineatopus (Rept., Iguanidae). Z. Tierpsychol.44 (1977) 13–24.

    Article  Google Scholar 

  7. Bryant, D.M., Reproductive costs in the house martin (Delichon urbica). J. Anim. Ecol.48 (1979) 655–675.

    Article  Google Scholar 

  8. Caraco, T., Time budgeting and group size: A theory. Ecology60 (1979) 611–617.

    Article  Google Scholar 

  9. Caraco, T., Time budgeting and group size: A test of theory. Ecology60 (1979) 618–627.

    Article  Google Scholar 

  10. Caraco, T., Martindale, S., and Pulliam, H.R., Avian flocking in the presence of a predator. Nature285 (1980) 400–401.

    Article  Google Scholar 

  11. Caraco, T., Martindale, S., and Whittam, T.S., An empirical demonstration of risk-sensitive foraging preferences. Anim. Behav.28 (1980) 820–830.

    Article  Google Scholar 

  12. Curio, E., Experimentelle Untersuchungen zur Öko-Ethologie von Räuber-Beute-Beziehungen. Verh. dt. zool. Ges. (1975) 81–89.

  13. Curio, E., The ethology of predation Springer, Berlin/Heidelberg/New York 1976.

    Book  Google Scholar 

  14. Curio, E., Why do young birds reproduce less well? Springer, Berlin/Heidelberg/New York, in press.

  15. De Steven, D., Clutch size, breeding success, and parental survival in the tree swallow (Iridoprocne bicolor). Evolution34 (1980) 278–291.

    PubMed  Google Scholar 

  16. Evans, L.T., A motion picture study of maternal behavior of the lizardEumeces obsoletus Baird and Girard. Copeia (1959) 103–110.

  17. Freed, A.N., Prey selection and feeding behavior of the green treefrog (Hyla cinerea) Ecology61 (1980) 461–465.

    Article  Google Scholar 

  18. Gill, F.B., and Wolf, L.L., Economics of feeding territoriality in the golden-winged sunbird. Ecology56 (1975) 333–345.

    Article  Google Scholar 

  19. Gittelmann, S.H., Optimum diet and body size in backswimmers (Heteroptera: Notonectidae, Pleidae). Ann. ent. Soc. Am.71 (1978) 737–747.

    Article  Google Scholar 

  20. Goss-Custard, J.D., Optimal foraging and the size selection of worms by redshank,Tringa totanus, in the field. Anim. Behav.25 (1977) 10–29.

    Article  Google Scholar 

  21. Hettrich, W., Nahrungsspektrum und Körperwachstum juvenilerAnolis lineatopus (Rept. Iguanidae). Thesis, Ruhr-University, Bochum 1981.

    Google Scholar 

  22. Hughes, R.N., Optimal diets under the energy maximization premise: the effects of recognition time and learning. Am. Nat.113 (1979) 209–221.

    Article  Google Scholar 

  23. Jaeger, R.G., and Barnard, D.E., Foraging tactics of a terrestrial salamander: choice of diet in structurally simple environments. Am. Nat.117 (1981) 639–664.

    Article  Google Scholar 

  24. Jennings, T., and Evans, S.M., Influence of position in flock and flock size on vigilance in the starling,Sturnus vulgaris. Anim. Behav.28 (1980) 634–635.

    Article  Google Scholar 

  25. Kenward, R.E., Hawks and doves: factors affecting success and selection in goshawk attacks on woodpigeons. J. Anim. Ecol.47 (1978) 449–460.

    Article  Google Scholar 

  26. Krebs, J.R., Erichsen, J.T., Webber, M.J., and Charnov, E.L., Optimal prey selection in the great tit (Parus major). Anim. Behav.25 (1977) 30–38.

    Article  Google Scholar 

  27. Krebs, J.R., Optimal foraging: Decision, rules for predators; in: Behavioural Ecology, pp. 23–63. Eds J.R. Krebs and N.B. Davies. Blackwell Scientific Publications, Osney Mead/Oxford/London/Edinburgh/North Balwyn, 1978.

    Google Scholar 

  28. Krebs, J.R., and Davies, N.B., An introduction to behavioural ecology. Blackwell Scientific Publications, Oxford/London/Edinburgh/Boston/Melbourne 1981.

    Google Scholar 

  29. Levins, R., Theory of fitness in a heterogeneous environment. I. The fitness set and adaptive function. Am. Nat.96 (1962) 361–373.

    Article  Google Scholar 

  30. Levins, R., Evolution in changing environments. Princeton Univ. Press, Princeton, N.Y., 1968.

    Book  Google Scholar 

  31. Lewontin, R.C., The genetic basis of evolutionary change. Columbia Univ. Press, New York 1974.

    Google Scholar 

  32. Lipetz, V.E., and Bekoff, M., Group size and vigilance in pronghorns. Z. Tierpsychol.58 (1982) 203–216.

    Article  Google Scholar 

  33. Maynard Smith, J., and Price, G.R., The logic of animal conflict. Nature246 (1973) 15–18.

    Article  Google Scholar 

  34. Maynard Smith, J., Optimization theory in evolution. A. Rev. Ecol. Syst.9 (1978) 31–56.

    Article  Google Scholar 

  35. Maynard Smith, J., Game theory and the evolution of behavior. Proc. R. Soc. London B205 (1979) 475–488.

    Article  Google Scholar 

  36. McCleery, R.H., Optimal behavior sequences and decision making; in: Behavioural ecology, pp. 377–410. Eds. J.R. Krebs and N.B. Davies. Blackwell Scientific Publications, Osney Mead/Oxford/London/Edinburgh/North Balwyn 1978.

    Google Scholar 

  37. McNair, J.N., A generalized model of optimal diets. Theor. Popul. Biol.15 (1979) 159–170.

    Article  Google Scholar 

  38. Milinski, M., Do all members of a swarm suffer the same predation? Z. Tierpsychol.45 (1977) 373–388.

    Article  Google Scholar 

  39. Milinski, M., Experiments on the selection by predators against spatial oddity of their prey. Z. Tierpsychol.43 (1977) 311–325.

    Article  Google Scholar 

  40. Milinski, M., and Heller, R., Influence of a predator on the optimal foraging behaviour of sticklebacks (Gasterosteus aculeatus L.). Nature275 (1978) 642–644.

    Article  Google Scholar 

  41. Milinski, M., and Löwenstein, C., On predator selection against abnormalities of movement—a test of a hypothesis. Z. Tierpsychol.53 (1980) 325–340.

    Article  Google Scholar 

  42. Milton, K., Factors influencing leaf choice by howler monkeys: a test of some hypotheses of food selection by generalist herbivores. Am. Nat.114 (1979) 362–378.

    Article  CAS  Google Scholar 

  43. Neill, S.R.St.J., and Cullen, J.M., Experiments on whether schooling by their prey affects the hunting behaviour of cephalopod and fish predators. J. Zool., Lond.172 (1974) 549–569.

    Article  Google Scholar 

  44. Ohguchi, O., Experiments on the selection against colour oddity of water fleas by three-spined sticklebacks. Z. Tierpsychol.47 (1978) 254–267.

    Article  Google Scholar 

  45. Ohguchi, O., Prey density and selection against oddity by three-spined sticklebacks. Advances in Ethology, Suppl.23. 1981.

  46. Orians, G.H., Some adaptations of marsh-nesting blackbirds. Monographs in population biology, vol. 14. Princeton Univ. Press, Princeton 1980.

    Book  Google Scholar 

  47. Oster, G.F., and Wilson, E.O., Caste and ecology in the social insects. Princeton Univ. Press, Princeton, N.J., 1979.

    Google Scholar 

  48. Partridge, L., and Maclean, R., Effects of nutrition and peripheral stimuli on preferences for familiar foods in the bank vole. Anim. Behav.29 (1981) 217–220.

    Article  Google Scholar 

  49. Price, P.W., Evolutionary biology of parasites. Princeton Univ. Press, Princeton 1980.

    Google Scholar 

  50. Pulliam, H.R., Diet optimization with nutrient constraints. Am. Nat.109 (1975) 765–768.

    Article  Google Scholar 

  51. Pulliam, H.R., The principle of optimal behavior and the theory of communities; in: Perspectives in Ethology, vol. 2, pp. 311–332. Eds. P.P.G. Bateson and P.H. Klopfer. Plenum Press, New York/London 1976.

    Chapter  Google Scholar 

  52. Pulliam, H.R., Do chipping sparrows forage optimally? Ardea68 (1980) 75–82.

    Google Scholar 

  53. Pyke, G.H., Pulliam, H.R., and Charnov, E.L., Optimal foraging: A selective review of theory, and tests. Q. Rev. Biol.52 (1977) 137–154.

    Article  Google Scholar 

  54. Rapport, D.J., Optimal foraging for complementary resources. Am. Nat.116 (1980) 324–346.

    Article  Google Scholar 

  55. Schluter, D., Does the theory of optimal diets apply in complex environments? Am. Nat.118 (1981) 139–147.

    Article  Google Scholar 

  56. Sibly, R., and McFarland, D., On the fitness of behavior sequences. Am. Nat.110 (1976) 601–617.

    Article  Google Scholar 

  57. Stephen, D.W., The logic of risk-sensitive foraging preferences. Anim. Behav.29 (1981) 628–629.

    Article  Google Scholar 

  58. Völkel, P., and Zell, R.A., Beobachtungen und Versuche zum Mischschwarm- und Feindverhalten einiger neotropischer Singvögel. Thesis, Ruhr-University, Bochum 1980.

    Google Scholar 

  59. Werner, E.E., and Hall, D.J., Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology55 (1974) 1042–1052.

    Article  Google Scholar 

  60. Westoby, M., What are the biological bases of varied diets? Am. Nat.112 (1978) 627–631.

    Article  Google Scholar 

  61. Whitford, W.G., and Bryant, M., Behavior of a predator and its prey: the horned lizard (Phrynosoma cornutum) and harvester ants (Pogonomyrmex spp.). Ecology60 (1979) 686–694.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Extended version of a paper delivered in the Plenary session of the XVIIth Int. Ethological Conference, Oxford 1981.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curio, E. Time-energy budgets and optimization. Experientia 39, 25–34 (1983). https://doi.org/10.1007/BF01960617

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01960617

Keywords

Navigation