English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Ultrafast Laser-Induced Dynamics of Non-Equilibrium Electron Spill-Out in Nanoplasmonic Bilayers

Authors

Avdizhiyan,  Artur
External Organizations;

Janus,  Weronika
External Organizations;

Szpytma,  Marcin
External Organizations;

Ślezak,  Tomasz
External Organizations;

Przybylski,  Marek
External Organizations;

Chrobak,  Maciej
External Organizations;

/persons/resource/roddatis

Roddatis,  Vladimir
3.5 Interface Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Stupakiewicz,  Andrzej
External Organizations;

Razdolski,  Ilya
External Organizations;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Avdizhiyan, A., Janus, W., Szpytma, M., Ślezak, T., Przybylski, M., Chrobak, M., Roddatis, V., Stupakiewicz, A., Razdolski, I. (2024): Ultrafast Laser-Induced Dynamics of Non-Equilibrium Electron Spill-Out in Nanoplasmonic Bilayers. - Nano Letters, 24, 466-471.
https://doi.org/10.1021/acs.nanolett.3c04318


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5025070
Abstract
Contemporary quantum plasmonics capture subtle corrections to the properties of plasmonic nano-objects in equilibrium. Here, we demonstrate non-equilibrium spill-out redistribution of the electronic density at the ultrafast time scale. As revealed by time-resolved 2D spectroscopy of nanoplasmonic Fe/Au bilayers, an injection of the laser-excited non-thermal electrons induces transient electron spill-out thus changing the plasma frequency. The response of the local electronic density switches the electronic density behavior from spill-in to strong (an order of magnitude larger) spill-out at the femtosecond time scale. The superdiffusive transport of hot electrons and the lack of a direct laser heating indicate significantly non-thermal origin of the underlying physics. Our results demonstrate an ultrafast and non-thermal way to control surface plasmon dispersion through transient variations of the spatial electron distribution at the nanoscale. These findings expand quantum plasmonics into previously unexplored directions by introducing ultrashort time scales in the non-equilibrium electronic systems.