English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations

Authors

Chang,  Sung-Joon
External Organizations;
GEOFON, Deutsches GeoForschungsZentrum;

Ferreira,  Ana M. G.
External Organizations;
GEOFON, Deutsches GeoForschungsZentrum;

Ritsema,  Jeroen
External Organizations;
GEOFON, Deutsches GeoForschungsZentrum;

van Heijst,  Hendrik J.
External Organizations;
GEOFON, Deutsches GeoForschungsZentrum;

Woodhouse,  John H.
External Organizations;
GEOFON, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Chang, S.-J., Ferreira, A. M. G., Ritsema, J., van Heijst, H. J., Woodhouse, J. H. (2015): Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations. - Journal of Geophysical Research, 120, 6, 4278-4300.
https://doi.org/10.1002/2014JB011824


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_3235890
Abstract
We present a new global whole‐mantle model of isotropic and radially anisotropic S velocity structure (SGLOBE‐rani) based on ~43,000,000 surface wave and ~420,000 body wave travel time measurements, which is expanded in spherical harmonic basis functions up to degree 35. We incorporate crustal thickness perturbations as model parameters in the inversions to properly consider crustal effects and suppress the leakage of crustal structure into mantle structure. This is possible since we utilize short‐period group‐velocity data with a period range down to 16 s, which are strongly sensitive to the crust. The isotropic S velocity model shares common features with previous global S velocity models and shows excellent consistency with several high‐resolution upper mantle models. Our anisotropic model also agrees well with previous regional studies. Anomalous features in our anisotropic model are faster SV velocity anomalies along subduction zones at transition zone depths and faster SH velocity beneath slabs in the lower mantle. The derived crustal thickness perturbations also bring potentially important information about the crustal thickness beneath oceanic crusts, which has been difficult to constrain due to poor access compared with continental crusts.