Sea freshening may drive the ecological impacts of emerging and existing invasive non‐native species.

Dickey, James W. E. , Cuthbert, Ross N. , Steffen, Gregor T. , Dick, Jaimie T. A. and Briski, Elizabeta (2021) Sea freshening may drive the ecological impacts of emerging and existing invasive non‐native species. Open Access Diversity and Distributions, 27 (1). pp. 144-156. DOI 10.1111/ddi.13178.

[thumbnail of ddi.13178.pdf]
Preview
Text
ddi.13178.pdf - Published Version
Available under License Creative Commons: Attribution 4.0.

Download (635kB) | Preview

Supplementary data:

Abstract

Aim:
The spread of invasive non‐native species (INNS) will pose major threats to global biodiversity over the coming decades. However, predicting how key effects of climate change will influence the abilities of INNS to establish and exert ecological impact is a major challenge. One overlooked aspect of global change is the expected freshening of certain marine systems, which may interact with INNS and lead to drastic effects on community structure and stability.

Location:
Baltic Sea, Europe.

Methods:
Here, using three predatory amphipod crustaceans, we experimentally assessed how salinity reduction may affect the impacts of the emerging INNS, Pontogammarus maeoticus, relative to an existing INNS, Gammarus tigrinus and a trophically analogous native, Gammarus salinus. We quantified per capita impacts of the three species via the comparative functional response method (prey consumption over a range of prey densities) under a predicted seawater freshening scenario. We then combined amphipod functional responses with their life history traits to compare population‐level relative impact potential (RIP) on prey of the three amphipod species across salinities.

Results:
Freshening substantially altered the predicted relative ecological impacts of both the INNS compared with the native. First, the functional responses of invasive P. maeoticus and G. tigrinus increased under freshening, while that of the native G. salinus decreased. Second, RIP became consistently higher for both the INNS compared to the native with increased freshening.

Main conclusions:
Our methods thus reveal potential for climate change via seawater freshening to drive large shifts in dominance and ecological impacts of INNS compared with natives. With the number of INNS introductions unlikely to saturate in the near future, we highlight the need to assess the impacts of potential future INNS, alongside established non‐natives and native species, in combination with abiotic changes associated with climate change.

Document Type: Article
Keywords: functional response; invasive non‐native species; life history traits; Pontogammarus maeoticus; relative impact potential; sea freshening
Research affiliation: OceanRep > GEOMAR > FB3 Marine Ecology > FB3-EOE-B Experimental Ecology - Benthic Ecology
Main POF Topic: PT6: Marine Life
Refereed: Yes
Open Access Journal?: Yes
Publisher: Wiley
Related URLs:
Date Deposited: 24 Nov 2020 09:16
Last Modified: 07 Feb 2024 15:36
URI: https://oceanrep.geomar.de/id/eprint/51128

Actions (login required)

View Item View Item