
1. Introduction
Global field reconstructions of the past are a key tool for understanding the dynamics of the Earth's magnetic 
field and the underlying processes in the Earth's core (e.g., Constable & Korte, 2015). This includes studying the 
evolution of field features, such as dipole decay, the South Atlantic Anomaly (SAA) and flux patches (Hartmann 
& Pacca, 2009; Jackson & Finlay, 2015). In the past, several techniques for constructing global field models 
have been developed and employed. Truncated spherical harmonics (SH) in the spatial domain combined with 
spline interpolation in time are widely used (Jackson et al., 2000; Korte et al., 2009). In the eighties, Constable 
and Parker (1988) first proposed using Gaussian processes to model the field dynamics, but until recently, the 
technique had not been applied to global field modeling. Only in the last years, statistical methods implementing 
this approach have been suggested (Hellio & Gillet, 2018; Nilsson & Suttie, 2021).

Even though Bloxham and Jackson  (1992) already discussed the accurate assessment of uncertainties, most 
following studies did not pursue the suggested analytical approaches, and either did not report uncertainties at 
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all (Constable et al., 2000; Jackson et al., 2000; Korte & Constable, 2003) or relied on ensemble techniques to 
quantify (modeling related) errors (Hellio & Gillet, 2018; Korte et al., 2009; Licht et al., 2013; Pavón-Carrasco 
et al., 2014; Senftleben, 2019). In contrast, Nilsson and Suttie (2021) (and earlier Hellio et al. (2014) for local 
field models) used a Bayesian formulation of the proposed Gaussian process (GP) approach, to estimate uncer-
tainties based on the posterior distribution.

Holschneider et al. (2016) extended the GP approach to the spatial domain, to also reflect uncertainties resulting 
from the data distribution, and in two recent studies this method was adapted to paleomagnetic records (Mau-
erberger et al., 2020; Schanner et al., 2021). The major challenge with the modeling strategies proposed there 
is related to the inversion of large-scale matrices, and the methods were found computationally unfeasible for 
the number of records available for the Holocene. In the area of modeling the recent field, this challenge was 
overcome by applying sequentialization by means of a Kalman-filter (Kalman, 1960) to the inversion problem 
(Baerenzung et al., 2020; Ropp et al., 2020). This way, models from a way higher number of satellite observa-
tions have been constructed, while retaining the strategies proposed by Holschneider et al. (2016). In this study 
we apply sequentialization to the earlier developed strategy (Schanner et al., 2021, in the following referred to as 
SMKH21) and propose a new global geomagnetic field model for the Holocene.

Global geomagnetic field models on archeological scales are inferred from two classes of data: Data from materi-
als with thermoremanent magnetization, such as volcanic rocks, bricks or burnt clay fragments from archeologic 
sites, and data from marine or lacustrine sediments with embedded magnetic particles. As in earlier studies, we 
focus on the former class and loosely refer to it as archeomagnetic data in this paper. The extension to sediments 
poses several additional challenges, some of which are addressed and discussed by Nilsson and Suttie (2021). 
The a priori model that results from the sequentialization of SMKH21 is similar to the one proposed by Nilsson 
and Suttie (2021). Besides a focus on a different and smaller data set, the main difference lies in the inversion 
procedure: While Nilsson and Suttie (2021) employ a Markov Chain Monte-Carlo (MCMC) based strategy, we 
rely on Kalman-filter based inversion. This method relies mostly on linear algebra and may therefore be called 
deterministic, in contrast to the sample based and therefore probabilistic MCMC approach.

The rest of this article is structured as follows: In Section 2, we discuss prior assumptions, showcase the modeling 
method and introduce the data set. Section 3 contains a brief validation section, using synthetic data, but mainly 
focuses on the description of features of the new model, which are discussed in Section 4. We conclude in Sec-
tion 5 by reconsidering possible extensions and shortcomings of the method, as well as an outlook to future work.

2. Method and Data
2.1. Gaussian Process-Based Modeling

In the 1980s, Constable and Parker (1988) proposed using GPs to model the Earth's magnetic field (EMF). The 
technique was later applied by Gillet et al. (2013) and extended by Holschneider et al. (2016). A GP is a stochastic 
process that is uniquely characterized by a mean function 𝐴𝐴 �̄�𝑩 and a covariance function KB

𝑩𝑩 ∼ 
(

�̄�𝑩, 𝐾𝐾𝑩𝑩

)

. (1)

Gaussian process-based modeling is a Bayesian approach, where a GP is used as a prior and an update is given 
by some normal likelihood. The posterior is then a GP as well, so that the model is also uniquely characterized by 
a mean function and a covariance function (Rasmussen & Williams, 2006). The main difficulty in applying this 
technique to paleomagnetic records lies in constructing the normal likelihood, as archeomagnetic observations 
are nonlinearly related to the magnetic field.

2.2. Data Model

To apply GP based modeling, one has to construct a normal likelihood, relating observations to model predictions 
of the magnetic field. In paleomagnetism, the observations are the field directions (declination D and inclination 
I) and intensity F. At locations x and times t, the data model can then be formulated as:

𝑜𝑜(𝒙𝒙, 𝑡𝑡) = 𝐇𝐇(𝑩𝑩(𝒙𝒙, 𝑡𝑡)) + 𝑬𝑬, (2)
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where the observation functional H = (D, I, F) contains the usual expressions for declination, inclination and 
intensity and E are the observation errors. This data model is not Gaussian, as H is nonlinear. We linearize the 
observation functional, to construct a normal proxy for the data model (Equation 2):

𝐷𝐷 ≈ �̃�𝐷 +

1
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2
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𝐹𝐹 ≈

�̃�𝑩
⊤

𝐹𝐹
𝑩𝑩. (5)

𝐴𝐴 �̃�𝐷𝐷 𝐼𝐼𝐷 𝐹𝐹  , and 𝐴𝐴 �̃�𝑩 indicate the point of expansion (POE) and we summarize the linearized expressions as Hlin. (see 
also Mauerberger et al., 2020). The observation errors E are also non-Gaussian, as the directional errors are given 
by a Fisher-von Mises distribution. We approximate this two dimensional distribution with 95% confidence cone 
(α95) by two centered normal distributions with standard deviations (Piper, 1989; Suttie & Nilsson, 2019)

𝜎𝜎𝐼𝐼 =
57.3◦

140
𝛼𝛼95 and 𝜎𝜎𝐷𝐷 =

1

cos𝑜𝑜𝐼𝐼
𝜎𝜎𝐼𝐼 , (6)

where oI is the observed inclination. We label these approximate errors Eprox.. Next, we consider dating uncertain-
ties as suggested in SMKH21. The precise times t at which the archeomagnetic specimen received their magnet-
ization are unknown. Instead, a corrupted date to = t + et is reported, and we consider et to be a centered normal 
error, even though dating errors for archeological artifacts may have a non-Gaussian distribution. This error in 
the inputs is handled by another linearization, as proposed by McHutchon and Rasmussen (2011, the noisy input 
Gaussian process (NIGP)). As the errors are centered, the a priori mean is not affected by this procedure. How-
ever, via linearization the dating uncertainties are translated into observation uncertainties, and the covariance 
gets an additional term

Σ𝑡𝑡𝑡𝑡′◦𝜕𝜕𝑡𝑡𝜕𝜕𝑡𝑡′𝐾𝐾𝑩𝑩(𝒙𝒙, 𝑡𝑡;𝒙𝒙
′

, 𝑡𝑡
′

)|𝑡𝑡𝑜𝑜
. (7)

Σtt′ is the covariance matrix of the dating errors and ◦ is the Hadamard product (see also Schanner et al., 2021, 
Section 2.4). The effect of the NIGP model is thus the inclusion of dating errors as contributions to the data 
covariance, similar to measurement errors. To realize this, dating errors are weighed by the second order time 
derivative of the kernel. The idea is related, but not equal, to the approach of estimating the contribution of dating 
uncertainties by using the secular variation (see e.g., Korte et al., 2005). Due to the GP structure of the proposed 
model, the covariance structure for the secular variation is available a priori. Finally, a residual term ξP, where 

𝐴𝐴 𝑷𝑷 ∼  (0, 𝐼𝐼) is added to cover any effects that are not modeled, like crustal field or ellipticity of the Earth (see 
also Mauerberger et al., 2020; Schanner et al., 2021). This way, the data model reads

𝑜𝑜(𝒙𝒙, 𝑡𝑡) ≈ 𝐇𝐇lin.

(

𝑩𝑩(𝒙𝒙, 𝑡𝑡𝑜𝑜) − 𝑒𝑒
⊤

𝑡𝑡
𝜕𝜕𝑡𝑡𝑩𝑩(𝒙𝒙, 𝑡𝑡)|𝑡𝑡𝑜𝑜 + 𝜉𝜉𝑷𝑷

)

+ 𝑬𝑬prox.. (8)

2.3. A Priori Process

We consider the common spherical harmonics (SH) expansion of the geomagnetic potential Φ, which is valid 
outside of the Earth's conducting core, assuming an insulating mantle:

Φ(𝒙𝒙, 𝑡𝑡) = 𝑅𝑅

∑

𝓁𝓁

(

𝑅𝑅

|𝒙𝒙|

)

𝓁𝓁+1
∑
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𝑔𝑔
𝑚𝑚

𝓁𝓁
(𝑡𝑡) 𝑌𝑌
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𝓁𝓁
(�̂�𝒙). (9)
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𝐴𝐴 �̂�𝒙 is the unit vector x/|x| and 𝐴𝐴 𝐴𝐴
𝑚𝑚

𝓁𝓁
 refers to the real valued and Schmidt seminormalized SH of degree ℓ and order 

m with related Gauss coefficient 𝐴𝐴 𝐴𝐴
𝑚𝑚

𝓁𝓁
 . Here, the Gauss coefficients are defined at the reference radius R. Note that 

in the figures below, we give the extrapolated coefficients at the Earth's surface. From this, the Earth's magnetic 
field is given as the gradient

𝑩𝑩 = −∇Φ, (10)

and mean and covariance function of the EMF can be derived from assumptions about correlations of the Gauss 
coefficients. A priori we assume all Gauss coefficients except for the axial dipole to be of zero mean. The mean 
function for the axial dipole is assumed constant, with value 𝐴𝐴 𝐴𝐴

0

1
 . We assume all coefficients to be uncorrelated and 

identically distributed at a reference radius R = 2,800 km (within the Earth's core). This is the “virtual” source 
region where the spectrum is flat and the field has no direct physical meaning. The magnetic field given by this 
assumption is only a valid representation of the actual field above the core-mantle boundary (CMB). Inside of 
the core it can be seen as an artificial connection of the physical field at the CMB to the virtual sources inside 
of the core. We assume two different a priori variances, one for the dipole coefficients αDP and one for all higher 
degrees αND. For each coefficient we assume a temporal correlation in the form of an AR(2)-process, as proposed 
by Gillet et al. (2013) and employed also by others (Baerenzung et al., 2020; Hellio & Gillet, 2018; Nilsson & 
Suttie, 2021; Ropp et al., 2020). This way, the temporal correlation of each coefficient is given by

𝜌𝜌𝓁𝓁(𝑡𝑡 − 𝑡𝑡
′

) =

(

1 +

|𝑡𝑡 − 𝑡𝑡
′

|

𝜏𝜏𝓁𝓁

)

exp

(

−

|𝑡𝑡 − 𝑡𝑡
′

|

𝜏𝜏𝓁𝓁

)

. (11)

Similar to Baerenzung et al. (2020), we assume one correlation time τDP for the dipole and a relation for all higher 
degrees ℓ ≥ 2

𝜏𝜏𝓁𝓁 =
𝜏𝜏ND

𝓁𝓁

. (12)

The posterior may be smoother or more detailed than these timescales, depending on the data.

2.4. Sequentialization

In previous studies (Mauerberger et al., 2020; Schanner et al., 2021), we aimed at performing standard GP regres-
sion in the introduced setting. However, as determining the hyperparameters of the model requires this regression 
to be performed many times, this proved to be computationally unfeasible. To overcome this, we perform a se-
quentialized inversion, in form of a Kalman-filter (Baerenzung et al., 2020; Kalman, 1960). Starting at an initial 
time, the Kalman-filter consists of a series of steps, each consisting of a prediction based on the current model 
and a correction, which updates the model if data is available. In contrast to the previous study SMKH21, this 
requires us to define a cutoff degree ℓmax, so that the model can be characterized by a finite vector of coefficients 
and their derivatives 𝐴𝐴 𝒛𝒛 = (𝑔𝑔𝑚𝑚

𝓁𝓁
, �̇�𝑔

𝑚𝑚

𝓁𝓁
) . The prediction equations from step i to i + 1 are given by.

�
[

��+1|�
]

= ��� [��], (13)

Cov
[

𝒛𝒛𝑖𝑖+1|𝑖𝑖, 𝒛𝒛𝑖𝑖+1|𝑖𝑖

]

= 𝐅𝐅𝑖𝑖Cov [𝒛𝒛𝑖𝑖, 𝒛𝒛𝑖𝑖]𝐅𝐅
⊤

𝑖𝑖
+ �̃�𝚺, (14)

where

F𝑖𝑖(𝓁𝓁,Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖) =

⎛

⎜

⎜

⎜

⎝

1 + |Δ𝑡𝑡|∕𝜏𝜏𝓁𝓁 Δ𝑡𝑡

−Δ𝑡𝑡∕𝜏𝜏
2

𝓁𝓁
1 − |Δ𝑡𝑡|∕𝜏𝜏𝓁𝓁

⎞

⎟

⎟

⎟

⎠

exp

(

−

|Δ𝑡𝑡|

𝜏𝜏𝓁𝓁

)

 

is the forward operator of the AR(2)-process and 𝐴𝐴 �̃�𝚺 = 𝚺𝚺 − 𝐅𝐅𝚺𝚺𝐅𝐅
⊤ with the a priori correlations Σ. The correction 

step consists of a Bayesian GP inversion, as described in detail in SMKH21. The linearization is performed 
around the current model, beginning with the prior. We run the Kalman-filter “backwards,” that is, from modern 
times to the past, as the data distribution is sparser toward earlier years. We expect the bigger amount of data in 
the beginning of the filtering to constrain the model and improve the POE for earlier times. We choose a cutoff 
degree of ℓmax = 20 and a step size of Δt = 10 years. Both choices are believed to allow for a way higher resolution 
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than present in the data, so that every dynamic present in the data can be captured by the model. After running 
the Kalman-filter we run a smoothing algorithm, following the formulation of Rauch et al. (1965) [see also Bae-
renzung et al. (2020)]. This way, cross correlations that are not present in the Kalman-filter are reintroduced to 
the posterior.

We store a set of coefficients every 50 years, so that the output of a sequentialized inversion consists of 281 sets 
of 440 main field coefficients, 440 secular variation coefficients and the respective covariances.

2.5. Hyperparameters

The a priori model depends on several parameters, that have to be inferred before the actual inversion can be 
performed. One approach (e.g., Hellio & Gillet, 2018; Nilsson & Suttie, 2021) is to infer these parameters from 
outside knowledge, for example, from models based on observatory and satellite data. We followed this approach 
in selecting the reference radius R, which effectively controls the slope of the a priori spectrum, by comparison to 
the IGRF models. For the other parameters we suggest a more self-consistent strategy and estimate them based 
on a maximum likelihood procedure. This strategy did not work for the reference radius, most likely because the 
sparse data in earlier years do not constrain it well enough.

Consider the forward log-marginal likelihood

fwd. =

𝑁𝑁
∑

𝑖𝑖=1

[

−ln|Σ𝑜𝑜𝑜𝑖𝑖| −

1

2

(𝑜𝑜𝑖𝑖 − Hlin.𝑩𝑩(𝒛𝒛𝑖𝑖))
⊤
Σ
−1

𝑜𝑜𝑜𝑖𝑖
(𝑜𝑜𝑖𝑖 − Hlin.𝑩𝑩(𝒛𝒛𝑖𝑖))

]

 (15)

with observations in the ith step oi and their observation covariance Σo,i. N refers to the number of steps in the 
Kalman-filter. The forward likelihood depends on the hyperparameters and is considered a measure for how good 
a choice of hyperparameters describes the data. We maximize this expression using LIPO-TR (King, 2009, 2017) 
and use the maximum estimator for the parameters in the inference. The search region is specified by lower and 
upper bounds for the hyperparameters, these are as follows:

−100 �T ≤ �01 ≤ −10 �T 1 �T ≤ �∙ ≤ 1, 000 �T

10 years ≤ �∙ ≤ 2, 000 years 0.01 �T ≤ � ≤ 5 �T
 

where • stands for DP and ND. Note that 𝐴𝐴 𝐴𝐴
0

1
 and the α• are given at the reference radius R = 2,800 km.

2.6. Data Set

The data set is a slight variation of all records from the archeological and volcanic database from GEOMAGIA 
v3.4 (Brown et al., 2015) with ages between 12000 BCE and 2000 CE. Part of the records from Mexico contain 
wrong age and dating uncertainty estimates (Mahgoub, personal communication). Some of them are too old by 
several thousand years and have been removed, while for others updated 14C ages have been published for the lava 
flows that they originate from. These updates have been used (see Table S1 in Supporting Information S1) and 
will be included in GEOMAGIA in the future. To identify other records that deviate from the rest, we use a Naive 
Bayes classifier (e.g., Berrar, 2018). This procedure is integrated into the Kalman-filter as follows:

When a step i + 1 contains new data, we evaluate the probability of every record to either come from a normal 
distribution with standard deviation of the size of the reported error or from a flat distribution of larger variance 
((100°)2 for declination, (50°)2 for inclination and (100 µT)2 for intensities). Records that are more likely to stem 
from the flat distribution are considered outliers. In comparison to the standard approach of rejecting all data 
that deviates by a specific amount from the model, this procedure is more flexible and allows larger deviations, 
especially if the current model reports high uncertainties. By this procedure 276 records are identified and re-
moved from the data set. The final data set contains 18,735 records from 11,637 locations. It consists of 5,611 
declinations, 7,028 inclinations, and 6,096 intensities.

In the geomagnetic community, it is common to use L1 or Huber norms and employ reweighing techniques 
to address outliers (Olsen, 2002; Walker & Jackson, 2000). Hellio et al. (2014) and Nilsson and Suttie (2021) 
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implement longer tailed error distributions and include all records in their models. In contrast to these approach-
es, we resort to outlier rejection for two practical reasons: first, the precise influence of the error distribution on 
the model is a question that is yet to be addressed by the community. Records which are accepted by the naive 
Bayes classifier are likely to be described well by a Gaussian error model, and by rejecting the rest we postpone 
a detailed analysis. Second, by considering a Gaussian error model only, the inversion is feasible analytically and 
can be addressed by numerical linear algebra, without resorting to sampling techniques. We acknowledge that the 
error model is a point that could be addressed more thoroughly in the future (Figure 1).

3. Results
3.1. Validation

In order to validate the proposed modeling method, we performed a test inversion on synthetic data. We therefore 
set up a model with fixed hyperparameters and sampled coefficients from the prior distribution, which serve as 
reference. From these coefficients we generated data at the same input locations and times as the ones in the data 
set described in Section 2.6. The data was then corrupted by artificial noise from a Gamma distribution for the 
intensity and a von Mises-Fisher distribution for the directions and by normal noise in the ages. The error levels 
reported in the database were used. Table 1 shows the fixed hyperparameters and the inferred ones. Apart from 
one parameter they agree reasonably well. The deviance in the nondipole correlation time is likely due to the 
data distribution. We believe that the variations that are present in the data can be resolved with the larger a priori 
correlation time and shorter variations cannot be recovered. No additional contributions (white noise) were added 
to the synthetic data set and the algorithm chooses the lowest possible value for the residual scaling accordingly.

Figure 2 shows generated and inferred axial dipole and quadrupole. The quadrupole behavior appears to be better 
recovered than the dipole behavior in the earlier times (12000 BCE to 2000 BCE). This may be due to the data 
distribution, as indicated by Figure 3. We there show the relative covariance gain (the diagonal of the last term 
on the right hand side of Equation 7 in Schanner et al. (2021), relative to the prior covariance) per coefficient 
for a stationary inversion. This quantity only depends on the data distribution. With the actual distribution, the 
gain is stronger in the quadrupole. With a symmetrized data set, large-scale degrees are resolved more evenly. A 
similar behavior is also visible in the power spectra of the test inversion, which are provided with Figure S2 in 

Figure 1. Spatial and temporal distribution of the data. Every declination, inclination, and intensity is counted as one record 
and represented by one dot. Note. The logarithmic scale (left) on the histogram. To emphasize the inhomogeneity in the 
temporal distribution, the normalized cumulative sum of the data is shown in orange (right scale).

Model 𝐴𝐴 𝐴𝐴
0

1
  (µT) αDP (µT) τDP (years) αND (µT) τND (years) ξ (µT)

Fixed −412.3 13.8 250 39.4 393 –

Inferred −408.55 9.87 302.48 30.70 724.76 0.01

Note. 𝐴𝐴 𝐴𝐴
0

1
 is the constant a priori axial dipole, αDP and αND give the a priori scaling of the dipole and nondipole covariance 

kernel, respectively. τDP and τND give the corresponding a priori correlation times. ξ is the scaling factor of the residual term. 
𝐴𝐴 𝐴𝐴

0

1
 and α• are given at the reference radius.

Table 1 
Hyperparameters That Have Been Used to Generate Synthetic Data for the Validation (“Fixed”) and the Ones Inferred 
Using the Proposed Method
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Supporting Information S1. In general, Figure 2 shows a promising agreement, although some variation in the 
dipole, prominently between 10000 and 8000 BCE, is not present in the inferred model. This already hints at the 
data not containing enough information to recover global features during early times. Further figures from the 
validation process, showing the other dipole and some higher order coefficients, are available with Figure S1 in 
Supporting Information S1.

3.2. ArchKalmag14k

In the following, we propose and describe a new global geomagnetic field model, based on archeomagnetic re-
cords. It covers the last 14,000 years and we call it ArchKalmag14k, as it is based on methods similar to the Kal-
mag model by Baerenzung et al. (2020). The hyperparameters that maximize the marginal likelihood and define 
the prior used for constructing the model are given in Table 2. Table S2 in Supporting Information S1 compares 
the a priori correlation times calculated from τDP and τND to the ones used by Hellio and Gillet (2018) and Nilsson 
and Suttie (2021). The general order of magnitude agrees. In general, the correlation times we find are slightly 
lower than what is calculated for the other studies. The largest deviance is observed in the octupole correlation 
time, where the other studies give a value that is twice the one we find. Below we compare ArchKalmag14k to 
the models ARCH10k.1 (Constable et al., 2016) and SHA.DIF.14k (Pavón-Carrasco et al., 2014), as both rest on 
a similar database and cover a similar timespan.

Figure 2. Axial dipole (top) and quadrupole (bottom) of the synthetic model, together with the corresponding inferred ones 
from the proposed inversion. All coefficients are given at the Earth's surface. The inferred (blue) and reference curves (red) 
agree within the pointwise 95%-regions shown in light blue. Some variations, most prominently in the axial dipole between 
10000 and 8000 BCE, cannot be resolved.

Figure 3. Relative covariance gain per degree for a stationary inversion. The blue dots refer to the actual data set, while 
orange ones refer to a symmetrized version. The bottom row of the horizontal axis refers to the coefficient order.
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Running the inversion as described in Section 2 gives 281 sets of 440 main 
field and 440 secular variation coefficients together with the respective co-
variances, one set every 50 years. A comparison of the model coefficients 
to the prior is given with Figure S3 in Supporting Information S1. Figure 4 
shows the dipole and axial quadrupole and octopole coefficients togeth-
er with 95%-uncertainties and comparison models. The proposed model 
ArchKalmag14k shows less variation in the dipole degrees than comparable 
models, especially during earlier times when data is sparse. More variation 
is present in the quadrupole and octopole, with variation decreasing toward 
earlier times.

This behavior is also reflected in the power spectra. Figure 5 shows the spatial (top row) and secular variation 
(bottom row) spectra for two selected epochs, one with dense (1000 CE) and one with sparse (6000 BCE) data 
coverage. The blue lines show the power spectrum as a random variable (i.e., a quantity nonlinearly derived from 
the posterior GP, see also Mauerberger et al., 2020, Section 5.6), together with the corresponding prior as a light 
blue dashed line. These curves represent the nonlinear transformations of the prior and posterior distribution. 
We also plot the power spectrum of the mean model (gray lines), that is, the power spectrum directly inferred 
from the mean coefficients. The random variable gives higher values than the mean and comparison models, as 
it also includes the variance of the coefficients. The random variable can be compared to the prior, to determine 
the model resolution, while the power spectrum of the mean is better suited for comparison to existing models. 
For the recent epoch, the spectrum lies between the one for ARCH10k.1 (orange) and SHA.DIF.14k (green). For 
the earlier epoch, more power is present in degrees 2 and 3 and a more rapid decrease in power is observed for 
the higher degrees, than in the comparison models. For the secular variation the prior is reproduced from degree 
three on at both epochs. For the earlier epoch, the dipole secular variation power is also close to the prior. The 
mean model shows less secular variation in the dipole than the comparison models, with more power in degrees 
2–4. For the recent epoch, more variation is observed in the higher degrees with a more rapid decrease in power 
for the earlier epoch, similar to the spatial spectrum.

𝐴𝐴 𝐴𝐴
0

1
  (µT) αDP (µT) τDP (years) αND (µT) τND (years) ξ (µT)

−426.33 28.66 183.22 111.63 316.00 3.35

Note. 𝐴𝐴 𝐴𝐴
0

1
 and α• are given at the reference radius. At the Earth's surface, 

𝐴𝐴 𝐴𝐴
0

1

≈ −36.19 𝜇𝜇 T.

Table 2 
Prior Hyperparameters for ArchKalmag14k

Figure 4. Gauss coefficients of the dipole and the axial quadrupole and octopole at the Earth's surface. ArchKalmag14k is 
shown in blue. The shaded area covers the pointwise 95%-region. ARCH10k.1 is shown in orange and SHA.DIF.14k in green.
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Figures 6 and 7 show local curves for Paris and Hawaii, respectively. Data from a surrounding of 250 km around 
the respective location is included with the prediction. Inclination and intensity are translated to the location of 
prediction making the simplifying assumption that the field is an axial dipole (Merrill et al., 1996). Declinations 
are taken as reported. The two locations were chosen because they have very different data coverage: Paris is cov-
ered well during recent times with a decrease in data from 1000 BCE on and virtually no data for epochs earlier 
than 6000 BCE. This is reflected in the prediction curves, which show less variation and increasing uncertainties 
for times with low data coverage. Hawaii is not as densely covered during recent times, but due to the volcanic 
area, records are available over the whole timespan of the model. Consequently, the predictions show variations 
during earlier times and the reported uncertainties are smaller. The comparison models agree within the reported 
95%-intervals for both locations. For Paris, the SHA.DIF.14k model shows more variation during times earlier 
than 5000 BCE and most prominently from 12000 to 8000 BCE. For Hawaii, all models show a similar amount 
of variation, with SHA.DIF.14k varying slightly more and ARCH10k.1 slightly less, especially in the intensity. 
Two additional local predictions, for the Indian ocean and New Zealand, are provided with Figures S4 and S5 in 
Supporting Information S1.

We investigate the misfit of the model in Table 3. The sum of residuals squared, divided by the variance is a 
χ2-distributed random variable:

 =

𝑁𝑁
∑

𝑖𝑖=1

(𝑜𝑜𝑖𝑖(𝒙𝒙, 𝑡𝑡) − H𝑖𝑖[𝑩𝑩(𝒙𝒙, 𝑡𝑡)])
2

𝜎𝜎
2

𝑜𝑜,𝑖𝑖
+ 𝜎𝜎

2

𝑡𝑡,𝑖𝑖
+ 𝜎𝜎

2

𝐵𝐵,𝑖𝑖

∼ 𝜒𝜒
2

𝑁𝑁 (16)

σo,i is the observation error, σt,i the weighed dating uncertainty as given by Equation 7 and σB,i is the posterior 
standard deviation. N refers to the number of records. The normalized misfit can be calculated from 𝐴𝐴   as:

Figure 5. Geomagnetic main field (top) and secular variation spectra (bottom) at Earth's surface for two selected epochs. 
The random variable power spectrum for ArchKalmag14k is shown in blue. The error bars report 2.5‰ and 97.5‰, covering 
95%. For comparison, the spectra of the mean model are shown in gray. The prior spectrum is shown as a light blue dashed 
line. ARCH10k.1 is shown in orange and SHA.DIF.14k in green. See the text for additional discussion.
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 =

√



𝑁𝑁
. (17)

It is evident, that 𝐴𝐴   lies below the 95% confidence interval of the corresponding χ2 distribution in almost all cases. 
Also 𝐴𝐴  is below 1 for all subsets. Both results might indicate, that the model is overfitting the data, but when 
looking at the relatively big mean absolute error (MAE), this does not seem to be the case. Instead, we think the 
reason for the low misfit and 𝐴𝐴   values lies in the large contributions from the dating uncertainties. These may be 
overestimated, as we use the reported uncertainties as standard deviations for normal error distributions. If in fact 
they come from a different distribution, for example, a uniform one, this procedure gives errors that are too large. 
The large errors also result in a low impact of such records on the model. The large MAE may be caused by those 

Figure 6. Local predictions of intensity F, declination D and inclination I for Paris. Note. The different timescales in the left 
and right parts of the bottom panels! ArchKalmag14k is shown in blue. The shaded area covers 95%. ARCH10k.1 is shown 
in orange and SHA.DIF.14k in green. In the top row, the spatial and temporal distribution of the surrounding are shown. 
Data in the orange ellipse (250 km radius) are translated (Merrill et al., 1996) to the location of prediction (orange dot) and 
shown as gray dots. Horizontal and vertical Gy bars indicate the two-sigma temporal and field component data uncertainties, 
respectively. The temporal distribution (top right) includes all data visible in the top left plot.
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records as well. As discussed above, a more thorough treatment of the error model (and with this also the dating 
uncertainties) in general may be necessary to address this.

3.3. Dipole Moment and Location

During the Holocene, the geomagnetic field is dipole dominated. Therefore, it is of special interest to infer the dy-
namics of the dipole. Figure 8 shows the evolution of the dipole moment. To access the dipole moment mean and 
standard deviation, sampling techniques are employed. The proposed model ArchKalmag14k shows significantly 
less variation in the dipole moment than comparable models. We observe some rapid variations from 1000 BCE 
to today, but for earlier times no rapid variations are found. Interestingly we observe a higher dipole moment than 
the comparison models for the interval 6000 to 2000 BCE and also from 12000 to 8000 BCE.

Figure 7. Local predictions of intensity F, declination D and inclination I for Hawaii. Note. The different timescales in 
the left and right parts of the bottom panels! ArchKalmag14k is shown in blue. The shaded area covers 95%. ARCH10k.1 
is shown in orange and SHA.DIF.14k in green. In the top row, the spatial and temporal distribution of the surrounding are 
shown. Data in the orange ellipse (250 km radius) are translated (Merrill et al., 1996) to the location of prediction (orange 
dot) and shown as gray dots. Horizontal and vertical Gy bars indicate the two-sigma temporal and field component data 
uncertainties, respectively. The temporal distribution (top right) includes all data visible in the top left plot.



Journal of Geophysical Research: Solid Earth

SCHANNER ET AL.

10.1029/2021JB023166

12 of 17

Figure  9 shows the latitude and longitude of the dipole location, together 
with the angular standard deviation (Butler, 2004). The latter is inferred via 
sampling. In earlier studies (Mauerberger et al., 2020; Schanner et al., 2021) 
we analyzed the statistics of the dipole axis coordinates directly. Here we ana-
lyze the projection of the dipole onto the sphere instead. The corresponding 
distribution is approximated by a von Mises-Fisher distribution and we report 
the latitude and longitude of its location parameter, instead of the mean of the 
marginal distributions. The advantage of performing statistics on the sphere 
instead of considering the marginal distribution is that there is no critical 
point (resp. meridian). The disadvantage is that the distribution is not avail-
able in closed form and that uncertainties cannot easily be translated to lati-
tude and longitude, as approximations become unreliable when close to the 
pole (singularity in Equation 6). Similar to the dipole moment, the proposed 
model shows less variation during earlier times. The dipole latitude shows 
a trend opposite to the SHA.DIF.14k model for the interval 12000 to 6000 
BCE, with the geomagnetic pole being very close to the geographic one in 
the beginning and a decrease in latitude toward recent times, in contrast to an 
increase present in the SHA.DIF.14k model. The angular standard deviation 
(Figure 9, bottom row) increases toward earlier times, as is expected from the 
thinning data distribution.

3.4. South Atlantic Anomaly

To conclude the results, we present investigations of the South Atlantic 
Anomaly (SAA). The SAA is a region of low field intensity, that has been 
linked to reverse flux patches at the CMB during recent times (e.g., Ter-
ra-Nova et al., 2017). We compare the appearance and evolution of the SAA 
as predicted by ArchKalmag14k to other studies (Campuzano et al., 2019; 
Hartmann & Pacca, 2009). We do not follow the kernel-based approach of 
Terra-Nova et al. (2017), but investigate maps of the magnetic fields radial 
component at the CMB. In general, due to the projection into the Earth's inte-
rior, uncertainties at the CMB are so large that reverse flux in the mean mod-
el is not resolved reliably and more data and future work are required to con-
firm these findings. We consider the projections qualitatively nevertheless.

We find a region of field intensity lower than 32 μT emerging close to the 
tip of Brazil at 1200 CE (bottom right in Figure 11). Reverse flux is present 
to the north and a patch of reverse flux is located directly south of the re-

gion. Together with this patch, the region of low intensity rapidly moves south-eastward to the coast of today's 
Namibia, where it is located in 1300 CE (Figure 10b). This contrasts the findings of Campuzano et al. (2019), 
where the low intensity region emerges approximately 100 years earlier close to Madagascar, although an earlier 
emergence is within the uncertainties of our model. The SAA then extends to the West and slightly to the East, 
with the center drifting westward until 1500 CE, back to the origin of the region. From there it moves East and 
constricts at the coast of today's Namibia, almost disappearing at 1650 CE. This dynamic is also not present in 
SHA.WQ.2k by Campuzano et al. (2019), where the SAA persists at the coast of Namibia and does not decrease 
in size. The described evolution precedes the dynamics found by Hartmann and Pacca (2009). The subsequent 
westward drift of the low intensity region generally agrees with their findings and the findings of Campuzano 
et al. (2019) within the uncertainties.

Further, we find a low field intensity region emerging in 250 BCE west of today's Peru (bottom left in Figure 11). 
It drifts south-eastward and in 500 CE merges with a second low field intensity region that emerges around 400 
CE North-East of Madagascar. Both anomalies are accompanied by reverse flux in the Southern hemisphere. 
The joint low intensity region continues to drift eastward and shrinks, persisting until 900 CE. Campuzano 
et al. (2019) find a low intensity field region emerging at the coast of Namibia at 175 CE. In their findings the 

Name Type N𝐴𝐴  𝐴𝐴 CI𝜒𝜒2 𝐴𝐴  MAE

Early D 119 19.0 [90.7, 151.1] 0.40 9.9°

I 132 13.6 [102.1, 165.7] 0.32 7.1°

F 155 39.6 [122.4, 191.4] 0.51 8.7 μT

Middle D 1,307 489.0 [1208.7, 1409.1] 0.61 7.3°

I 1,372 461.2 [1271.2, 1476.6] 0.58 4.1°

F 3,010 1984.7 [2859.8, 3164.0] 0.81 7.1 μT

Recent D 4,208 2494.5 [4030.1, 4389.7] 0.77 5.1°

I 5,552 5346.2 [5347.4, 5760.4] 0.98 3.4°

F 2,958 1829.7 [2809.2, 3110.6] 0.79 6.0 μT

Europe D 3,434 1802.3 [3273.5, 3598.3] 0.72 5.8°

I 3,952 2916.1 [3779.7, 4128.1] 0.86 3.0°

F 2,546 1987.3 [2408.0, 2687.7] 0.88 6.3 μT

North America D 943 515.0 [859.8, 1030.0] 0.74 5.4°

I 945 703.2 [861.7, 1032.1] 0.86 4.3°

F 488 370.4 [428.7, 551.1] 0.87 8.0 μT

East Asia D 349 214.1 [299.1, 402.6] 0.78 5.6°

I 412 365.9 [357.7, 470.1] 0.94 4.2°

F 601 331.0 [535.0, 670.8] 0.74 7.2 μT

South Pacific D 0 – – – –

I 0 – – – –

F 28 11.8 [15.3, 44.5] 0.65 5.2 μT

Note. N refers to the number of records in the data subset. 𝐴𝐴   gives the sum of 
the residuals squared, divided by the variances. This is a χ2-distributed random 
variable and we give the 95%-intervals of the corresponding distribution as 

𝐴𝐴 𝐴𝐴𝐴𝐴𝜒𝜒2 . 𝐴𝐴  is the normalized misfit, that is, 𝐴𝐴

√

 ∕𝑁𝑁  . MAE refers to the mean 
absolute error. The early subset consists of all records before −6000 BCE, the 
middle subset covers −6000 BCE to 0 CE and the recent subset includes all 
records after 0 CE. A map of the localized subsets is given with Figure S6 in 
Supporting Information S1.

Table 3 
Data Misfit for Several Data Subsets
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earlier anomaly is static and grows until 500 CE. It then shrinks and disappears at 700 CE, earlier than in our 
findings.

Low intensity regions around the equator are present from the beginning of the model timespan on, but uncer-
tainties are too large to reliably interpret their appearance. First reliable hints on a low intensity field region in the 
Indian ocean are present around 3000 BCE, with the region drifting eastward (top left in Figure 11) and a second 
low intensity region appearing over the Northern part of South America at 2600 BCE (top right in Figure 11). 
The anomaly in the Indian ocean disappears at 2200 BCE. The one above South America is accompanied by 
pronounced reverse flux, although during these epochs uncertainties at the CMB are even higher than during 

Figure 8. Dipole moment of the geomagnetic field. ArchKalmag14k is shown in blue. The shaded area covers 95%. 
ARCH10k.1 is shown in orange and SHA.DIF.14k in green. Mean and standard deviation of ArchKalmag14k are inferred 
from sampling. This sampling is the reason for the small-scale noise in the blue curve and area.

Figure 9. Latitude (top) and longitude (middle) of the geomagnetic dipole axis. ArchKalmag14k is shown in blue. 
ARCH10k.1 is shown in orange and SHA.DIF.14k in green. The bottom plot shows the angular standard deviation δ 
(Butler, 2004) for ArchKalmag14k, which is inferred from sampling. This sampling is the reason for the small-scale noise in 
earlier times.
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recent times and caution has to be taken when interpreting the results. The anomaly persists over South America, 
extends until 1500 BCE (Figure 10a) and vanishes in 1200 BCE.

Overall, the model shows low field intensity anomalies, accompanied by reverse flux, emerging and vanishing 
regularly, with a cycle in the order of 1000 years. An animation of the field at the Earth's surface and the CMB 
can be found with Supporting Information S1.

Figure 10. The South Atlantic Anomaly (SAA). The top rows show the field intensity at the Earth's surface and the magnetic 
field radial component (downwards). The bottom rows show the respective standard deviation. (a) is for the year 1500 BCE 
and (b) for 1300 CE. The yellow triangles indicate the location of lowest field intensity. The yellow contour line corresponds 
to a field value of 32 μT. For reference, both location of lowest intensity and contour are also shown in the CMB plots in blue.
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4. Discussion
In the preceding section, we proposed the new global geomagnetic field model ArchKalmag14k and presented 
its features. The local predictions give a reasonable representation of the underlying archeomagnetic data and 
agree with comparison models within the uncertainties. If no data is present, local curves show significantly less 
variation than the compared models. Low order, global scale degrees are only resolved if a sufficient amount of 
data is present. In this case, local predictions for remote locations also show rapid variations and uncertainties 
are relatively small (see the local predictions for the Indian ocean in Figure S4 in Supporting Information S1). If 
the data cannot resolve the global scales, the prior is reproduced, which is evident from local curves with no data 
coverage (Figure 6) and the analysis of the dipole itself (Figures 8 and 9). For times earlier than 6000 BCE, the 
axial dipole varies only slightly around the prior mean value of approximately −36.19 μT (Figure 4, top row; see 
also Figure S3 in Supporting Information S1). Nevertheless, local variations are resolved, if supported by the data 
(Figure 7, especially the dip in declination at 11000 BCE). Spatial power spectra provide insight on the resolution 
of the model on global scales. From a comparison of the spectra to the respective prior it is evident, that for recent 
times information up to degree six is obtained, while for the earlier times the prior is reproduced already at degree 
3 (Figure 5, top row). An investigation of low intensity field regions reproduces the emergence and evolution 
of the South Atlantic Anomaly (SAA) in recent times (from 1600 CE on), while the preceding dynamics differ 
from other studies (Campuzano et al., 2019). Low intensity field regions can be resolved from 3000 BCE on. Al-
though uncertainties at the CMB are large, hints for reverse flux patches associated with these field anomalies are 
found. A detailed evaluation relating these patches to the anomalies, for example, based on kernels (Terra-Nova 
et al., 2017) remains to be done and more data are needed to reduce the uncertainties.

In contrast to other recently proposed Bayesian models (Hellio & Gillet, 2018; Nilsson & Suttie, 2021), most 
prior parameters of ArchKalmag14k are inferred from the data via maximization of the log-marginal likelihood. 
As the marginal likelihood drops off quickly around the maximum, we did not perform an integration as proposed 
in the last study (Schanner et al., 2021). The a priori assumption of a constant axial dipole may lead to an under-
estimation of uncertainties in the dipole degrees, moment and location, as the prior mean is constrained well by 
data from recent times and variations during earlier times are considered around this fixed, constant value. Using 

Figure 11. Paths of the minima of low intensity field regions described in the text. Dots are drawn every hundred years. The 
locations of the minima have been obtained using grid search, which leads to several discrete jumps in the curves.



Journal of Geophysical Research: Solid Earth

SCHANNER ET AL.

10.1029/2021JB023166

16 of 17

only part of the recent records to create a data set that is more homogeneous in time may improve this, but leads 
to other complications as hyperparameters become less constrained and harder to determine, when fewer records 
are available. Artificially increasing the a priori dipole variance leads to more variation around the constant mean 
during earlier times, but also to higher posterior uncertainties and the model we propose lies well within these. 
Two scenarios are reasonable, to explain the absence of variations during earlier times in our model. Either the 
statistical properties (and thus the underlying processes) of the EMF changed during the Holocene, sometime 
around 3000 BCE. This is supported by a visual inspection of the top row in Figures 4 and 8. Or the data do not 
contain enough information to recover the global dynamics of the field, which is supported by the findings of the 
validation section. Additional data, for example, from sediments may help recovering the actual field dynamics, 
but require significant adaptation of the modeling method. Additionally, and similar to Hellio and Gillet (2018), 
a two parameter AR2-process may be considered for temporal correlations of the (axial) dipole.

5. Conclusions
This study proposes a new global geomagnetic model for the Holocene, called ArchKalmag14k. We modified 
the algorithms suggested in earlier works (Mauerberger et al., 2020; Schanner et al., 2021) to be applicable to the 
archeomagnetic database. The inversion is sequentialized by means of a Kalman-filter (Baerenzung et al., 2020; 
Kalman, 1960). The resulting model consists of sets of Gauss coefficients, secular variations and covariances, 
stored every 50 years. The model can be reproduced by code that is publicly available (https://sec23.git-pages.
gfz-potsdam.de/korte/paleokalmag/) or is provided upon request. ArchKalmag14k can be imported by pymag-
global (Schanner et al., 2020), so that feature analysis is straight-forward. Together with the software, we provide 
a Jupyter notebook, that illustrates how to reproduce ArchKalmag14k. The model is also available via a website: 
https://ionocovar.agnld.uni-potsdam.de/Kalmag/Archeo/.

The central result of this study is that for times earlier than 6000 BCE the current database of thermoremanent 
records alone does not contain enough information to construct global models. For times earlier than 6000 BCE, 
ArchKalmag14k reproduces the prior on a global scale and only local variations are resolved. Existing models 
may further overconfidently report variations during times later than 6000 BCE, as local variations that are 
resolved by higher degrees in ArchKalmag14k result in variations of the large-scale dipole in existing models.

The next step is to extend and adapt the modeling framework to incorporate sediment records. As the recent study 
by Nilsson & Suttie  (2021) shows this requires significant modifications due to aspects of the sedimentation 
process and the respective statistical implications.

Data Availability Statement
The data set used in this study is a slight variation of all records from the archaeological and volcanic database 
from GEOMAGIA v3.4 (Brown et al., 2015) with ages between 12000 BCE and 2000 CE. Some of the records 
from Mexico contain wrong ages (Mahgoub, personal communication), so they have been altered or removed, if 
no better estimate was available. A list of altered records is available with Table S1 in Supporting Information S1. 
All results were produced using a python implementation of the discussed algorithm, which is publicly available 
at https://sec23.git-pages.gfz-potsdam.de/korte/paleokalmag/. The model can be reproduced using the software 
and is available online, via https://ionocovar.agnld.uni-potsdam.de/Kalmag/Archeo/.
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