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S U M M A R Y
In an effort to improve the estimates of global surface mass variations, an approach has
been developed in which monthly gravity fields from the Gravity Recovery and Climate
Experiment (GRACE) are combined with Global Positioning System (GPS) site displacements
and modelled ocean bottom pressure (OBP) data. The motivation for this combination stems
from the notion that while GRACE monthly fields provide excellent results for the mid-
to high-degree spherical harmonics coefficients, they are currently unable to determine the
lowest degree coefficients as accurately. In addition, the GRACE monthly fields do not deliver
estimates of the geocentre motion (i.e. degree 1 terms), which are needed when comparing
GRACE solutions with ground-based measurements. These ground-based measurements are
normally given in a reference frame whose centre of mass does not coincide with the centre
of mass of the whole earth system, resulting in non-zero degree 1 coefficients. Through
loading theory, large-scale mass variations can be derived from globally distributed GPS site
displacement vectors and modelled OBP values; however, both measurement types have their
own limitations and do not have homogeneous coverage over the globe. To assess the impact
that these errors would have on current and future real-data combinations with GRACE monthly
fields, a sensitivity study was conducted. A range of combinations were explored in which the
spatial distribution and quality of the GPS and OBP data sets were varied. The results show
that significant improvements to the GRACE monthly gravity fields, in particular at the low
degrees, can be achieved when these solutions are combined with present-day GPS and OBP
products. An idealized scenario was also investigated to identify the specific shortcomings and
limitations of a real data combination scenario. A description of the methodology, assessment
criteria and results of the sensitivity study will be presented, along with a discussion of the
overall findings and future potential of this work.

Key words: Inverse theory; Spatial analysis; Satellite geodesy; Time variable gravity; Global
change from geodesy; Hydrology.

1 I N T RO D U C T I O N

The Gravity Recovery and Climate Experiment (GRACE) (Tapley
et al. 2004) has provided the scientific community with a new way
of observing the global distribution of mass over time. It has allowed
large-scale mass transport processes, such as continental hydrology
and polar ice mass changes, to be observed with unprecedented
accuracy and at timescales of one month or less. Despite these ad-
vances, there are still some improvements to be gained by combining
GRACE with other data sets. All satellite missions have their limita-
tions, and for GRACE, these include reduced ground-track coverage
near the equator and the insensitivity to degree one harmonics. It is
known that GRACE is also less sensitive to the longest wavelength
gravity signals, in particular those related to the Earth’s oblateness
(i.e. the C 2,0 harmonic). It has already been suggested that by in-

corporating other data sets, such as ocean bottom pressure (OBP)
data derived from ocean models (Wu et al. 2006; Swenson et al.
2008) and GPS site displacements (Blewitt & Clarke 2003; Kusche
& Schrama 2005; Lavallée et al. 2006), some of these limitations
can be significantly improved. It should be noted that the GPS and
modelled OBP data (further addressed here as simply OBP data)
have limitations as well, primarily with reference to their spatial
distribution over the globe.

Although it has already been recognized that the combination
of these data sets would be helpful, the actual level of improve-
ments that might be realized is still a matter of debate. The answer
to this question is the focus of this study. We wanted to quantify
the improvements that could be made to monthly mass distribu-
tion estimates when both realistic and idealized GPS and OBP data
sets were utilized. In addition, we wanted to determine what the
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individual contribution of each data set would be to the total esti-
mation. A sensitivity study of this nature cannot be done with real
data alone; so, a range of simulations were created to explore the
various facets of the data combinations. Properties of the real data,
such as error characteristics, were still used in the simulated data to
allow for a more realistic evaluation of the combinations. By work-
ing in the world of simulation, the exact contribution of each data
set can be determined, issues surrounding data redundancy can be
investigated and new scenarios can be explored for a hypothetical
future data network. In short, all parameters can be varied, includ-
ing the location, frequency and accuracy of the involved data sets.
In the end, the idealized simulation results were compared with
solutions computed from publicly available data products to evalu-
ate the performance of current real-data combinations.

As will be shown, the results were encouraging and demonstrate
that there is still significant improvement to be gained through the
combination of multiple data sets with GRACE. The most notable
improvements were in the determination of the low degree harmon-
ics, including degree one terms (geocentre motion) and C2,0. The
OBP data proved to be more influential than the GPS data in terms
of overall contribution, but the GPS data were useful for filling in
sizeable gaps left by the OBP data over the continents.

This paper will contribute to the general understanding of global
mass redistribution by providing a comprehensive analysis of the
value and limitations to be expected from the combination of
GRACE, GPS and OBP data. Some of the key findings include:

(1) An assessment of the improved observability of the total
global mass redistribution signal (i.e. through degree and order 30)
expected by the combination of the three data sets when compared
to the GRACE-only solutions.

(2) An assessment of the expected improvement in the determi-
nation of C2,0 (oblateness) resulting from the combination. This, in
turn, highlights the improvements expected in the estimation of the
mass redistribution signal surrounding the lower latitudes (equato-
rial).

(3) A demonstration of the stabilized estimation of the degree 1
terms (i.e. geocentre motion) that are a direct result of the combined
solutions.

(4) These simulations will provide a better understanding of the
strength of the combination process for current real-data inversions.
As such, the simulations set the groundwork for future real-data
combinations by providing valuable analysis of the data sets in-
volved.

(5) The sensitivity study will also serve to highlight those regions
that will have higher uncertainties and which could benefit from
additional stations or improved in situ measurements.

The results of this study have relevance to a number of appli-
cations within the Earth sciences. When the recommendations of
this study are eventually realized in a time-series of real-data com-
binations, the expected improvements to the degree one estimates
will be valuable to any application that relies on the comparison
of gridded data sets in an Earth-fixed reference frame (Dong et al.
1997; Chambers et al. 2007; Munekane 2007), such as ocean mass
variability or polar mass balance studies. The improvements of the
GPS and OBP data sets to the longer wavelengths will have a sig-
nificant impact on the variable mass redistribution estimates. This
in itself has implications to the broad topic of global climate change
studies. Finally, the study highlights which regions would benefit
most from future OBP data or GPS in situ measurements.

This paper will first provide a detailed description of the method-
ology behind the sensitivity study, including any assumptions that

went into the simulated data sets, as well as the criteria used for
evaluation. A number of case studies will be presented, which are
designed to highlight the key conclusions of the sensitivity study.
These include combinations of idealistic as well as realistic type
data sets at varying degrees of resolution (i.e. the degree and order
of the solutions). The optimal combinations obtained will be used
to support the final conclusions of the analysis, including recom-
mendations for future work.

2 M E T H O D O L O G Y

When combining different data sets, one has to decide how the
information available will be represented and compared. The sec-
tions below highlight the specific choices made for this study, and
include descriptions of the parametrization of the various surface
mass loading solutions, how they were computed; and which criteria
were used to evaluate the performance of the solutions.

2.1 Spherical harmonics and loading theory

All data sets used in this study incorporated globally distributed
measurements that could be translated (analytically) into anomalies
of a load distribution at the Earth’s surface. As such, the use of spher-
ical harmonics was the natural choice to represent the data sets. The
benefit of this technique is that it allows for both the conservation of
mass in the solutions, as well as control over the maximum surface
resolution that could be fit to the data. This latter point is important
since some of the data combinations performed for this study could
not be solved for at the same resolution as others, a useful indica-
tion of the spatial limitations for certain combinations. As a brief
summary of the technique, it can be shown (Wahr et al. 1998) that
a mass distribution within a thin layer, �σ , surrounding the Earth’s
surface can be represented by

�σ (λ, φ) = aρw

L∑
l=0

l∑
m=0

[
Cσ

lmY C
lm(λ, φ) + Sσ

lmY S
lm(λ, φ)

]
, (1)

where Ylm are the fully normalized spherical harmonics and the
superscript C,S stands for cosine or sine. The indices l, m represent
the degree and order of the spherical harmonics, with the maximum
degree of the solution given by L. The arguments λ and φ are the
spherical coordinates given in longitude and latitude, respectively.
The variables Cσ

lm, Sσ
lm are the spherical harmonic coefficients for

surface mass loading, given in dimensionless quantities. The mean
radius of the Earth is represented by a, and ρw is the density of
water (1025 kg m−3 in this study). It is important to note that this
representation is only valid for a thin layer at the surface of the
Earth, a reasonable assumption in this case since we are dealing
with mass variations by water transport and because we assume that
other variations are already removed in the data processing.

The GRACE, GPS and OBP data sets can all be used to evaluate
the time variable loading forces acting on the Earth. Loading can be
related to geoid change and vertical and lateral displacements of the
Earth through a model. The Earth model used here is represented by
the elastic loading Love-numbers of Farrell (1972). These loading
Love-numbers are only degree-dependent and do not include the
time-dependent viscous component, as the loading considered here
is of a short timescale. The anisotropic behaviour of the Earth has
only a small effect over the isotropic Earth model used in this study
(Metivier et al. 2005). Spherical harmonic coefficients for geoid
change, vertical and lateral displacement are given by Wahr et al.
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(1998) and Blewitt & Clarke (2003)

Cg
lm = 3ρw

ρe

(1 + k ′
l )

2l + 1
Cσ

lm, (2)

Ch
lm = 3ρw

ρe

h′
l

2l + 1
Cσ

lm, (3)

Cψ

lm = 3ρw

ρe

l ′
l

2l + 1
Cσ

lm, (4)

where ρ e is the average density of the Earth (5517 kg m−3 in this
study) and k ′

l , h′
l and l ′

l are the elastic loading Love-numbers for
gravitation, vertical displacement and lateral displacement, respec-
tively. The indices on the spherical harmonic coefficients state that
they represent the geoid (g),height (h),lateral movement (ψ). It
should be noted that the degree 1 loading Love-numbers are depen-
dent on the chosen reference system (Blewitt 2003).

2.2 The least-squares method

The various simulated solutions generated as part of this study
assume the use of a standard normal equation approach with a
Gauss–Markov model for each data set:

y + e = Ax, E{e} = 0, D{e} = R, (5)

with observations collected in y, stochastic residuals e and the vari-
ance covariance matrix for the measurement in R. The operators
E{} and D{} stand for the expectation and the dispersion, respec-
tively. The individual least-squares solution of this model is

AT R−1Ax̂ = AT R−1y, (6)

where AT R−1A is the normal matrix (N) and the inverse of this
matrix is the covariance matrix associated with the solution vector x̂.
The solution vector will contain the spherical harmonic coefficients
(Cσ

lm, Sσ
lm) and additional parameters depending on the data set.

Each data set has its own solution space, meaning that the variables
that can be estimated by each data set are not necessarily the same.
For instance, the GRACE solutions are not sensitive to degree one
coefficients, whereas the GPS and OBP data sets can estimate them.
To solve the variables in the combination, a ‘local’ and ‘global’
parameter scheme is applied. In this scheme, the global parameters
are estimated using all data sets in the combination, whereas the
local parameters are estimated using only a specific data set. Prior
to the combination, the normal matrix of the global parameters
is adjusted to account for the local parameters following Reigber
(1989):

N̄g = Ng − NT
lgN−1

l Nlg. (7)

Where Ng is the part of the normal matrix associated with the global
parameters. Nl is the part of the normal matrix belonging to the
local parameters. Nlg is the part of the normal matrix that represents
the correlations between the local and global parameters. After
creating the global normal equation matrix, the covariance matrix
for the global parameters, Qg, is easily generated through a matrix
inversion. The covariance matrix for the local parameters, Ql, can
be computed by the following

Ql = N−1
l + N−1

l NlgN̄−1
g NT

lgN−1
l . (8)

The covariances between the local and global parameters after the
combination can be acquired by

Qlg = −N−1
l NlgN̄−1

g . (9)

In this way, the full covariance matrix of a single data set can be
reconstructed after the combination.

2.3 Ideal to real scenarios

One of the many objectives of this study was to explore the effect
that gaps and irregularities in the data distribution of the OBP and
GPS data sets have on the quality of the combined solutions. To
better understand the impact of these factors, a series of hypothet-
ical test cases were developed, which each had a different global
distribution of data points. The spatial distribution of these data
points ranged from an idealistic dense and homogeneous case to a
scenario that closely resembles the current real data networks. The
ideal cases were generated by taking an icosahedron and project-
ing the computed vertexes onto the sphere, resulting in a set of 12
points that are perfectly equidistant from each other. To generate
more points on the sphere, the faces of the icosahedron were then
subdivided into smaller triangles until the desired amount of points
were obtained. As the generated vertexes on the icosahedron faces
are projected onto a sphere, the subpoints are not perfectly equidis-
tant any more. The number of points, n, that can be generated by this
method is given by n = 10 f 2 + 2, where f is the frequency of the
subdivision. This frequency is different for the two data sets: for the
GPS data sets, the number of generated points over land are close to
the amount of stations seen in real world GPS networks(≈180), and
likewise, for the OBP data sets, the number of points over the ocean
are approximately the same as the amount of gridpoints provided in
real world OBP grids(≈1450 for a 5◦ × 5◦ grid). What we term the
‘ideal’ cases for the GPS and OBP data sets is illustrated at the top
of Fig. 1.

The ideal cases are clearly not realistic as they assume that the
number of GPS data points has the same density of points over the
oceans (likewise for the ideal OBP case over land). As a result, an
intermediate distribution was generated using the homogeneously
distributed measurements and masking out unrealistic data, such
as points over the ocean for the GPS network and points over land
for the OBP grid, to generate an extra case which we term the
‘semi-ideal’ case. This case is also shown in Fig. 1.

A third and final distribution of data points was chosen to reflect
the current real-data distribution of stations and gridpoints for the
GPS and OBP data. For the GPS data, this ‘real-data’ case was mod-
elled after the station network of the International GNSS Service
(IGS). For the OBP data, the real-data case emulated the Estima-
tion of the Circulation and Climate of the Ocean (ECCO; Stammer
et al. 2002) models, which are publicly available ocean circulation
models that provides OBP information on various grid sizes. Both
of these cases are illustrated at the bottom of Fig. 1, where the OBP
data is given on a 5◦ × 5◦ grid. It is clear from looking at Fig. 1
that the distribution of points between the ideal/semi-ideal and the
real-data cases is substantial, particularly for the GPS case; how-
ever, the three cases are useful for determining the overall potential
of a given data set. For example, if the contribution of the GPS data
can be shown to increase significantly with a data distribution more
closely resembling the ideal cases, then this might provide incentive
for expanding the IGS network to areas with sparse coverage.

2.4 Sensitivity tools

When the GRACE, GPS and OBP data sets were combined in the
various simulations, it was useful to know which of these data sets
were contributing the most to the solution. More specifically, we
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Figure 1. The global distribution of the different scenarios for GPS(left-hand panel) and OBP(right-hand panel). The top row gives the distributions for the
ideal scenario (homogeneous distribution). The middle row shows the semi-ideal scenario (homogeneous over land or ocean). The bottom row shows the
real-type scenario (IGS and ECCO).

were interested in the contribution of each data set at the level of in-
dividual harmonic coefficients. This was done to see if certain data
sources contributed more than others to the estimation of specific
regions (i.e. the long or short wavelength signals) of the load dis-
tribution spectrum. To determine these specific contributions, the
following quantity was computed,

c(i) = diag
([

N̄(i+ j)
]−1

N̄(i)
)
, (10)

where N̄(i) is the normal matrix of data set i, and N̄(i+ j) the combined
normal matrix of two data sets. The inverse of the latter matrix can
be composed by the use of eqs (8) and (9) and the covariance of
the combined global parameters. The functional diag() represents
the diagonal of the input matrix. The resulting value, c(i), is then
the percentage contribution of the individual data set to the total
estimated value of the coefficient.

In addition to evaluating the contributions of the data set to the
determination of the coefficient value, it is also valuable to look at
the formal errors. The reduction of the formal error achieved by

adding data set (j) to data set (i) is given by,

r ( j)
k = σ̂

(i)
k − σ̂

(i+ j)
k

σ̂
(i)
k

, (11)

where σ̂k is the standard deviation of the estimated parameter k,
derived from the covariance matrix. The resulting value, r ( j)

k , de-
scribes the percentage that the formal error drops by adding a data
set to the final combination.

The final evaluation tool computes the formal error improvement
of a regional mean. The standard deviation of such a regional mean
can be calculated by the following:

σ̂ 2
(region) = sT

(region)N̄
−1s(region), (12)

where s(region) is the vector that holds the normalized spherical har-
monic coefficients of a region function (Wahr et al. 1998). Such a
region function is one inside the region and zero outside. The σ̂(region)

can be used in eq. (11) to calculate the improvement of a particular
region, such as an ocean or continental river basin.
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3 DATA S E T S

In this section, we provide a brief overview of the various data
sets that went into the sensitivity study. Of primary concern is the
treatment of the a priori errors associated with each data set, as well
as how they were utilized in the combinations.

3.1 GRACE monthly gravity fields

The publicly available GRACE monthly solutions are provided in
terms of spherical harmonic coefficients of the gravitational poten-
tial. The solutions also provide information regarding the formal
and calibrated standard deviations of these coefficients.

The GRACE potential coefficients were used in this study by first
transforming them into variations of geoid heights, given by

�N (λ, φ) = a
L∑

l=2

l∑
m=0

[
Cg

lmY C
lm(λ, φ) + Sg

lmY S
lm(λ, φ)

]
, (13)

and then into monthly loading through the method described earlier
in eq. (2). The same transformation must be applied to the normal
matrix before it can be used in the combination. This normal matrix
is typically not provided as part of the public distribution of the
monthly gravity solutions; however, the Center for Space Research
(CSR) was able to provide this study with two complete RL04
covariance matrices. These covariance matrices extended to degree
and order 60 and were calibrated to represent what the true errors in
the solutions are believed to be. The two covariance matrices were
from the months of 2004 September and 2006 August and, in terms
of solution quality, represent the high and low end of the spectrum
for the CSR RL04 solutions. These two months were specifically
requested to evaluate the performance of the combined solutions
when the accuracy of the GRACE information varied. For example,
the 2004 September solution was generated during a period when the
GRACE satellites were in a near-repeat orbit track that significantly
reduced the solution quality for that month (Klokočnik et al. 2008).
Fig. 2 provides a comparison of the (square-root) degree variances
of the standard deviations for the two covariance matrices provided,
as well as the calibrated errors for all of the available CSR RL04

0 5 10 15 20 25 30 35 40 45 50

degree

Degree variance of the two different GRACE solutions

CSR Aug 2006(cov)
CSR Sep 2004(cov)
CSR(calsdv)

mean formal error

CSR Aug 2006(cov)
CSR Sep 2004(cov)

Figure 2. Degree variance plot of the monthly CSR RL04 GRACE solutions
in unit of dimensionless gravitational potential. The standard deviation of
the two calibrated covariance(cov) matrices provided by the CSR (blue &
green) are plotted together with the calibrated standard deviations(calsdv)
of all the available months (grey). Also the formal error averaged over all
the months is shown (red) to illustrate the difference between formal and
calibrated errors.

solutions from 2002 to 2007. The figure also highlights the increased
error at the low (smaller than 7) and high (larger than 30) degrees,
which is inherent to this type of satellite mission.

From the full covariance matrices, the normal equations can be
easily formed through a simple matrix inversion. It is important to
note that the solutions provided did not include degree one coeffi-
cients.

3.2 GPS station positions

The GPS station positions are provided as Cartesian coordinates
in a global reference frame (e.g. ITRF2005). Displacements are
computed by referencing these positions to a mean position and
transforming them into a local height, east, north frame. By in-
cluding hundreds of stations simultaneously, a displacement field
can be expressed through a spherical harmonic expansion. Through
the use of the relations (3) and (4), the loading can be retrieved
from this displacement field. Together with the spherical harmonic
coefficients, an additional 7-parameter set is estimated to account
for potential non-linear offsets in the reference frame (i.e. residual
Helmert transformation parameters). For combinations involving
these GPS displacements, the spherical harmonic expansion began
at degree one. These degree one coefficients represent the motion
of the centre of mass of the Earth system with respect to the centre
of figure, and in this paper, this will be called geocentre motion. To
calculate the geocentre motion from the station displacements, the
degree one loading Love-numbers corresponding to the centre of
figure have to be used (Wu et al. 2002; Blewitt 2003). The following
equations, together with eqs (3) and (4), describe the relationship
between the GPS site displacements and the loading spherical har-
monics in the presence of an additional 7-parameter transformation.

�h = a
L∑

l=1

l∑
m=0

[
Ch

lmY C
lm(λ, θ )+Sh

lmY S
lm(λ, θ)

]
+ eh · �x − a�s, (14)

�x = a
L∑

l=1

l∑
m=0

[
Cψ

lm

∂

∂λ
Y C

lm(λ, θ)+Sψ

lm

∂

∂λ
Y S

lm(λ, θ)

]

+ ex · �x + ey · ε, (15)

�y = a
L∑

l=1

l∑
m=0

[
− Cψ

lm

∂

∂θ
Y C

lm(λ, θ )−Sψ

lm

∂

∂θ
Y S

lm(λ, θ)

]

+ ey · �x + ex · ε, (16)

where �h, �x and �y are the displacements of a station in height,
east and north direction. The variables �x, �s, ε are the seven
residual Helmert transformation parameters that translate, scale and
rotate the reference system. These are added to resolve the small
differences between realization of the reference system by the sparse
GPS network and the true reference system. The argument θ is the
colatitude, which is related to the latitude by θ = 90◦ − φ.

As mentioned earlier, the real-data network used for the GPS
data will be represented by a series of IGS weekly solutions, for
which full covariance matrices of the site displacement estimates
are publicly available. For the other GPS scenarios (ideal and semi-
ideal), the error statistics of the IGS weekly solutions were used
to provide a realistic error bound for the station coordinates of
these hypothetical networks. This was done by neglecting station
correlations (since these are not known in the ideal networks) and
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Figure 3. Histogram of the standard deviations of the three GPS station
components. For the in-plane displacement (top two plots) the bin size is
0.5 mm, and for the out-of-plane displacement (bottom plot) the bin size is
1 mm. The dashed red lines represent the standard deviations used in this
study for the ideal and semi-ideal scenarios.

looking only at the standard deviations per component. Fig. 3 gives
the histograms for the standard deviations in the height, east and
north component as computed from a randomly chosen set of four
IGS covariance matrices. Based on these histograms, the standard
deviation for the ideal and semi-ideal station distributions were
chosen to be 7 mm for height displacement and 2.5 mm for lateral
displacements. These values, indicated by the dashed vertical lines
in Fig. 3, are relatively conservative error bounds with roughly
75 per cent of the IGS error estimates from the four weekly solutions
falling below these levels for the lateral displacements and roughly
60 per cent for the height displacement. The lower percentage for
the height displacement is justified due to the larger tail of the
histogram.

3.3 Ocean bottom pressure models

OBP data sets are derived from time integrated models of ocean cir-
culation. The OBP data give the sum of the water column above a
particular point and are highly dependent on the sea surface heights.
Measurements of the ocean’s topography (via altimetry) are assim-
ilated into these models, as well as density related data, wind and
sea surface temperature; however, the estimation of errors in mass
reproduction is extremely difficult, and as a result, most OBP data
sets do not provide information regarding model uncertainties.

In a spherical harmonic expression, the variation of the OBP will
be,

�p(λ, φ) = agρw

L∑
l=1

l∑
m=0

[
C p

lmY C
lm(λ, φ) + S p

lmY S
lm(λ, φ)

]
+ Woffset, (17)

where g is the average gravitation over the Earth’s surface. The
term W offset is included to correct for the volume conservation of the
ocean circulation models. This volume conservation could introduce
a mass difference, that is, offset, between the OBP data and the other
two data sets (Clarke et al. 2005). The W offset can be expressed in
spherical harmonics by introducing C p

0,0, such that the summation
over l in (17) will start at zero. The coefficients Cp

lm, Sp
lm are in the

first approximation identical to the Cσ
lm, Sσ

lm coefficients, but start to
differ when one takes into account the variation in gravitation over
the Earth’s surface.

The sea surface heights, which are assimilated into the ocean
models, come from space-borne radar altimetry, such as Jason and
TOPEX/Poseidon. Studies (Fukumori et al. 1999; Ponte et al. 2007)
have shown that the sea surface height estimations from space-borne
radar altimetry may be accurate to 3.0 cm for a 10 d repeat orbit on
average. These studies also indicate that the accuracy of space-borne
radar altimetry has a latitudinal dependence, but this effect is coun-
teracted by the errors in the estimation of the steric component.
There were several ocean circulation models available for use in
this study; however, to limit the analysis, only the OBP models pro-
duced by ECCO were used. The ECCO models are given in regular
grid cells, which can create resonance errors for certain spherical
harmonics. These grid cells can have different sizes ranging from a
(1/8)◦ to 1◦, meaning that the models are interpolated between the
ground-tracks of the satellite measurements. The TOPEX/Poseidon
and Jason orbits repeat every 127 orbits, leaving a ground-track
spacing of 2.8◦ on the equator. Therefore, we average the data to a
5◦ regular grid to minimize the effect of the modelling error. This
also means that we represent the majority of the ECCO models, as
the actual grid size of the ECCO model is not important and the
error characteristics are derived from the data used by most models.
For the ideal and semi-ideal cases, the grid spacing is taken to be as
close to 5◦ as possible.

4 R E S U LT S

All three data sets that are used in this study have different tem-
poral resolutions. For example, the GPS solutions are provided on
a weekly basis, whereas the GRACE fields are typically released
in monthly time frames. To overcome these temporal differences,
the combined normal matrices are weighted; so, they represent the
data available in the chosen time frame. Since the coverage and the
temporal resolution for the GRACE solutions are related, simply
weighting the normal matrix does not give a good estimate of a
GRACE solution for a time frame that is different from a month. As
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a result, the normal matrices of the GPS and OBP data sets have to
be weighted so that they will represent data that can be collected in
one month. For these two data sets, the observations have a constant
location in time and allows the weighting of the normal matrix to
represent different time frames. For example, to correspond to the
roughly four GPS weeks in one month, a scaling factor of 4 is ap-
plied to the GPS weekly solutions. In other words, the errors of the
GPS solutions are divided by

√
4 = 2. The error estimates for the

OBP data sets are based on a 10 d repeat orbit, resulting in a scaling
factor of 3 for the normal matrix. Hence, the errors of the OBP data
sets are divided by

√
3 ≈ 1.7. The goal of this weighting scheme is

to provide a priori error estimates of the GPS and OBP data, which
more closely represent the error of a monthly average.

4.1 The Combination of GPS with OBP

As already discussed, by nature the GPS and OBP data sets have
large gaps over the oceans or the continents. This will often result
in poor or unstable solutions when attempting to estimate a high
degree and order set of spherical harmonic coefficients. The cause
is primarily the fact that the high degree and order coefficients can-
not be estimated accurately from such sparse data sets. This creates
large errors of omission and commission, which in turn alias into the
lower degrees. To minimize these errors, regularization techniques
are often employed (Blewitt & Clarke 2003; Kusche & Schrama
2005; Mendes Cerveira et al. 2006; Wu et al. 2006); however, this
approach can lead to the introduction of biases to the solution. A
natural alternative method is to combine the two data sets in the
same least-squares process so that the gaps are minimized and no
regularization is required. From the point networks shown earlier
in Fig. 1, it is clear that the two data sets are quite complimentary
in terms of their spatial distribution, making this option a reason-
able choice. Using this second approach, a series of combinations
were generated using the three different data distributions discussed
earlier (ideal, semi-ideal and real-type), expanded to degree and or-
der 20 (20 × 20). The contribution of the GPS component to the
total solution for the various distributions is illustrated in Fig. 4,
according to eq. (10).

Starting first with the ideal case, it was found that the GPS data
contributed little to the total solution when only GPS and OBP were
combined. The influence of the GPS data to the combination was
limited primarily to the lower degrees. This can be explained by
the decreasing nature of the loading Love-numbers, which gives
the higher degrees a lower power. Other reasons include the sparse
measurement distribution for GPS, together with the triple measure-
ments per station (i.e. the lateral displacement measurements can
be helpful for the resolution of the low degrees). What is important
to note from Fig. 4(a) is that although the OBP data set overall has
smaller errors with respect to the GPS data set, the lowest degrees
are still improved slightly by the incorporation of GPS data.

When looking at the semi-ideal case, the contribution of the GPS
measurements to the combination becomes much more significant.
Still, the contribution of the GPS data is limited at higher degrees, for
the same reasons that were explained in the previous paragraph. If
the maximum degree of the combination is lowered, the contribution
of the GPS measurement diminishes. This indicates that OBP data
over the oceans is not sufficient to estimate up to 20 × 20, due
to large correlations. Without filling the gaps, it is not possible to
raise the resolution of the spherical harmonics to a level that would
be sufficient to prevent spatial aliasing in the data-covered regions.
This shows that the data gaps have a large influence on the solution
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Figure 4. The contribution of GPS to a combination with OBP for the three
scenarios. From top to bottom the scenarios are ideal, semi-ideal and real,
respectively. The triangle plots represent the spherical harmonic coefficients,
where positive orders are for the cosine coefficients and negative orders are
for the sine coefficients.

and, by filling these gaps with other measurements, the results can
be improved dramatically.

For the real case, the GPS measurements contribute even more
to the solution than in the semi-ideal case. This is partially due
to the small number of GPS stations distributed over the oceans
(islands), which are not present in the semi-ideal case. Also, the
extra gaps over the polar regions in the ECCO data will increase the
contribution of the GPS data to the combination. A closer look at
Fig. 4(c) shows that the contribution of GPS is now more focused
around the zonals. This is due to the regular grid in which the
ECCO data is given, resulting in more data per parallels. As seen
for all cases, the GPS measurements mainly contribute to the lower
degrees, with very little impact at the higher degrees.

Fig. 5 shows the global errors for a 10 × 10 combination of IGS
and ECCO compared with the first 10 degrees of the 2006 August
solution of GRACE. It highlights the small errors of the ECCO data
set over the oceans, as well as the improved accuracy of the ECCO-
IGS solution over the poles. The point of the plot is to visualize the
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GRACE monthly solution upto degree 10
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Figure 5. The standard deviation of GRACE and the ECCO-IGS combi-
nation projected onto the Earth’s surface. The top plot shows the standard
deviation of GRACE (2006 August) and the bottom plot is for the ECCO-
IGS combination. Both plots are for a solution up to degree and order 10
without any smoothing.

areas that the ECCO and IGS data sets should be able to improve
upon when combined with GRACE, at least for harmonics at or
below degree 10.

4.2 Combinations with GRACE data

Having examined the combination of GPS with OBP, the next step
was to examine the contribution of each of these two data sets
when they are combined with GRACE. The dense ground-track of
GRACE over the course of one month results in relatively low global
errors, with only a slight increase over the equator, as shown in
Figs 8(a) and (b). Nonetheless, the results shown in Fig. 5 imply that
the addition of either GPS or OBP data should improve the accuracy
of the final solution. As already mentioned, this improvement is due
to the fact that the combination is performed in a least-squares sense,
and that parts of the added data sets have predicted errors that are
less than those estimated for GRACE. Fig. 6 shows the contribution
of either GPS or OBP to the combination with GRACE for the
various cases. At first glance, it is clear that OBP contributes overall
much more to the combination than GPS, a similar conclusion to
that reached previously when only GPS and OBP were combined.
The primary influence of GPS lies at the low degrees, in particular
the C 2,0 zonal coefficient. This can also be seen when looking at the
percentage improvement of the formal error by each data set (see
Fig. 6), as computed using eq. (11). The influence of the GPS data
increases as the cases progress from the real to ideal scenarios. This
highlights the fact that although the GPS data may have a smaller
overall role, it can still provide valuable information to complement

GRACE. The same conclusion can also be reached for the OBP
data, which shows obvious benefits in a combination solution.

The resonance at order 15 in the GRACE solution is clearly visible
in all plots of the contribution and improvement of the formal error,
by the distinct stripe feature starting at the 15th tesseral. This is
a known feature of the CSR RL04 solutions (Gunter et al. 2006)
and can even be seen in the degree variances of Fig. 2; so, it is not
an artefact caused by the inclusion of either the GPS or OBP data
sets. In fact, by the increase in both contribution and improvement in
formal error, we see that the introduction of either GPS or OBP helps
to stabilize the determination of these resonant coefficients.

It is also interesting to note that the observability of the tesseral
coefficients increases with the addition of the OBP data and, to a
much lesser extent, with the addition of the GPS data. The near-
polar orbit of GRACE results in these tesseral coefficients being one
of the more weakly determined coefficients from GRACE. Similar
to the improvement seen with the first resonance terms, the OBP
data appears to provide sufficient information to make the estimate
of the tesseral parameters less uncertain. Again, for GPS this holds
only for the lower degrees.

Comparing the contribution with the improvement of the formal
error can in some instances provide extra insight into the models
used. If large correlations exist within the individual data sets, for-
mal errors of a single coefficient may improve significantly even
if the direct contribution to this coefficient according to eq. (10)
are small. This effect is clearly visible for the order 15 coefficients,
indicating that the resonance also introduces correlations with other
coefficients.

The formal errors for the local parameters discussed in
Section 2.3 can also be estimated, with the results shown in Table 1.
Improvement to the local parameters comes from the correlation of
these parameters with the global parameters. For OBP and GPS, this
means a correlation between the very low degrees and the higher
degrees. For the ideal scenarios, the improvements to the local pa-
rameters are negligible, as these distributions cause little correlation
between the coefficients. But for the semi-ideal and real cases, the
improvements can be large because the gaps introduce correlations
between the coefficients. The improvement of the formal error of
the degree 1 coefficients is one such example. This coefficient is
determined entirely by the OBP and GPS data, but its formal error
improves when the GRACE data is included in the combination.
This indicates that GRACE helps to improve the estimates of the
very low degrees by stabilizing the estimation of the mid and higher
degrees.

So far, the performance criteria for the combination solutions has
only involved the contribution and formal error improvements of
the individual coefficients. This alone is not always sufficient, or
intuitive enough, if the geographical (i.e. spatial) distribution of the
errors in these solutions is to be examined. To address this issue, the
various combined solutions were also evaluated over a number of
major ocean and river basins. Using (12), the same error improve-
ment statistics could be computed, but with the results limited to
specified regions. The regions chosen represent the major regions
of water mass transport across the globe. In addition, their range of
geographical location should give insight into which areas can be
most improved by the incorporation of GPS and OBP data.

The improvement of the average over the different oceans by
combining GRACE with GPS or OBP are given in Table 2. It is
clear from the table that GPS can improve the average over the
oceans, due to the large improvement of the C 2,0 coefficient. When
the influence of the C 2,0 coefficient is removed, GPS can still pro-
vide an improvement of about 10 per cent. For the combination with
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Figure 6. The contribution of GPS or OBP to a combination with GRACE (2006 August) and the formal error improvement by GPS or OBP in the combination
with GRACE for the three scenarios. The top two rows show the contribution plots, and the bottom two rows show the formal error improvements. GRACE
is combined with GPS (1st and 3rd row) or OBP (2nd and 4th row). The columns give the different scenarios ideal, semi-ideal and real-type from left- to
right-hand side. The triangle plots represent the spherical harmonic coefficients, where positive orders are for the cosine coefficients and negative orders are
for the sine coefficients.

Table 1. Percentage improvement of formal errors for several low degree parameters from different combinations of GRACE, GPS and OBP. The data sets or
combinations of data sets that were used as the reference are shown in brackets. For example, for the formal improvement of C 2,0, GRACE has been used as
the reference for all combinations; but for the degree 1 coefficients, the references are OBP or GPS when they are combined with GRACE, and OBP + GPS
for the triple combination.

GRACE + GPS GRACE + OBP GRACE + OBP + GPS

Ideal Semi-ideal Real-type Ideal Semi-ideal Real-type Ideal Semi-ideal Real-type

l max 7 7 7 10 10 10 12 12 12

[OBP] + GRACE [OBP] + GRACE + GPS
C 0,0 – – – 0.2 69.0 81.1 0.3 85.0 91.8

[GPS] + GRACE [OBP] + GRACE [OBP+GPS] + GRACE
C 1,0 0.5 65.6 51.1 0.3 75.3 84.3 0.3 33.8 49.5
C 1,1 0.5 80.5 49.3 0.2 21.4 59.8 0.2 20.6 54.7
S1,1 0.5 78.8 54.4 0.2 72.4 83.7 0.2 25.3 47.4

[GRACE] + GPS [GRACE] + OBP [GRACE] + OBP + GPS
C 2,0 91.6 83.8 80.8 97.3 96.2 94.8 97.5 96.3 95.1
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Table 2. Formal error improvements in percentage of several ocean means for different combinations of GRACE, GPS and OBP. For all the cases the GRACE
solution is taken as a reference. The combinations are done up to degree and order 30 and are smoothed with a Gaussian filter of 500 km. For the percentages
after the slash the effect of the C 2,0 is removed.

GRACE + GPS GRACE + OBP GRACE + OBP + GPS

Ideal Semi-ideal Real-type Ideal Semi-ideal Real-type Ideal Semi-ideal Real-type

Arctic Ocean 87.7/34.0 79.7/15.8 78.9/15.3 95.2/70.3 93.3/58.9 89.5/46.5 95.3/70.9 93.6/60.6 90.4/50.0
North Atlantic 41.1/35.3 28.6/21.7 22.9/14.9 77.1/74.8 53.7/49.0 49.2/44.2 77.7/75.5 58.7/54.6 53.4/48.7
South Atlantic 38.9/32.0 16.0/7.7 16.1/8.1 75.9/73.1 65.1/61.2 62.9/58.7 76.5/73.9 67.2/63.5 64.4/60.5
Indian Ocean 65.2/38.2 49.6/7.2 48.6/9.5 86.5/75.9 78.5/61.2 76.1/56.0 87.0/76.7 80.7/65.4 77.4/58.5
North Pacific 77.8/35.6 68.4/15.6 67.5/13.3 91.0/73.3 85.5/56.4 82.6/51.5 91.3/74.2 86.7/60.0 83.9/54.7
South Pacific 70.7/36.2 56.7/10.3 54.7/9.9 88.7/75.1 84.1/65.7 82.5/60.9 89.1/75.9 85.2/67.9 83.3/63.1
Southern Ocean 89.1/34.0 81.6/15.3 77.2/13.6 95.7/68.0 94.1/61.2 93.4/56.1 95.8/68.5 94.4/62.4 93.7/57.7

Total 71.8/18.6 65.7/7.0 63.7/7.6 88.1/65.0 81.0/43.5 79.6/38.5 88.3/65.6 82.0/46.6 80.5/41.8

Table 3. Formal error improvements in percentage of several regional averages for different combinations of GRACE, GPS and OBP. For all cases the GRACE
solution is taken as a reference. The combinations are done up to degree and order 30 and are smoothed with a Gaussian filter of 500 km. For the percentages
after the slash the effect of the C 2,0 is removed.

GRACE + GPS GRACE + OBP GRACE + OBP + GPS

Ideal Semi-ideal Real-type Ideal Semi-ideal Real-type Ideal Semi-ideal Real-type

Greenland 78.1/14.8 72.5/7.5 71.3/6.8 89.6/57.5 85.6/42.8 80.3/26.1 89.7/57.9 86.0/44.1 81.2/28.5
Ob 66.4/12.9 62.6/6.6 61.2/6.2 83.6/56.9 73.8/30.8 72.2/26.1 83.8/57.4 74.8/33.4 73.2/28.7
Mississippi 28.3/17.2 17.8/6.4 18.4/7.4 66.0/60.7 37.9/28.3 34.3/24.0 66.4/61.1 41.1/31.9 36.9/27.1
Congo 65.1/15.9 58.6/5.1 57.1/4.6 83.6/60.0 77.5/45.8 76.1/43.4 83.7/60.3 78.4/47.7 76.8/44.3
Amazon 69.4/19.7 62.7/6.1 60.2/5.1 85.6/61.5 79.6/46.5 78.4/43.6 85.8/62.0 80.5/48.8 79.0/45.0
Australia 50.4/24.6 40.6/10.2 37.3/7.5 78.3/66.9 70.1/54.9 67.9/51.1 78.6/67.3 71.7/57.2 68.7/52.4
Antarctica 87.7/33.0 80.4/15.2 75.9/13.4 95.0/68.0 91.9/53.7 91.5/49.2 95.1/68.6 92.3/55.2 91.7/50.9

OBP, a much larger improvement is expected and observed. Here
the improvement of the C 2,0 coefficient is still clearly the dominant
effect, but also, the higher degrees now play a role. An overall im-
provement of about 50 per cent is still observed even after the effect
of C 2,0 is removed, showing that the ECCO model is contributing a
significant amount to the combined solution with GRACE.

The improvement over land regions, seen in Table 3, shows a
similar picture. The C 2,0 coefficient is, for both OBP and GPS,
the main contributor for the improvement; however, removing the
effect of C 2,0 still leaves a reasonable improvement that can be
attributed to GPS and OBP. In general, the improvements are lower
than observed for the oceans, due partly to the smaller sizes of the
regions. The region of Antarctica is the biggest beneficiary of the
additional data, showing improvements of 13 per cent with IGS
data and 49 per cent with ECCO even after neglecting the effects of
C 2,0.

In summary, the regional averages provide further support for
the benefit of adding GPS and OBP data to GRACE to improve the
time variable signal below degree 30. Double digit improvements
are seen in nearly all cases, with some areas such as the Southern
Ocean and Antarctica seeing improvements of over 90 per cent when
C 2,0 is considered. The spatial differences are interesting to note,
as it appears to indicate that certain regions, mostly in the higher
latitudes, seem to benefit the most from the combination solutions.
The exact reasons for this are currently being explored.

4.3 The final combination: GRACE, GPS and OBP

The final step of the sensitivity study was to combine all three
data sets into a single solution. From the results of the previous
subsections, it was expected that GPS would play a minor role in
this combination, with improvements mainly limited to the lower

degrees, that is, through to degrees 4–6. More substantial contri-
butions were expected from the incorporation of OBP data, with
possible improvements up to degree and order 30. We recall that
this limit for the OBP data was caused by both the quality of the
data and the grid spacing used in the simulation. The 5◦ spacing of
the gridded data results in a resonance at the 36th order, and causes
instability in the solution. As a result, for the triple combination,
the maximum degree was set to 30 for the three data sets.

In Fig. 7, the degree error variances of the various different com-
binations are shown, including the triple combination of GRACE,
GPS and OBP. For comparison, a GRACE only curve is provided to-
gether with the hydrology degree power spectrum signal generated
from the Land Dynamics(LaD) ‘Fraser’ model (Milly & Shmakin
2002). To highlight the most realistic scenarios tested, only the real
and semi-ideal cases are shown in the figure.

Overall, the results show that the introduction of any of the data
sets improves the formal standard deviation. On average, the triple
combinations show a factor 2–5 improvement of the formal errors
when compared with a GRACE-only solution. In particular, the
combination of GRACE with the semi-ideal OBP and GPS shows
the lowest overall errors through degree 30. The change in formal
errors, in terms of degree variances, when switching from the (ir-
regular) real-data network to the semi-ideal (i.e. homogeneous dis-
tribution of points) for GPS and OBP is fairly small. Furthermore,
the addition of real-type GPS to the combination of GRACE and
real-type OBP only shows a small effect on the lower degrees, but a
large improvement on degree 2 when combined with GRACE alone.
As expected, the improvements upon the GRACE-only solution are
dominated by the OBP data.

By looking at the intersection of the LaD curve and that of any
of the triple combinations, Fig. 7 suggests that the addition of the
new data sets to GRACE shifts the observable hydrology signal
(where signal dominates noise) from degree 15 to approximately
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Figure 7. Degree variance plot of the surface loads resulting from different combinations. For this plot, GRACE was combined with, real-type IGS(green),
real-type ECCO(red), real-type IGS-ECCO(magenta) and semi-homogeneous GPS-OBP(cyan). Also the variance of the hydrology signal is shown(brown),
for which the LaD model ‘Fraser’ was used. The degree variances are given in equivalent water height in (mm).

degree 25, that is, an increase in spatial resolution (half-width)
from ∼1300 to ∼800 km. The increase in both spatial resolution
and signal accuracy is encouraging for future work.

Other important points highlighted by Fig. 7 are the improve-
ments at the low degrees and the smoothing of the resonances.
The real-data triple combination shows an order of magnitude im-
provement in the degree two coefficients, and the instability in the
GRACE-only solutions below degree 10 is substantially attenuated
with the addition of the GPS and OBP data. The spike at degree 15,
caused by the first-order resonance, is also eliminated.

To visualize the improvements gained by adding the real-type
GPS and OBP data sets to GRACE, Fig. 8 shows the total global
errors of the solution in terms of equivalent water height, using both
the 2006 August and 2004 September CSR RL04 solutions for com-
parison. The strength of each data set in combination with GRACE
is nicely illustrated, and the improvement between the GRACE-only
errors and those of the final combination is clearly visible. In par-
ticular, the improvements to the September 2004 solution is notable
and once again emphasizes how the GPS and OBP data sets can
substantially improve not only good quality GRACE solutions, but
also those solutions whose accuracy has been reduced due to a near-
repeat ground-track pattern. The figure also shows how the triple
combination could be further improved. For example, the regions
of highest error in Figs 8(g) and (h), such as Africa, South Amer-
ica and Russia, are those in which the IGS network has the fewest
number of stations. The results of the simulations imply that adding
more stations to these regions could help to reduce the uncertainties
in the triple combinations by 1–2 cm.

The last three columns of Table 1 contain the improvement in the
local parameters and the C 2,0 coefficient for the triple combinations.
When comparing these results with the other results given in the
table, it is clear that the triple combination has an advantage over
them. This is evidenced by the slightly higher improvement in the
C 0,0 and C 2,0 coefficients with respect to other combinations. For
the degree 1 terms, a peak improvement of nearly 50 per cent is
seen for the real-type triple combination. Note that for the degree 1
terms, the triple combination uses the OBP-GPS derived degree 1
terms as reference for the percentage improvement, as opposed to

degree 1 terms obtained from GPS or OBP only. This explains why
the percentage improvement appears lower than the degree 1 terms
of the other columns in Table 1. This result is still impressive consid-
ering that GRACE is not directly sensitive to degree 1 harmonics,
but only influences their determination through correlations with
higher degree terms.

Looking at the regional comparisons in Tables 2 and 3, the triple
combinations show a small gain in improvement over the other
combinations in the table. This fact is not completely due to the
improvement of the C 2,0 coefficient, as double digit improvements
are also observed when C 2,0 is neglected. One other interesting
observation from Table 3 is that the Mississippi basin appears to
be less affected by the improved C 2,0 coefficient than the other
basins, presumably due to its geographical location. This makes the
Mississippi basin a nice subject for future analysis.

5 C O N C LU S I O N S

A series of simulations have been conducted to examine the influ-
ence that the combination of GPS and/or modelled OBP data has
with GRACE data. A number of variables went into the solutions,
including the distribution of data points, the assigned errors and
the maximum degree and order of the solution. As such, both ideal
and realistic cases were explored to see their differences. The final
solutions were evaluated using a range of statistical metrics show-
ing the contribution of each data set down to the level of individual
harmonic coefficients.

The main conclusions of the sensitivity study was that the addition
of either GPS or OBP data to GRACE would help improve the
stability and accuracy of the estimated global mass redistribution. In
general, the OBP models show the largest contribution mostly due
to their low errors and dense distribution of gridpoints; however,
it was also made clear that the inclusion of GPS was important
for the determination of the low degree harmonics, in particular
C 2,0.

An additional benefit of including either GPS or OBP into
the GRACE solutions is the ability to estimate the degree one
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GRACE monthly solution of August 2006
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Figure 8. Standard deviation of GRACE and GRACE combined with IGS and/or ECCO projected on the globe. The top panel gives the two GRACE-only
solutions used in this study, that is, for 2006 August (a) and 2004 September (b). The second row shows the combination of these two GRACE solutions with
IGS (c and d). The next row shows the combination of these two GRACE solutions with ECCO (e and f). The bottom row gives the triple combination for these
two months (g and h). For all plates the maximum degree of the solution is 30 and no smoothing is performed.

coefficients (i.e. geocentre motion). In fact, the accurate estimation
of the higher degree coefficients by GRACE enabled the more accu-
rate determination of the degree 1 coefficients, presumably through
reduction of omission and commission errors.

As mentioned in Section 1, one of the primary objectives of these
simulations was to lay the foundation for future combinations using
real data. This study showed that, given the likely error character-

istics of the IGS data and ECCO models, a combined solution to
degree and order 30 can be estimated, which is 2–5 times more
accurate than a solution based only on GRACE data. Addition-
ally, improvements to both C 2,0 and the first-order resonances are
gained, and the solution was extended to include degree one coef-
ficients. There are a number of other considerations that need to
be made when working with real data, but the general conclusions

C© 2009 The Authors, GJI, 177, 1–13
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obtained from these simulations were valuable in establishing the
initial guidelines for future combinations.
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