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S U M M A R Y
Numerous monitoring applications make use of seismic coda waves to evaluate velocity
changes in the Earth. This raises the question of the spatial sensitivity of coda wave-based
measurements. Here, we investigate the depth sensitivity of coda waves to local velocity
perturbations using 2-D numerical wavefield simulations. We calculate the impulse response
at the surface before and after a slight perturbation of the velocity within a thin layer at depth
is introduced. We perform a parametric analysis of the observed apparent relative velocity
changes, εobs, versus the depth of the thin perturbed layer. Through the analysis of the decay
of εobs, we can discriminate two different regimes: one for a shallow perturbation and the
other for a deep perturbation. We interpret the first regime as the footprint of the 1-D depth
sensitivity of the fundamental surface wave mode. To interpret the second regime, we need
to model the sensitivity of the multiply scattered body waves in the bulk. We show that the
depth sensitivity of coda waves can be modelled as a combination of bulk wave sensitivity
and surface wave sensitivity. The transition between these two regimes is governed by mode
conversions due to scattering. We indicate the importance of surface waves for the sensitivity
of coda waves at shallow depths and at early times in the coda. At later times, bulk waves
clearly dominate the depth sensitivity and offer the possibility of monitoring changes at depths
below the sensitivity of the surface waves. Based on the transition between the two regimes,
we can discriminate a change that occurs at the surface from a change that occurs at depth.
This is illustrated for shallow depth perturbations through an example from lunar data.
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1 I N T RO D U C T I O N

Detecting slight temporal changes in elastic properties of rocks at
depth is of increasing interest for various applications (Poupinet
et al. 1984, 1996; Meunier et al. 2001; Snieder & Hagerty 2004;
Niu et al. 2008). Provided that the sources and receivers are perfectly
reproducible, the change in the seismic waveforms between two ac-
quisitions performed at two distant dates can be solely attributed to
changes in the propagation medium. When the medium is not too
heterogeneous, locating such changes with ballistic waves is pos-
sible, although the sensitivity to weak changes is low. In contrast,
in a highly heterogeneous medium, waves enter the multiple scat-
tering regime. Heterogeneities in the medium generate late-arriving
wave trains, which constitute the so-called ‘coda’. These waves pro-
vide dense sampling of the medium and are very sensitive to small
velocity perturbations. In optics, this sensitivity is used in diffuse
wave spectroscopy (Pine et al. 1988). It is also used with elastic and
acoustic waves in diffuse acoustic wave spectroscopy (Cowan et al.

2002) and with coda seismic (Poupinet et al. 1984; Snieder et al.
2002; Snieder 2006).

The detection of temporal changes has been successfully applied
to different areas in seismology. These areas include the monitor-
ing of oil reservoirs (Meunier et al. 2001), volcanoes (Grêt et al.
2005; Brenguier et al. 2008a), fault zones (Brenguier et al. 2008b),
landslides (Mainsant et al. 2012) and even subduction zones (Rivet
et al. 2011). A central question in the interpretation of the changes
detected is that of the depth of the velocity variations. A recent
discussion of possible causes for velocity perturbations and their
depth range can be found in Sens-Schönfelder & Wegler (2011).
Observations of velocity changes that occur at different depths have
come from investigations using combinations of borehole and sur-
face sensors, which have allowed the identification of changes at
shallow depths (Sawazaki et al. 2009; Nakata et al. 2011). With
interpretations of coda wave measurements, Rivet et al. (2011) lo-
cated changes that occurred at great depth in a subduction zone.
Their interpretation was based on the assumption that coda waves
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are dominated by Rayleigh waves that follow a two-dimensional
(2-D) diffusion process at the free surface. The depth sensitivity is,
therefore, limited to the depth sensitivity of the surface waves. In
contrast, Sens-Schönfelder & Wegler (2006) investigated shallow
velocity changes at a volcano, which they interpreted as a response
to changes in the hydrological system. Supported by the lapse-
time dependence of the apparent relative velocity change, their
interpretation was based on the assumption that the coda is domi-
nated by body waves that show slower decay of the sensitivity with
depth.

We know that regions that show tectonic and/or volcanic activity
are highly heterogeneous (Aki & Chouet 1975; Aki & Ferrazzini
2000; Abubakirov & Gusev 1990; Sato et al. 2012). In partic-
ular, heterogeneities located right beneath the free surface con-
vert surface waves into bulk waves, and reciprocally, bulk waves
into surface waves (e.g. Larose et al. 2005a). In this study,
we deal with waves that propagate in media containing verti-
cal and horizontal heterogeneities. We investigate the following
questions:

(i) Is the assumption of the surface wave diffusion process suf-
ficient to describe the sensitivity of coda waves, or does the bulk
wave diffusion play a role in fully heterogeneous media?

(ii) Can changes at depth be detected if the sources and sensors
are placed at the free surface?

(iii) If changes can be detected, what is the depth sensitivity of
the coda waves in this multiple scattering regime?

(iv) How can we differentiate between shallow and deep velocity
variations?

In this study, we will answer these questions on the basis of 2-D
numerical simulations. In Section 2, we describe the elastic het-
erogeneous medium, introduce the velocity perturbation and char-
acterize the degree of heterogeneity. In Section 3, we separately
describe the depth sensitivity kernel of Rayleigh and bulk waves,
and propose a linear combination of bulk and surface wave sensi-
tivity to model the depth sensitivity of coda waves. In Section 4,
we compare theoretical predictions with numerical simulations. We
demonstrate the accuracy of the model for weak changes located at
different depths. These theoretical predictions are also tested at dif-
ferent times in the coda and for different degrees of heterogeneity.
We emphasize the importance of bulk waves for the depth sensitiv-
ity of coda waves collected by arrays at the free surface. We obtain a
model that shows the partition ratio of surface wave and bulk wave
sensitivity at different times in the coda and for different levels of
heterogeneities. In the last part, we use lunar data to demonstrate
the practical relevance of our findings.

2 N U M E R I C A L S I M U L AT I O N S

To study the sensitivity of coda waves to velocity perturbations
at depth, we perform numerical simulations of seismic waves in
a heterogeneous 2-D elastic medium without intrinsic attenuation.
The scattering is weakly anisotropic but the medium itself does not
show any preferential direction.

To create the heterogeneous 2-D elastic medium, we follow the
procedure described by Frankel & Clayton (1986). The 2-D ve-
locity field has a constant background P-wave velocity v0

p with
superimposed spatial velocity fluctuations δvp(x, z) that constitute
the scatterers. The total P-wave velocity can be decomposed as

vp(x, z) = v0
p + δvp(x, z). (1)

The total S-wave velocity relates to the total P-wave velocity, as
vs = vp√

3
, and thus undergoes the same respective velocity variations.

The velocity fluctuations δvp(x, z) are themselves characterized by
a spatial autocorrelation function. The main statistical parameters
that characterize the medium are described in Section 2.1. Fig. 1(A)
shows a typical realization of a random medium.

In this initial velocity model, we introduce a small velocity pertur-
bation dv

v
in a layer of thickness h at depth d, as shown in Fig. 1(B).

The perturbed velocity v′
p in the layer is proportional to the velocity

vp

v′
p(x, z) =

{
vp(x, z) · (1 + dv

v
) for d < z < d + h,

vp(x, z) for z < d or z > d + h.
(2)

We take v0
p = 6500 m s−1 and dv = 100 m s−1 which corresponds

to a relative velocity change of dv

v
= 1.54 per cent throughout the

study.
We simulate a semi-infinite medium with a free surface by im-

posing three absorbing conditions at the sides and one traction-free
condition at the surface. To solve the wave equation, we use the
2-D spectral-element method developed by Komatitsch & Vilotte
(1998) and implemented in the SPECFEM2D solver, version 6.1,
by Tromp & Komatitsch (2008). An element of the discretization
grid is shown within the black lines in Fig. 1(C). We place a receiver
array and a source at the free surface.

For the simulations, we use a vertical force as the source mech-
anism, with a central frequency of f0 = 20 Hz, and a frequency
bandwidth of �f = 12 Hz. The corresponding wavelength for the P

wave is λ0 = v0
p

f0
= 325 m. We want to note here that the perturbed

layer has a thickness of only 200 m, and it is, therefore, thinner
than λ0. The grid size is 16.8 × 16.8 km2 (50λ0 × 50λ0), with a
20 m spatial pitch (≈λ0/20). We compute the displacement ϕ(t)
for waves propagating in the initial medium vp(x, z), and ϕ′(t) for
waves propagating in the slightly perturbed medium v′

p(x, z). This
procedure is reproduced for different depth positions d of the layer.
All the important parameters for the simulation are summarized in
Table 1. In the following sections, if not stated differently, we only
display results for source–receiver distances of 4 km.

2.1 Characterization of the heterogeneous medium

In this part, we characterize the level of heterogeneity of the
medium. In Section 2.1.1, we discuss the correlation function that
we chose for the random medium in more detail. In Section 2.1.2,
we determine the equipartition ratio and therewith the energy ve-
locity ratio. Then in Section 2.1.3, we provide special focus on
the determination of the scattering (�) and transport (��) mean free
paths. These quantities are important for the theoretical model in
Section 4.

2.1.1 Autocorrelation function of the random medium

For the velocity model vp(x, z), we decided to work with a von-
Karman type autocorrelation function, as this model is consistent
with the general observations concerning rock and surface geology,
which show very rough behaviours at small length scales (Frankel &
Clayton 1986; Holliger & Levander 1992). This correlation function
is defined as (Tatarski 1961)

N (r ) = 1

2m−1	(m)

( r

a

)m
Km

( r

a

)
σ 2, (3)
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Figure 1. (A) Medium with von-Karman correlation function. The correlation distance is a ≈ λ0. x and z are 50λ0 ×50λ0. (B) Configuration for the study of
depth sensitivity. A medium of dimension x, z contains a thin layer (h) with a small velocity perturbation at depth d (note that the thickness of h is exaggerated
for better visualization). (C) Grid element used for the simulations. The black lines limit the gridpoints (blue stars) of one element.

Table 1. Physical parameters of the numerical simulations used in this
study.

Notation Value Description

L 16.8 × 16.8 km2 Grid size
� x, � z 20 m Grid spacing

9 s Record length
� t 3· 10−4s Time step
f0 20 Hz Source frequency
�f 12 Hz Source bandwidth
a 300 m Correlation length
σ 5, 10, 15, 20, 30 per cent Velocity fluctuations
vp Initial P-wave velocity field
v′

p Perturbed P-wave velocity field
v0

p 6500 m s−1 Mean P-wave velocity
v0

s 3750 m s−1 Mean S-wave velocity
λ0 325 m Central P-wavelength
h 200 m Thickness of perturbed layer
d Depth of perturbed layer
dv
v

1.54 per cent Relative velocity change
ε Apparent relative velocity change

where Km(x) is a modified Bessel function of order m, 	(m) is the
gamma function, r is the offset (or spatial lag), a is the correlation
distance and σ the relative standard deviation of the velocity. We
consider a specific type of von Karman function, where m is 0.5.

For this case, the 2-D Fourier transform �Karman(kr) that represents
the power spectrum of the medium fluctuations, is given by

�Karman(kr ) = a2

1 + k2
r a2

σ 2, (4)

where kr is the radial wavenumber. We chose a ≈ λ0 to allow strong
interactions between waves and heterogeneities, and to enhance
scattering. σ ranges from σ = 5–30 per cent. For each configuration,
we perform numerical simulations in ten different media that obey
the same statistics (for averaging purposes).

2.1.2 Equipartition ratio

In a heterogeneous elastic medium, waves propagate both as P and S
waves, and they are repeatedly converted from one state to another.
The available elastic energy in the phase space at long times will
be equally distributed among all of the possible states of the P and
S waves (Weaver 1982, 1985). This phenomenon is referred to as
the equipartition of seismic waves (Hennino et al. 2001). In an
unbounded 2-D medium, the modes are plane waves with either SV
or P polarization. If vs = vp√

3
, the equipartition ratio in 2-D reads

〈S2〉/〈P2〉 = 3, (5)

where S and P are the amplitudes of the S and P waves, respec-
tively. To verify the equipartition ratio, we place a source close to
the free surface. We then place 150 receivers in a vertical line in
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the middle of the medium. The top receiver is still several wave-
lengths away from the free surface. We calculate the energy ratio
between the squared curl and the squared divergence of the wave-
field in a gliding time-section. We average over the time sections
and 50 realizations of the random medium. The data yield a ratio
of 〈S2〉/〈P2〉 = 3.4. Repeating the experiment and considering four
reflecting boundaries yields a ratio of exactly 3. We conclude that
the difference between the experiment with a free surface and three
absorbing boundaries and the theory for infinite space is due to the
absorbing boundary conditions and the surface. Boundaries appear
to absorb P waves more quickly than S waves. The energy velocity c
which reflects the celerity at which the seismic energy is transported,
can thus be approximated according to the energy ratio

1

c
= 0.77

vs
+ 0.23

vp
. (6)

2.1.3 Determination of the scattering mean free path

In a regime where multiple scattering is very strong, waves travelling
from a source to a receiver follow many trajectories. In this case,
wave propagation can be considered as a random walk process, and
can be described to a good approximation by the diffusion equation
(for further information, see for example the review of Margerin
& Nolet 2003). Within this approximation, the multiply scattered
waves that propagate in n dimensions are described by the energy
velocity c, the transport mean free path �� or the diffusion coefficient
as

D = c��

n
. (7)

We need the scattering mean free path � and the transport mean
free path �� for the modelling of the depth sensitivity of coda waves.
� is a central quantity in radiative transfer and diffusion theory.
It represents the typical length scale after which a beam with a
given propagation direction has been significantly attenuated by
scattering. �� is the distance after which the ‘memory’ of the initial
direction of the beam is lost (Sato 1993; Paasschens 1997). �� is
related to the scattering mean free path via

�� = �

1 − 〈cos θ〉 , (8)

where 〈cos θ〉 is the directional average of the cosine of the scattering
angle. When the scattering is isotropic (i.e. inhomogeneities scatter
equal amounts of energy in all directions), �� = �. In our case,
where the correlation length and wavelength are similar (a ≈ λ0),
scattering is not completely isotropic. We would expect �� > �

according to eq. (8).
In the following, we determine �� and � numerically from the

coherent and incoherent parts of the recorded signals. The coherent
part of the waveform is the wave that resists averaging over different
realizations of disorder. The incoherent part of the waveform is
constituted by waves vanishing while averaging over disorder.

Figure 2. (A) Logarithm of the normalized coherent intensity 〈ϕ〉2 versus
source–receiver distance averaged over 50 simulations. After correcting the
geometrical spreading, the slope is proportional to −1/�. (B) Normalized
incoherent intensity 〈ϕ2〉 versus time. �� is calculated from the diffusion
constant of the diffusion equation that gives the best fit.

We arrange 148 receivers in a cross-shape array in the initial
heterogeneous medium. The spacing between the receivers is 200
m. The source is placed in the centre of the receivers. For this
simulation, all four of the boundaries are reflecting. To have enough
data to average, we ran 50 realizations with this configuration in
media that obey the same statistics.

From the coherent part 〈ϕ(t)〉 of the waveform, we determine the
scattering mean free path � following Derode et al. (2001). The
power spectrum of the coherent signal |〈H(ω)〉|2 is linked to the
scattering mean free path � via

|〈H (ω)〉|2 = exp
(
− x

�

)
, (9)

where x denotes the distance between source and receiver in the
medium. In Fig. 2(A), we plot the logarithm of the normalized en-
ergy versus the source–receiver distance. The slope of the regression
line is −1/�. The results for different σ are given in Table 2.

From the incoherent part of the waveform, we determine the
transport mean free path ��. We look at the energy envelope of the
waveforms. We take a sliding time window of 2T = 0.3 s, which
corresponds to six periods, and we calculate the average intensity
in this window according to

I (t) = 〈ϕ(τ )2〉τ∈[t−T,t+T ]. (10)

We then average the intensity over 50 models that obey the same
statistics. We search for the diffusion constant D that gives the best
fit with the diffusion Equation and we calculate ��, as in eq. (7). In

Table 2. Scattering mean free path and transport mean free path calculated exper-
imentally for models with different amounts of heterogeneity.

Model Scattering mean free path (�) Transport mean free path (��)

σ = 5 per cent 10 000 m ±10 per cent 13 000 m ±15 per cent
σ = 10 per cent 2200 m ±7 per cent 2700 m ±15 per cent
σ = 15 per cent 1200 m ±5 per cent 1500 m ±10 per cent
σ = 20 per cent 900 m ±5 per cent 940 m ±5 per cent
σ = 30 per cent 500 m ±2 per cent 450 m ±3 per cent
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Figure 3. Synthetic seismograms recorded with (blue) and without (red)
perturbed layer at 50 m in depth. The black box indicates the a time window
for the stretching around 3.6 s. Inset: zoom in on the unperturbed and
perturbed seismograms.

Fig. 2(B) we illustrate the intensity for a model with σ = 20 per cent
and its fit with the diffusion equation.

Table 2 gives the results for the scattering mean free paths that
were obtained from numerical calculations for media with different
degrees of heterogeneity σ . We note that � and �� have close values,
which indicates only weakly anisotropic scattering (� ≈ ��). The
uncertainties for the measures are the standard deviations that we
obtained by averaging over 50 models.

2.2 Determination of the apparent relative velocity
changes with the stretching technique

We now use the numerical simulation with one free surface and
three absorbing boundaries. We run a first experiment with an initial
model vp, and then a second with a perturbed velocity v′

p in a
layer. Fig. 3 shows the seismograms for an initial (blue) and a
perturbed (red) medium for a receiver 2 km away from the source.
The disturbance occurs at 50 m in depth in a medium with velocity
fluctuations of σ = 20 per cent. By zooming into the coda of the
seismograms, we can see that the perturbed seismogram lags behind
in time with respect to the unperturbed seismogram, while the shape
of the wave train remains largely unchanged.

We use the stretching technique to analyse these apparent relative
velocity changes in the coda of the perturbed seismograms (Lobkis
& Weaver 2003; Sens-Schönfelder & Wegler 2006). We assume
that the perturbation of the signal can be measured as the effect of
a slight change of its global velocity δV/V. It has been stretched
or compressed in time in comparison to the unperturbed signal by
a factor t(1 − ε), where ε = δV/V. To obtain the optimal value
for δV/V, we test systematically various values of ε. For each ε we
calculate the correlation coefficient CC of the perturbed stretched
signal ϕ′ and the unperturbed signal ϕ

CC(ε) =
∫ t2

t1
ϕ′ [t(1 − ε)] ϕ [t] dt√∫ t2

t1
ϕ′2 [t(1 − ε)] dt

∫ t2
t1

ϕ2 [t] dt
, (11)

where t1 and t2 are the beginning and end of the time window
used. The value of ε, that maximizes the cross-correlation coeffi-
cient between the perturbed and the unperturbed signals at a given
time corresponds to the observed value εobs of the apparent relative
velocity change. For more detailed information, the reader should
refer to Hadziioannou et al. (2009), for example. We apply this
procedure to calculate the apparent relative velocity changes for all
of the depth positions of the perturbed layer. The length of the time
window is 1.5 s, and it is centred at different times in the coda.

Figure 4. Apparent relative velocity changes with depth of the perturbed
layer averaged over ten realizations (σ = 20 per cent). We can discriminate
two different regimes of sensitivity for a shallow and a deep perturbed layer
marked by the black chain line. The modelled data (dashed-red) εtheo(d, t =
3.6s) for the depth sensitivity of coda waves fit the observations very well.
Inset: importance of the surface waves to describe the depth sensitivity, as
the bulk regime (1 − α)εBulk alone cannot account for the steep slope at
short times.

2.3 Results for the apparent relative velocity changes
with depth

When analysing the apparent relative velocity changes εobs versus
the depth of the perturbed layer in Fig. 4, we observe a decrease
of εobs with depth, which testifies to reduced sensitivity of our
measurements to changes at greater depths. We can discriminate
two different regimes of sensitivity: for shallow and deep perturbed
layers. Their separation is marked in Fig. 4 with the dash-dotted
black line. In the first regime, which concerns the early part of
the slope, the sensitivity of εobs decays rapidly with depth, until a
depth of approximately half the central wavelength λ0. In the second
regime, which concerns the later part of the slope, the slower decay
results in a deeper sensitivity.

We interpret the rapid decay (shallow perturbed layers) as the
footprint of the vertical depth sensitivity of the fundamental mode
of the surface waves. For perturbations at greater depths (deep per-
turbed layers), we propose a model based on 2-D diffusion of body
waves. We will show in the following sections that we can model
the apparent relative velocity changes εBulk and εSurf, computed for
the bulk and surface wave sensitivities according to

εtheo(d, t) = α(t)εSurf (d) + (1 − α(t))εBulk(d, t), (12)

where εtheo(d, t) is the modelled relative velocity change and α the
fitting parameter, or the partition coefficient. Note that this partition
coefficient is different from the equipartition ratio, as it integrates the
time spent in each state of the wave (bulk or surface). In Section 3,
we study the computation of the relative velocity changes εBulk and
εSurf in the bulk and surface wave sensitivity regime independently.

3 M O D E L L I N G T H E T W O S E N S I T I V I T Y
K E R N E L S

In this section, we describe the 1-D surface wave regime and the
2-D diffusion regime, which we use to model the depth sensitivity
of the coda waves. For the bulk waves, we will compare an approach
based on the diffusion solution to an approach based on the radiative
transfer solution.
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Figure 5. Apparent relative velocity changes εSurf(d) for the 1-D surface
wave sensitivity regime as a function of the depth of the perturbed layer.

3.1 Surface wave sensitivity

To study the depth penetration of surface wave energy independent
of bulk waves, we propagate a pulse in a homogeneous medium
(constant velocity, no fluctuations). This medium does not allow
conversion scattering into bulk waves. Similar to the previous nu-
merical simulations, we introduce a thin layer with a slightly differ-
ent velocity ( dv

v
= 1.54 per cent). Fig. 5 shows the apparent relative

velocity changes εSurf(d) versus the depth of the layers that were
measured from the direct arrivals. As can be seen, the surface wave
sensitivity decays very rapidly with depth and disappears entirely
after 2/3 of the central wavelength λ0.

3.2 Bulk sensitivity: the diffusive kernel approach

As we have seen previously, the apparent relative velocity changes
of the seismograms can be quantified by a stretching factor εobs. The
theoretical bulk contribution εBulk can be related to a local velocity
perturbation using the sensitivity kernel introduced by Pacheco &
Snieder (2005)

K (S, R, r0, t) =
∫ t

0 p(S, r0, u)p(r0, R, t − u)du

p(S, R, t)
, (13)

where S and R are the positions of the source and the receiver, r0

is the position of the local velocity variation and t is the centre of
the time interval in the coda where the stretching is evaluated. Here,
p(a, b, t) is the probability that the wave has travelled from a to
b during time t. This can be approximated by the intensity of the
wavefield from a to b at time t. An example of the sensitivity kernel
is shown in Fig. 6 at t = 3.6 s in the coda for a source and receiver
inside the medium. This sensitivity kernel is relevant in the multiple
scattering regime, and it can be interpreted as the volumetric density
of time that the scattered waves spend at r0. It can be noted that
the total time t spent in the medium is retrieved by integrating the
kernel over the volume of the studied medium

t =
∫

medium
K (S, R, r, t)dr

=
∫ xmax

x=0

∫ zmax

z=0
K (S, R, x, z, t)dxdz, (14)

where r = xex + zez . (ex, ez) are cartesian unit vectors. This kernel
can also relate the scattering cross-section of a defect appearing in
a multiple scattering medium to a correlation coefficient extracted
from the coda (Larose et al. 2010; Rossetto et al. 2011).

Figure 6. Spatial representation of sensitivity kernel K(S,R,x,z,t) in the
diffusion approximation at t = 3.6 s. The two peaks correspond to the
positions of the source and receiver.

For a local velocity variation dv

v
in an elementary volume �V cen-

tred on r0, the stretching coefficient εBulk(r0, t) for signals emitted
in S and received in R reads

εBulk(r0, t) = K (S, R, r0, t)

t

dv

v
�V . (15)

In our numerical experiment, the velocity variation is applied to
a layer of thickness h located at a depth d. As the velocity variation
is weak, the measured stretching coefficient can be expressed as
the spatial integral of the kernel on the medium, weighted by the
applied velocity change

εBulk(d, t) =
∫

medium

K (S, R, r, t)

t

dv

v
(r)dr

=
∫ xmax

x=0

∫ z=d+h

z=d

K (S, R, x, z, t)

t

dv

v
dxdz, (16)

with the velocity change dv

v
(r) = dv

v
in the layer and dv

v
(r) = 0

elsewhere.

3.2.1 Intensity propagator in the diffusion approximation

As a first approximation, we describe the intensity propagator in
eq. (13) with the diffusion equation solution

p(S, R, t) = 1

4π Dt
e

−‖S−R‖2

4Dt (17)

where D is the diffusion constant that depends on the medium
heterogeneity. Eq. (17) stands for 2-D infinite media. To take the
free surface into account, a semi-infinite space has to be considered.
In this case, the solution is found in terms of the sum of the infinite
medium solution and its mirror image from the free surface. This
solution can be easily computed and gives an analytical solution of
the kernel (eq. 13). Nevertheless, this kernel is only accurate when
the diffusion approximation is valid: at times much greater than the
transport mean free time t 
 t�, where t� = ��/c, and for velocity
variations located far away from the sensors.

3.2.2 Intensity propagator for a radiative transfer approximation

The radiative transfer equation allows for a more general represen-
tation of wave intensities in scattering media. In our case of weakly
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anisotropic scattering (�� ≈ �), we assume that we can use the fol-
lowing exact solution (Sato 1993; Paasschens 1997), valid for 2-D
isotropic scattering:

p(r, t) = e−ct/�

2πr
δ(ct − r )

+ 1

2π�ct

(
1 − r 2

c2t2

)− 1
2

e[�−1(
√

c2t2−r2−ct]�(ct − r ), (18)

where c is the energy velocity, r is the distance between source and
receiver, � is the scattering mean free path and �(x) is the Heaviside
(or step) function. The first term describes the coherent part of the
intensity that decreases exponentially with the distance relative to
the scattering mean free path. The second term describes the diffuse
intensity. We note that the diffusion solution is reached when t 

r/c.

3.2.3 Bulk sensitivity kernel in an infinite medium

As the next step, we want to see how well the diffusion or radiative
transfer approach models the bulk sensitivity of our data. For this
purpose, we study the bulk waves without influence of the surface
waves. Therefore, we slightly change the configuration of our nu-
merical simulations. We place the source and the horizontal receiver
array within the medium at a depth of 8.8 km, and take absorbing
conditions at all four boundaries. With this configuration, we would
not expect any surface waves to appear on our record, and so the
apparent relative velocity changes should only be governed by the
2-D propagation of bulk waves.

The resulting apparent relative velocity changes εobs(d, t = 3.6s)
are shown in blue in Fig. 7, versus the depth of the perturbed layer
for a heterogeneity of σ = 20 per cent. The error bars indicate
the standard deviation over 10 models. We also plot εBulk from
the diffusion-based kernel in black and from the radiative-transfer-
based kernel in red (Fig. 7). As expected, the main difference be-
tween the diffusion and radiative transfer approach is visible for
small offsets to the source; i.e., when the time until visiting the
layer is small. For long distances, the difference between the two
approaches is negligible: both of the approaches fit the data very
well at large distances from the source. For distances smaller than

Figure 7. Apparent relative velocity changes εobs(d, t = 3.6s) versus depth
of the perturbed layer for bulk waves in an infinite medium with σ =
20 per cent. The black line shows εbulk in the diffusion approximation and
the dashed-red line εbulk in the radiative transfer approximation. The vertical
broken black line marks the positions of the source and the receivers.

one scattering mean free path, the diffusion equation is not valid
yet, and it underestimates the expected apparent relative velocity
changes. This problem is solved by the radiative transfer approach,
which is accurate at short times. We will, therefore, take the radia-
tive transfer approach to model the depth sensitivity. We emphasize
that εBulk from the radiative-transfer in Fig. 7 directly fits the data
(no free parameters). The small discrepancies between the observa-
tion and model might be a result of the effective diffusivity that we
used in the model, as we cannot measure the scattering mean free
path for P and S waves separately (Turner 1998).

4 M O D E L F O R T H E D E P T H
S E N S I T I V I T Y

To obtain a theoretical model εtheo(d, t) that describes the coda-wave
sensitivity at depths, according to eq. (12), we now combine the
surface wave part and the bulk part. For the bulk regime, we apply
the radiative transfer approach. Fig. 4 shows the depth sensitivity
averaged over 10 models with σ = 20 per cent velocity fluctuations.
The source and receivers are placed at the free surface. The time
window in the coda was centred around 3.6 s. With the minimum
mean-square error criterion, we search the partition coefficients α

for the surface waves and 1 − α for the bulk waves, that optimize
the fit of the depth sensitivity from the numerical simulations. In
this case, the best fit to the experimental slope is obtained with a
partition ratio of 1/4 for surface to bulk waves (α = 0.25). The ratio
between the coefficients implies that the waves spent more time
as bulk waves than as surface waves. As we can see in Fig. 4, the
proposed model gives an excellent fit. The zoom at small distances
indicates the need to consider surface waves in the model. In black,
we see the fit using the sensitivity of bulk waves only (Fig. 4).
The steep slope over short distances is due to the rapidly vanishing
sensitivity of the surface waves versus the depth.

According to eq. (15), which is written for weak velocity changes,
the observed apparent relative velocity changes εobs depend linearly
on the velocity changes dv

v
introduced in the perturbed layer. This

is shown in Fig. 8, where the apparent relative velocity changes at a
receiver at close distance to the source are computed. The perturbed
layer is at 500 m in depth, and its velocity is successively increased
by 1, 2, 4 and 8 per cent.

In the following, we now look at the behaviour of the depth sensi-
tivity and the evolution of the partition coefficient α by considering:

(i) different levels of heterogeneity (σ ) in the model, in Sec-
tion 4.1.

(ii) different time windows in the coda, in Section 4.2.

Figure 8. Apparent relative velocity changes εobs(d, t = 3.6s) versus the
degree of perturbation in the layer. The layer is at 500 m in depth, and the
receiver in the immediate vicinity of the source.
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Figure 9. Depth sensitivity εobs(d, t = 3.6s) computed for different levels of
heterogeneity towards changes occurring at 200, 1000 and 2000 m in depth.

4.1 Different degrees of heterogeneity

In this section, we report on the results of the simulations with dif-
ferent levels of heterogeneity. To that end, we repeat the same types
of simulations as described in Section 2, using a free surface and
three absorbing boundary conditions. We use velocity fluctuations
of σ = 5, 10, 15, 20 and 30 per cent for the random elastic medium.
In Fig. 9, we look at the apparent relative velocity changes εobs(d,
t = 3.6s) averaged over ten models versus the degree of heterogene-
ity for three depth positions of the layer (200, 1000, 2000 m). We
see clearly that waves travelling in media with little heterogeneity
(σ = 5 per cent) are hardly sensitive to perturbations at depth, even
to perturbations at 200 m depth only. The medium is not hetero-
geneous enough to cause significant conversion from Rayleigh to
bulk waves, and vice versa. Therefore, the depth sensitivity is domi-
nated by surface waves and limited to their penetration depth. When
the medium becomes more heterogeneous (≥10 per cent), the bulk
waves start to have an important role, and the coda waves become
sensitive to changes at greater depths. This is even more emphasized
in very heterogeneous medium (20–30 per cent), where an impor-
tant apparent relative velocity change εobs is obtained for changes at
greater depth. Such heterogeneous regimes are dominated by bulk
waves.

This behaviour can also be seen in Fig. 10, where we report on
the evolution of the partition coefficient α for surface waves and
1 − α for bulk waves with time in the coda, for models with degrees
of heterogeneity ranging from 5 to 30 per cent. At the moment,
we focus only on values at 3.6 s, marked by black vertical lines in
Fig. 10, and discuss the time dependence in Section 4.2. Consistent
with the previous observations, in media with heterogeneities of

only 5 per cent, the partition coefficient for surface waves is at
α = 0.97. In media with heterogeneities of 10 per cent, α = 0.8.
In media with σ = 15 per cent, we observe that α = 0.32. For
strongly heterogeneous media, bulk waves clearly dominate over
surface waves with α = 0.17 for σ = 20 per cent and α = 0.1 for
σ = 30 per cent.

At this lapse time (t = 3.6 s), the depth sensitivity is limited
to the penetration depth of surface waves for weakly heterogeneous
media, whereas in media with an increased amount of heterogeneity
body waves play an prominent role.

4.2 Different times in the coda

In this section, we study the depth sensitivity at different times in
the coda. To this end, we calculate the apparent relative velocity
changes in different time windows in the coda, scanning a range
from 1.8 to 6.6 s. Fig. 11 shows the results for a model with velocity
variations of σ = 20 per cent at three different times (1.8, 3.6 and
6.6 s). The importance of surface waves at shallow depths for early
times in the coda is seen clearly. At later times in the coda, the bulk
waves become increasingly important.

To have a more quantitative approach, we can study the evolution
of the partition coefficients with time in the coda, as shown in Fig. 10
for different heterogeneities. For media with heterogeneities of σ =
5 per cent, surface waves dominate bulk waves at all times in the
coda. For media with heterogeneities of σ = 10 per cent, there is a
crossing of α and 1 − α at 5.4 s. Afterwards the sensitivity of the
bulk waves is greater than that of the surface waves. Media with
heterogeneities of σ = 15 per cent also show the crossing from

Figure 11. Depth sensitivity computed at different times in the coda for
σ = 20 per cent. Note the importance of the surface wave sensitivity for
early times in the coda.

Figure 10. Evolution of the partition coefficients with time in the coda for models with degrees of heterogeneity ranging from 5 to 30 per cent. In dashed red,
the partition coefficient α for the surface wave sensitivity, and in blue, 1 − α for the bulk wave sensitivity. The black vertical lines mark the processed times at
t = 3.6 s.
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surface wave dominance to bulk wave dominance, although much
earlier, at about 2.1 s, which indicates that due to the increased
amount of scattering there have been much more surface wave to
bulk wave conversions at an early time in the coda. At later times,
α appears to stabilize. For strongly heterogeneous media with σ =
20 and 30 per cent, bulk waves dominate surface waves at all times
in the coda. We observe a continuous slow decrease for α in the
case of σ = 20 per cent and for early times in σ = 30 per cent.
For times after 4 s in the case of σ = 30 per cent, the bulk wave to
surface wave contribution is stabilized with a marginal contribution
of surface waves.

Looking at the ensemble of subplots in Fig. 10, the evolution
of the partition coefficients for different heterogeneities appears
to be complementary. To prove this, we normalize the time axis
by the transport mean free time t� = ��/c and plot the partition
coefficients against the new, dimensionless axis t/t�. The result is
shown in Fig. 12 for all heterogeneities. The crossing point of the
partition coefficients for surface waves and bulk waves coincides
quite well for all of the different heterogeneities. The surface waves
dominate the depth sensitivity for about six mean free times. For
later times, the bulk waves dominate.

A very interesting aspect that emerges from the time dependence
in the coda is that we can discriminate a change that occurs at
the surface from a change that occurs at depth by looking at the
shape of the apparent relative velocity changes εobs only. Fig. 13
shows εobs versus the time in the coda: (A) for very shallow po-

Figure 12. Evolution of the partition coefficients for different degrees of
heterogeneity in the medium ranging from 5 to 30 per cent. The time axis
has been normalized by the transport mean free time t� = ��/c. In red the
partition coefficients α for the surface wave sensitivity, and in blue 1 − α

for the bulk wave sensitivity. The surface waves dominate for the first six
mean free times.

Figure 13. Apparent relative velocity changes εobs versus time in the coda.
Panel (A) for a layer at shallow depth (20 m) and panel (B) for a layer at
great depth (1500 m).

sitions of the perturbed layer (20 m) and (B) for profound depths
(1500 m) of the layer. For perturbations at shallow depth, the sur-
face waves have an important role in the depth sensitivity of the
coda waves. Their contribution is high at early times in the coda
and decreases at later times. This is what we see as a decay in εobs

on Fig. 13(A). For perturbations at greater depth, the contribution
of the surface waves to the depth sensitivity of the coda waves is
negligible. Bulk waves have an important role here. At late times in
the coda, the time increases that bulk waves have spent on average
at greater depth, sampling the area more densely. The depth sen-
sitivity consequently increases with time in the coda. This is why
there is an increase in the apparent relative velocity changes εobs in
Fig. 13(B).

4.3 Practical application for shallow depth

To demonstrate the practical relevance of the findings in this study,
we re-visit the investigations of Sens-Schönfelder & Larose (2008,
2010), who analysed the data from the Lunar Passive Seismic Exper-
iment of the Apollo 17 mission. Similar to many data sets on Earth
the ambient noise recorded during the Apollo era has been anal-
ysed with the principles of seismic interferometry to obtain Green’s
functions between stations by correlation of the ambient noise field.
Although the lunar seismic noise has different origin and the sub-
surface structure differs notably from Earth, the Green’s functions
exhibit a surface wave part that was used by Larose et al. (2005b) to
image the subsurface. The coda part of the Green’s functions was
investigated by Sens-Schönfelder & Larose (2008) to measure the
apparent velocity variation in the lunar subsurface over a period of
eight day-night cycles on the Moon (about eight months).

The Green’s functions obtained from the Apollo data thus have
similar properties as their counterparts on Earth and the signals in
the numerical simulation in this study. Interestingly the environmen-
tal conditions on the Moon affecting the subsurface velocities are
much better known than on Earth because of absent tectonics and
atmosphere. This renders the data set ideal to illustrate the concepts
developed in this paper.

We construct daily cross-correlation functions (CCF) between the
six possible sensor pairs by correlating all available 24 h segments
of lunar noise. Apparent relative velocity changes were estimated
in different time windows of the CCFs with the stretching tech-
nique (Section 2.2) in comparison to a reference trace obtained by
averaging all daily CCFs for each pair. Velocity variations show a
periodicity of one month and were modelled as the consequence of
temperature variations induced by the solar irradiation with its day
and night cycle.

Thanks to this well-controlled surface process that limits velocity
changes to the shallow subsurface we can verify the predictions
about the lapse time dependence of the apparent velocity change
illustrated in Fig. 13 with real seismic data. Measured in different
time windows the apparent velocity curves are merely identical
and differ only in their amplitude. Fig. 14 shows the lapse time
dependent factor that scales the amplitudes of the apparent relative
velocity variations obtained from different lapse times windows.
After the passage of the ballistic surface wave train associated with
the maximum of the apparent velocity change we observe a decrease
with increasing lapse time. This is exactly the predicted behaviour
for a near surface velocity perturbation because of the transition
from surface wave sensitivity at early times to bulk wave sensitivity
at later times as illustrated in Fig. 13.
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Figure 14. Relative amplitude of the apparent relative velocity changes
computed for the lunar data. Velocity changes at the moon are limited to the
shallow subsurface and verify the prediction about the decrease in the lapse
with time, as illustrated in Fig. 13 for the apparent relative velocity changes
at shallow depths.

5 C O N C LU S I O N

In this study, we investigated the sensitivity of coda waves to ve-
locity perturbations at depth. We have presented the results from
numerical wavefield simulations in media with different degrees
of heterogeneity that contain a layer with perturbed velocities. We
measured the apparent relative velocity changes due to the velocity
perturbations at different depths. Analyses were conducted for dif-
ferent degrees of heterogeneity in the model, different percentages
of velocity change within the layer and different times in the coda

(i) we can relate the depth sensitivity of coda waves to a com-
bination of bulk wave sensitivity and surface wave sensitivity as
described in eq. (12).

(ii) changes at depth can be detected even if the sources and
sensors are placed at the free surface due to scattering that mixes
surface waves and bulk waves, given a sufficiently heterogeneous
medium.

(iii) from the time dependence of the relative velocity change in
the coda, we can discriminate a change that occurs at the surface
from a change that occurs at depth (Fig. 13).

(iv) as illustrated in Fig. 8, the apparent relative velocity changes
increase linearly with the amplitude of the perturbation.

(v) in Figs 10 and 12, we demonstrate the universal behaviour of
the partition ratio of bulk and surface-wave sensitivities versus the
time in the coda normalized by the scattering mean free time.

We have seen that the depth sensitivity of the coda waves depends
on

(i) the level of heterogeneity in the model,
(ii) the lapse time in the coda,
(iii) the degree of velocity perturbation,
(iv) the depth of the change, and
(v) the source–receiver distance.

The sensitivity kernel depends on the offset between source and re-
ceiver, nevertheless, in our geometry the sensitivity towards offsets
is weak and has therefore not been addressed in more detail.

Frequency plays a crucial role in the value of the mean free
time and, therefore, in the partition ratio of surface and bulk waves.
Depending on the frequency band considered, the interpretation of
velocity change measurements can be interpreted as the sensitivity
of either body waves (Sens-Schönfelder & Wegler 2006, working at
0.5 Hz and above) or sensitivity of surface waves (Rivet et al. 2011,
working at 0.2 Hz and below and at very early times in the coda).

An interesting observation is the importance of surface waves for
shallow depth and at early times in the coda. After six mean free

times, the bulk waves clearly dominate the depth sensitivity. As a
general framework, we can say that at early times, the waves most
probably propagate as surface waves, and are sensitive to shallow
changes. Later in the coda, scattering and mode conversion have
occurred and the waves sensed at the surface have spent more time
in the bulk, they are therefore more sensitive to changes at depth.

This indicates the need for a precise knowledge of the scattering
properties for interpreting apparent velocity changes.

These results are of interest to improve future monitoring tech-
niques using coda waves. The results will be used, for instance, to
improve the inversion schemes on real data, including the imaging
and locating of small changes that occur in fault zones or volcanic
areas.
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