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Abstract. From magnetic field observations by CHAMP we
estimate F-region dynamo current densities near the sunset
terminator during solar maximum years from 2001 to 2002.
The dynamo currents are compared with the pre-reversal en-
hancement (PRE) of vertical plasma drift as observed by
ROCSAT-1. The seasonal-longitudinal variation of PRE can
be largely related to the F-region dynamo current density,
with the correlation coefficient reaching 0.74. The correla-
tion can be further improved if we consider a zonal gradient
of the E-region Pedersen conductivity, which also depends
on season and longitude. It is widely accepted that the F-
region dynamo drives PRE near sunset. For the first time,
our observations provide confirmation for the close relation-
ship between the F-region dynamo current density and PRE.

Keywords. Ionosphere (Electric fields and currents; Equa-
torial ionosphere; Ionosphere-atmosphere interactions)

1 Introduction

Thermospheric wind moving ionospheric plasma across the
geomagnetic field generates an E-field by dynamo action,
which is an important driver of the quiet-time equatorial
ionosphere (e.g. Eccles, 1998a). After sunset the solar Ex-
treme Ultra-Violet (EUV) flux, which is the main source
of equatorial ionospheric plasma, becomes negligible. The
ionospheric E-layer almost disappears due to rapid recom-
bination while the F-region at higher altitudes persists. Af-
ter sunset, consequently, the wind at F-region altitudes be-
comes an important driver for generating E-fields. The pre-
reversal enhancement (PRE) of the upward plasma drift is
generally attributed to this F-region dynamo acting on the
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zonal conductivity gradient at the evening terminator (e.g.
Heelis, 2004). However, the exact relationship between dy-
namo action and conductivity gradient is still an open issue
(e.g. Eccles, 1998b). One of the reasons for little progress
is the lack of observational studies on the dynamo current
properties. Though PRE climatology has been extensively
investigated for decades (e.g. Fejer et al., 1989, 2008; Scher-
liess and Fejer, 1999), few corresponding studies exist on
the duskside F-region dynamo currents. Using geomagnetic
field data of Magsat,Maeda et al.(1982) reported the ex-
istence of a hemispherically-symmetric meridional current
system at dusk, which originates from currents induced by
the equatorial F-region dynamo (Takeda and Maeda, 1983).
From 5-year magnetic observations of the CHAMP satellite,
Lühr and Maus(2006) showed that the F-region dynamo is
strongest at noon and at dusk with opposite polarities, which
was attributed to the change of zonal wind direction in the
afternoon.Park et al.(2010) presented an extensive clima-
tology of F-region dynamo currents both at noon and dusk.
They focused on the noontime characteristics and detailed
the wavenumber-4 signatures. In this paper we will make
use of CHAMP magnetic field data for outlining the general
statistics of the duskside F-region dynamo current and its re-
lation to the PRE.

2 Observation

The F-region dynamo driven by zonal neutral wind generates
vertical currents at the equator, which are closed by symmet-
ric meridional current systems in the two hemispheres (e.g.
see Fig. 2 ofLühr and Maus, 2006). Hereafter, we will call
the equatorial vertical current “F-region dynamo current.”
The current system generates zonal B-field deflections with
opposite signs in the two hemispheres. In this paper we only
consider this transverse magnetic component to investigate
the F-region dynamo current.
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Fig. 1. Local time variation of the dynamo current density (black
crosses) and vertical plasma drift (red circles) for the three sea-
sons. For the equinox, June and December solstices only data in
10–70◦, 180–240◦ and 290–350◦ E GLON are considered, respec-
tively, where the solar terminator is best aligned with the magnetic
meridian and PRE amplitudes become large.

The Challenging Mini-Satellite Payload (CHAMP) has
been observing geomagnetic field at altitudes of 300–450 km
since 2000. Zonal deviation of the observed B-field from
a reference model reflects meridional current systems; in
this paper we use Pomme6 (http://www.geomag.us/models/
pomme6.html) as the reference model. We first decompose
the latitudinal profile of zonal magnetic deflection by apply-
ing the Discrete Fourier Transform (DFT). If we add up lati-
tudinally anti-symmetric terms, the field-line-integrated den-
sity of the F-region dynamo current,JF, can be computed
from the peak-to-peak amplitude of the anti-symmetric vari-
ation,1By (Eq. 2 ofLühr and Maus, 2006):

JF =
1

µ0
1By, (1)

whereµ0 is the permeability of free space. For more de-
tails on the retrieval of the F-region dynamo currents from
magnetic field observation, readers are referred toPark et
al. (2010). But, there are four notable differences with re-

spect to this work. First,Park et al.(2010) used zonal mag-
netic deflection within±40◦ magnetic latitude (MLAT), and
the bipolar peaks sometimes appeared beyond±15◦ MLAT.
In such cases the magnetic signature was attributed to other
sources than the equatorial F-region dynamo currents, whose
density could not be deduced. In this work we narrowed the
latitude range to±20◦ MLAT to avoid this problem. Second,
Park et al.(2010) averaged zonal magnetic deflections within
24◦-wide geographic longitude (GLON) cells. In this study
we use overlapping 30◦-wide GLON cells at 15◦ separation,
as Fejer et al.(2008) did for interpreting the vertical drift
data of ROCSAT-1. Finer longitude cells might be useful
to investigate smaller-scale variations, but concomitant poor
statistics in each cell can be contaminated by artifacts. Third,
while Park et al.(2010) used data from 2001 to 2004, here we
concentrate on years of high solar activity (i.e. active PRE)
from 2001 to 2002. Fourth, residual field whose magnitude is
larger than 30 nT is neglected while the threshold was 50 nT
in Park et al.(2010). For local time (LT) distribution we use
1-h bins to average the data.

Figure 1 depicts the LT variation of the F-region dy-
namo current density (black) during three seasons (equinox:
March–April and September–October, June solstice: May–
August, and December solstice: November–February). Posi-
tive (negative) currents flow upward (downward) at the dip
equator. Vertical plasma drift velocity (red) derived from
ROCSAT-1 measurements at 600 km altitude forF10.7 = 170
(Fejer et al., 2008) are overlaid. Positive (negative) velocity
corresponds to the upward (downward) plasma drift at the
dip equator. For the equinox, June and December solstices
only data in 10–70◦ (negligible magnetic declination), 180–
240◦ (positive magnetic declination) and 290–350◦ E (neg-
ative magnetic declination) GLON are considered, respec-
tively, where the best alignment of the solar terminator with
the magnetic meridian is accomplished and PRE amplitudes
become large. The F-region dynamo current (black) reaches
a large value around sunset (between 17:00 and 19:00 LT)
when the vertical drift (red) maximizes. It is interesting
to note that the F-region dynamo current density remains
at sizable positive values beyond the time when the ver-
tical drift turns negative. Especially, the magnetic signa-
tures during June solstice even exhibit a slight increase af-
ter 19:00 LT. Near June solstice, both the F-region dynamo
currents around sunset and PRE maximum are smaller than
during the other seasons.

Figure 2 shows the longitudinal variations of the F-region
dynamo current density (black crosses: estimated from
CHAMP observations) for each season. PRE maximum ve-
locity derived from ROCSAT-1 measurements forF10.7 =

170 (Fejer et al., 2008) are given as red circles. CHAMP
observations between 17:00 and 19:00 LT are used here. The
average index of the solar radio flux (F10.7) is given in the
heading for each season. First, the average levels of F-region
dynamo current and PRE are largest during equinoxes and
smallest during June solstice. However, the longitudinal
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Fig. 2. Seasonal-longitudinal distribution of the F-region dynamo current density (black crosses) and PRE peak velocity (red circles). Each
panel corresponds to a different season. Positive (negative) current density denotes upward (downward) current at the dip equator.

variations are quite different from season to season. For
example, during equinoxes both the PRE and the dynamo
current density exhibit small longitudinal variations. During
June solstice the general trends of PRE and dynamo current
follow each other, but the peak longitudes of PRE are slightly
displaced from those of the dynamo current. Around Decem-
ber solstice both PRE and dynamo current attain their maxi-
mum in the western longitude regions (210–360◦ E) and the
minimum around 180◦ E.

3 Discussion

First of all, we want to discuss the LT dependence of the F-
region dynamo current shown in Fig. 1. Zonal neutral wind
in the ionospheric F-region, as described above, drives ver-
tical current in the equatorial ionosphere (e.g. see Fig. 10
of Heelis, 2004). Let us assume a simple model where
zonal current divergence is negligible. Such a current model,
though simple, is widely used (Heelis, 2004; Kelley, 2009)
and apt to give physical intuition on the F-region dynamo.
In the model meridional divergence of the F-region dynamo
current generates field-aligned currents (FACs) which are
closed by meridional currents at conjugate E-regions. The
conductivity of the E-region controls polarization E-fields
in the meridional (outward/inward) direction. When the E-
region conductivity is much higher (lower) than the F-region
conductivity, polarization E-field becomes low (high) just
like in a shorted (an open) circuit. Combining Eqs. (10–11)
of Heelis(2004) or Eqs. (3.10–11) ofKelley (2009), we get

equations for the polarization E-field and the F-region dy-
namo currents:

E =
6F

P

6E
P +6F

P

u×B, (2)

JF = 6E
PE =

6E
P6F

P

6E
P +6F

P

uB, (3)

whereu is neutral wind velocity,B the ambient magnetic
field, 6E

P (6F
P) field-line-integrated E-(F-)region Pedersen

conductivity,u the zonal wind speed, andB the horizontal
strength of the ambient magnetic field. According to Eq. (2),
the meridional polarization E-field is enhanced after sunset.
The zonal gradient of the meridional E-field, which in turn
affects the zonal E-field through its irrotational nature, is be-
lieved to be the main driver of PRE (Murphy and Heelis,
1986; Eccles, 1998a). From Eqs. (12) and (20) ofEccles
(1998a), we can get the following equation near the F-peak
altitude (∼400 km altitude) around sunset:

vL ∝
∂vφ

∂φ
, (4)

wherevL is the meridional (outward/inward) plasma drift
speed (due to the zonal E-field causing PRE),vφ is the zonal
plasma drift speed (due to the meridional E-field given by
Eq. 2), andφ the azimuth angle along the zonal direction
(positive eastward). Combining Eqs. (2) and (4) yields:

vL = A
∂vφ

∂φ
= A

∂

∂φ

(
6F

P

6E
P +6F

P

u

)
, (5)

www.ann-geophys.net/28/2097/2010/ Ann. Geophys., 28, 2097–2101, 2010



2100 J. Park et al.: F-region dynamo currents at dusk

Fig. 3. Relation between PRE and(a) F-region dynamo current,
and(b) F-region dynamo current multiplied by assumed conductiv-
ity gradients. Data points are the same as in Fig. 2. Circles, aster-
isks, and triangles represent equinox, June solstice, and December
solstice readings, respectively.

whereA is a proportionality constant. The zonal gradient of
6F

P is smaller than that of6E
P around sunset (Farley et al.,

1986). Also, u depends only weakly onφ (e.g. see Fig. 3 of
Liu et al., 2006, and Fig. 2 ofLiu et al., 2009). Under these
conditions Eq. (5) can be manipulated as:

vL ≈ A6F
Pu

∂

∂φ

(
1

6E
P +6F

P

)
= −

A6F
Pu

(6E
P +6F

P)2

∂

∂φ
(6E

P +6F
P)

≈ −
A6F

Pu

(6E
P +6F

P)2

∂6E
P

∂φ
, (6)

According to Eq. (6) ofLühr and Maus(2006) 6F
Pu can be

estimated asJ day
F /B, whereJ

day
F signifiesJF on the dayside

(before sunset). As6F
Pu depends weakly on LT, this estima-

tion can be directly applied to Eq. (6):

vL ≈ −
AJ

day
F

B(6E
P +6F

P)2

∂6E
P

∂φ
, (7)

This equation shows that the plasma drift component,vL,
corresponding to PRE is determined by (a) the pre-sunset
dynamo current strength and (b) local-time gradient of the E-
region conductivity. Note again thatvL in Eq. (7) is vertical
plasma drift speed near 400 km altitude.Pingree and Fejer
(1987) showed that vertical gradient of vertical plasma drift
speed is∼0.01 m/s/km on average. The difference of vertical
drift speed between 400 km and 600 km altitudes is∼2 m/s,
which is smaller than seasonal/longitudinal variation ofFejer
et al.(2008) model. Therefore,vL in Eq. (7) can be reason-
ably approximated by ROCSAT-1 observations at 600 km.

In Fig. 3a the PRE peak velocities are plotted versus
the F-region dynamo current density during 17:00–19:00 LT,
which we consider as representing the pre-sunset F-region
dynamo current. Note that the current densities given in
Fig. 1 do not vary drastically during 17:00–19:00 LT. Each
data point in Fig. 3a corresponds to a longitude-bin aver-
age from Fig. 2. Circles, asterisks, and triangles represent
equinox, June solstice, and December solstice readings, re-
spectively. The correlation coefficient between the two pa-
rameters is reasonably high (0.74).

Next, let us consider the zonal gradient of the E-region
conductivity. The maximum zonal gradient is attained in case
of a perfect alignment of magnetic meridian and sunset ter-
minator (Tsunoda, 1985). The zonal gradient decreases with
an increase of this angle, due to the high plasma mobility
along the B-field lines. As an initial guess, let us choose a
cosine function for describing the zonal conductivity gradi-
ent:

−
∂6E

P

∂φ
∼ cos2θ , (8)

whereθ is the angle between the solar terminator and geo-
magnetic meridian. Note thatθ depends on season (solar ter-
minator angle) and longitude (geomagnetic declination). In
Fig. 3b F-region dynamo currents multiplied by the assumed
conductivity gradient (Eq. 8) are considered. The red line is
the result of linear regression. The correlation between the
two quantities is higher in panel (b) than in panel (a) though
the improvement is not large. We get compatible correla-
tion results if we use other power values (1 or 3) for cosθ .
They change the steepness of the cosine curves. Figure 3
implies that PRE amplitude is largely determined by the pre-
sunset F-region dynamo current density, and that E-region
conductivity gradient at the dusk terminator can further en-
hance PRE. Note, however, that Eq. (7) has been derived by
a number of assumptions. More thorough theoretical work
with realistic inputs is warranted to elucidate the exact rela-
tionship between PRE and the F-region dynamo.
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4 Summary

From magnetic field observations by CHAMP we estimated
the pre-sunset F-region dynamo current densities and com-
pared them with PRE velocities given inFejer et al.(2008).
Main results can be summarized as follows:

1. The seasonal variation of PRE is consistent with that of
the pre-sunset F-region dynamo current strength. Both
are largest during equinoxes and smallest during June
solstice.

2. The seasonal/longitudinal variations of PRE can also
be largely explained by the pre-sunset F-region dynamo
currents (R = 0.74).

3. The correlation can be further improved if we consider a
zonal gradient of the E-region Pedersen conductivity, as
resulting from the irrotational nature of the E-field near
the dusk terminator (Eccles, 1998a).

It is widely accepted that the F-region dynamo drives
the pre-reversal enhancement of vertical plasma drift
(PRE) near sunset. For the first time, our observations
provide confirmation for the close relationship between
the F-region dynamo current density and PRE.
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