Skip to main content
Log in

On the Analysis of Wind-Induced Noise in Seismological Recordings

Approaches to Present Wind-Induced Noise as a Function of Wind Speed and Wind Direction

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Atmospheric processes, ranging from microscale turbulence to severe storms on the synoptic scale, impact the continuous ground motion of the earth and have the potential to induce strong broad-band noise in seismological recordings. We designed a target-oriented experiment to quantify the influence of wind on ground motion velocity in the Dead Sea valley. For the period from March 2014 to February 2015, a seismological array, consisting of 15 three-component short-period and broad-band stations, was operated near Madaba, Jordan, complemented by one meteorological tower providing synchronized, continuous three-component measurements of wind speed. Results reveal a pronounced, predominantly linear increase of the logarithmic power of ground motion velocity with rising mean horizontal wind speed at all recording stations. Measurements in rough, mountainous terrain further identify a strong dependency of wind-induced noise on surface characteristics, such as topography and, therefore, demonstrate the necessity to consider wind direction as well. To assess the noise level of seismological recordings with respect to a dynamically changing wind field, we develop a methodology to account for the dependency of power spectral density of ground motion velocity on wind speed and wind direction for long, statistically significant periods. We further introduce the quantitative measure of the ground motion susceptibility to estimate the vulnerability of seismological recordings to the presence of wind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. https://www.deserve-vi.net/.

References

  • Alpert, P., Cohen, A., Neumann, J., & Doron, E. (1982). A model simulation of the summer circulation from the eastern mediterranean past Lake Kinneret in the Jordan Valley. Monthly Weather Review, 110(8), 994–1006.

    Article  Google Scholar 

  • Alpert, P., Neeman, B., & Shay-El, Y. (1990). Intermonthly variability of cyclone tracks in the Mediterranean. Journal of Climate, 3(12), 1474–1478.

    Article  Google Scholar 

  • Alpert, P., Osetinsky, I., Ziv, B., & Shafir, H. (2004). Semi-objective classification for daily synoptic systems: Application to the eastern Mediterranean climate change. International Journal of Climatology, 24, 1001–1011. doi:10.1002/joc.1036.

    Article  Google Scholar 

  • Argaín, J. L., Miranda, P. M., & Teixeira, M. A. (2009). Estimation of the friction velocity in stably stratified boundary-layer flows over hills. Boundary-Layer Meteorology, 130(1), 15–28.

    Article  Google Scholar 

  • Bitan, A. (1976). The influence of the special shape of the Dead Sea and its environment on the local wind system. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B, 24(4), 283–301.

    Article  Google Scholar 

  • Bormann, P. (1998). Conversion and comparability of data presentations on seismic background noise. Journal of Seismology, 2(1), 37–45.

    Article  Google Scholar 

  • Bromirski, P. D., Duennebier, F. K., & Stephen, R. A. (2005). Mid-ocean microseisms. Geochemistry Geophysics Geosystems, 6(4), 1–19. doi:10.1029/2004GC000768.

    Article  Google Scholar 

  • Dahm, T., Tilmann, F., & Morgan, J. (2006). Seismic broadband ocean-bottom data and noise observed with free-fall stations: Experiences from long-term deployments in the North Atlantic and the Tyrrhenian Sea. Bulletin of the Seismological Society of America, 96(2), 647–664.

    Article  Google Scholar 

  • Essen, H. H., Krüger, F., Dahm, T., & Grevemeyer, I. (2003). On the generation of secondary microseisms observed in northern and central Europe. Journal of Geophysical Research: Solid Earth, 108(B10), ESE 15.

    Article  Google Scholar 

  • Friedrich, A., Krüger, F., & Klinge, K. (1998). Ocean-generated microseismic noise located with the Gräfenberg array. Journal of Seismology, 2(1), 47–64.

    Article  Google Scholar 

  • Gerstoft, P., Shearer, P. M., Harmon, N., & Zhang, J. (2008). Global P, PP, and PKP wave microseisms observed from distant storms. Geophysical Research Letters, 35(23), 1–6. doi:10.1029/2008GL036111.

    Article  Google Scholar 

  • Girdler, R. (1990). The Dead Sea transform fault system. Tectonophysics, 180(1), 1–13.

    Article  Google Scholar 

  • Groos, J. C., & Ritter, J. R. R. (2009). Time domain classification and quantification of seismic noise in an urban environment. Geophysical Journal International, 179(2), 1213–1231. doi:10.1111/j.1365-246X.2009.04343.x. URL: http://gji.oxfordjournals.org/content/179/2/1213.abstract

  • Hanjali, K., & Launder, B. E. (1972). A Reynolds stress model of turbulence and its application to thin shear flows. Journal of Fluid Mechanics, 52(4), 609–638. doi:10.1017/S002211207200268X.

    Article  Google Scholar 

  • Hanka, W., & Kind, R. (1994). The geofon program. Annals of Geophysics, 37(5), 1060–1065.

    Google Scholar 

  • Holub, K., Rušajová, J., & Sandev, M. (2008). The January 2007 windstorm and its impact on microseisms observed in the Czech Republic. Meteorologische Zeitschrift, 17(1), 47–53.

    Google Scholar 

  • Holub, K., Rušajová, J., & Sandev, M. (2009). A comparison of the features of windstorms Kyrill and Emma based on seismological and meteorological observations. Meteorologische Zeitschrift, 18(6), 607–614.

    Article  Google Scholar 

  • Kafle, H. K., & Bruins, H. J. (2009). Climatic trends in Israel 1970–2002: Warmer and increasing aridity inland. Climatic Change, 96(1–2), 63–77.

    Article  Google Scholar 

  • Kottmeier, C., Agnon, A., Al-Halbouni, D., Alpert, P., Corsmeier, U., Dahm, T., et al. (2016). New perspectives on interdisciplinary earth science at the Dead Sea: The DESERVE project. Science of the Total Environment, 544, 1045–1058.

    Article  Google Scholar 

  • Krumgalz, B. S., Hecht, A., Starinsky, A., & Katz, A. (2000). Thermodynamic constraints on Dead Sea evaporation: Can the Dead Sea dry up? Chemical Geology, 165(1), 1–11.

    Article  Google Scholar 

  • Lepore, S., Markowicz, K., & Grad, M. (2016). Impact of wind on ambient noise recorded by seismic array in northern Poland. Geophysical Journal International, 205(3), 1406–1413.

    Article  Google Scholar 

  • Lott, F. (2016). Wind systems in the Dead Sea region and footprints in seismic records. Ph.D. thesis, Karlsruhe Institute of Technology. URL: http://dx.doi.org/10.5445/IR/1000059536.

  • Lott, F., Al-Qaryouti, M., Corsmeier, U., & Ritter, J. (2016). Dead Sea seismic array, Jordan for DESERVE project (Feb. 2014–Feb. 2015). Scientific Technical Report STR16/01, 16(01):1–11. doi:10.2312/GFZ.b103-16011.

  • McNamara, D., Hutt, C., Gee, L., Benz, H. M., & Buland, R. (2009). A method to establish seismic noise baselines for automated station assessment. Seismological Research Letters, 80(4), 628–637.

    Article  Google Scholar 

  • Mucciarelli, M., Gallipoli, M. R., Di Giacomo, D., Di Nota, F., & Nino, E. (2005). The influence of wind on measurements of seismic noise. Geophysical Journal International, 161(2), 303–308. doi:10.1111/j.1365-246X.2004.02561.x.

    Article  Google Scholar 

  • Naderyan, V., Hickey, C. J., Raspet, R. (2016). Wind-induced ground motion. Journal of Geophysical Research: Solid Earth, 121, 917–930.

    Google Scholar 

  • Orlanski, I. (1975). A rational subdivision of scales for atmospheric processes. Bulletin of the American Meteorological Society, 56, 527–530.

    Google Scholar 

  • Percival, D. B., & Walden, A. T. (1993). Spectral analysis for physical applications (1st ed.). Cambridge: Cambridge University Press. (xxvii, 583 pp).

    Book  Google Scholar 

  • Peterson, J. (1993). Observations and modeling of seismic background noise. Open file report 93-322.

  • Pierson, W., & Moskowitz, L. (1964). A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitaigorodski. Journal of Geophysical Research, 69(24), 51815190.

    Google Scholar 

  • Ritter, J., & Groos, J. (2007). Kyrills seismischer Fingerabdruck. Spektrum der Wissenschaft, 3, 19.

    Google Scholar 

  • Saccorotti, G., Piccinini, D., Cauchie, L., & Fiori, I. (2011). Seismic noise by wind farms: A case study from the Virgo Gravitational Wave Observatory, Italy. Bulletin of the Seismological Society of America, 101(2), 568–578.

    Article  Google Scholar 

  • Schulte-Pelkum, V., Earle, P. S., & Vernon, F. L. (2004). Strong directivity of ocean-generated seismic noise. Geochemistry Geophysics Geosystems, 5(3), 1–13.

    Article  Google Scholar 

  • Stammler, K., & Ceranna, L. (2016). Influence of wind turbines on seismic records of the Gräfenberg array. Seismological Research Letters, 87(5), 1075–1081. doi:10.1785/0220160049.

    Article  Google Scholar 

  • Tanimoto, T., & Artru-Lambin, J. (2007). Interaction of solid earth, atmosphere, and ionosphere. Treatise on Geophysics, 4, 421–444.

    Article  Google Scholar 

  • Tsvieli, Y., & Zangvil, A. (2007). Synoptic climatological analysis of Red Sea Trough and non-Red Sea Trough rain situations over Israel. Advances in Geosciences, 12, 137–143.

    Article  Google Scholar 

  • Van der Hoven, I. (1957). Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. Journal of Meteorology, 14(2), 160–164.

    Article  Google Scholar 

  • Wilcock, W. S., Webb, S. C., & Bjarnason, I. T. (1999). The effect of local wind on seismic noise near 1 Hz at the MELT site and in Iceland. Bulletin of the Seismological Society of America, 89(6), 1543–1557.

    Google Scholar 

  • Withers, M. M., Aster, R. C., Young, C. J., & Chael, E. P. (1996). High-frequency analysis of seismic background noise as a function of wind speed and shallow depth. Bulletin of the Seismological Society of America, 86(5), 1507–1515.

    Google Scholar 

  • World Meteorological Organization (1970) The Beaufort scale of wind force. Reports on Marine Science Affairs (3).

  • Zhang, J., Gerstoft, P., & Shearer, P. M. (2009). High-frequency P-wave seismic noise driven by ocean winds. Geophysical Research Letters, 36(9), 1–5. l09302.

    Google Scholar 

Download references

Acknowledgements

This study was part of the DESERVE project and as such funded by the Helmholtz Association (HGF). It was realized at the Institute of Meteorology (IMK) in close collaboration and with major support of the Geophysical Institute (GPI) at the Karlsruhe Institute of Technology (KIT). We want to thank Prof. Dr. Kottmeier for making the project possible and Werner Scherer for his expertise and commitment in the field work. In Jordan, we collaborated with the Ministry of Energy and Mineral Resources (MEMR) who supported this project beyond all expectations. Seismometers and data loggers were provided by the Geophysical Instrument Pool (GIPP) at the GeoForschunsZentrum (GFZ) Potsdam for all array stations. Waveforms from recording station GHAJ were provided by the GEOFON datacenter at GFZ (Hanka and Kind 1994).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friederike F. Lott.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lott, F.F., Ritter, J.R.R., Al-Qaryouti, M. et al. On the Analysis of Wind-Induced Noise in Seismological Recordings. Pure Appl. Geophys. 174, 1453–1470 (2017). https://doi.org/10.1007/s00024-017-1477-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1477-2

Keywords

Navigation