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Abstract

The dissolution of CaCO3 is one of the ways ocean acidification can, potentially, greatly affect the ballast of aggregates. A
diminution of the ballast could reduce the settling speed of aggregates, resulting in a change in the carbon flux to the deep
sea. This would mean lower amounts of more refractory organic matter reaching the ocean floor. This work aimed to
determine the effect of ocean acidification on the ballast of sinking surface aggregates. Our hypothesis was that the
decrease of pH will increase the dissolution of particulate inorganic carbon ballasting the aggregates, consequently
reducing their settling velocity and increasing their residence time in the upper twilight zone. Using a new methodology for
simulation of aggregate settling, our results suggest that future pCO2 conditions can significantly change the ballast
composition of sinking aggregates. The change in aggregate composition had an effect on the size distribution of the
aggregates, with a shift to smaller aggregates. A change also occurred in the settling velocity of the particles, which would
lead to a higher residence time in the water column, where they could be continuously degraded. In the environment, such
an effect would result in a reduction of the carbon flux to the deep-sea. This reduction would impact those benthic
communities, which rely on the vertical flow of carbon as primary source of energy.

Citation: de Jesus Mendes PA, Thomsen L (2012) Effects of Ocean Acidification on the Ballast of Surface Aggregates Sinking through the Twilight Zone. PLoS
ONE 7(12): e50865. doi:10.1371/journal.pone.0050865

Editor: Wei-Chun Chin, University of California, Merced, United States of America

Received March 26, 2012; Accepted October 29, 2012; Published December 18, 2012

Copyright: � 2012 de Jesus Mendes, Thomsen. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Support by the German project Biological Impacts of Ocean ACIDification (BIOACID), funded by the Federal Ministry of Education and Research (BMBF,
FKZ 03F0608B). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: p.mendes@jacobs-university.de

Introduction

Since the beginning of the industrial revolution, the ocean has

absorbed roughly half of the anthropogenic carbon dioxide

released by the burning of fossil fuels. The dissolution of CO2 in

the ocean leads to an increase in the concentrations of carbon

dioxide, carbonic acid, hydrogen ions and bicarbonate ions, and to

a decrease in carbonate ions. An increase in hydrogen ions will, by

definition, result in a decrease in pH [1]. Since atmospheric CO2

concentrations continue to increase, their effect on the carbon

cycle, and consequently on marine ecosystems, becomes a pressing

question. However, the pH of the ocean is naturally very variable,

and some authors argue that the projected changes in ocean pH

will have a negligible impact on non-calcifying marine micro-

organisms [2].

Nonetheless, even relatively small changes in physiology of such

microorganisms can result in shifts in marine biochemical cycling

of elements [3]. Adding the probable and significant changes in

the physiology of calcifying marine organisms, ocean acidification

may cause appreciable shifts in biochemical cycling mediated by

microorganisms.

Any shifts in the biochemical cycling of organic carbon, and its

subsequent transfer to the deeper ocean, are of great importance.

It is directly related to atmospheric CO2 concentrations, and deep-

sea ecosystems are largely dependent on it as a source of energy.

Atmospheric CO2 content is increasing at an alarming rate,

with projections pointing to partial pressures of 1100 matm (or

roughly three times the value in the year 2000) in the first decade

of the next century [4]. However, long term projections in climate

sciences have been in general conservative [5], so it is possible that

these values will occur sooner. Also, as stated above, the pH of the

ocean is naturally variable, so shifts to such high partial pressures

might occur sooner than the correspondent increase in the

atmosphere, and on vast areas of the ocean.

Sinking aggregates are a key component of the biological pump

of the oceans, transporting organic matter from the photic zone to

deeper waters [6]. A considerable part of the aquatic primary

production is removed from the surface through coagulation

processes and sedimentation of aggregates [7,8,9]. Aggregates are

hotspots of heterotrophic activity, and they are continually

consumed either by their own microbial community or by the

free-living microbial communities they encounter throughout their

descent [10,11].

The settling velocity of these aggregates will determine the

amount and quality of organic matter that survives remineraliza-

tion during the descent [12,13]. This will be mainly determined by

the ballast of the aggregates, be it biogenic or lithogenic.

It has been recognized that the POC:ballast ratio has quite

constant values throughout the water column [12]. This ratio

varies for the more important ballasts: silica, carbonates and dust,

and the flux of these can account for up to 90% of the POC flux to

the deep sea when they are all taken into account in the same

multiple regression analysis. In comparison, individual linear

regressions account at most for 60% of this flux [13]. They have

also shown that the transport efficiencies of the different ballasts

did not vary significantly after 1000 m. This suggests that the
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processes shaping the aggregates occur above this depth, the so

called twilight zone.

Ocean acidification has the potential to severely affect the

ballast of aggregates, mainly due to the dissolution of CaCO3. This

would reduce the settling speed of aggregates and result in a change

in the carbon flux to the deep sea, with lower amounts of less

bioavailable organic matter reaching the ocean floor. CaCO3 can

have a lithogenic origin, due to weathering of rocks or

resuspension of CaCO3-rich sediment [14], and/or a biogenic

origin, mainly via calcifying marine microbes and the recently

discovered fish excreted carbonates [15].

This work aimed to determine the effect of ocean acidification

on the ballast of surface aggregates. Our hypothesis was that the

decrease of pH will increase the dissolution of particulate inorganic

carbon ballasting the aggregates, consequently reducing their

settling velocity and increasing their residence time in the upper

twilight zone. We have verified that such a decrease in settling

velocity occurs under a high concentration of CO2. The

implications of this decrease are discussed.

Materials and Methods

Model Aggregates
Since the flux of POC is so closely related to the three more

important ballasts identified by Klaas and Archer (carbonate,

kaolinite and smectite) [13], all three were incorporated in our

experiments, to more precisely mimic the naturally occurring

particles. Hamm [16] studied the effects of different lithogenic

material in the aggregation and sedimentation of different

diatoms. He used up to 100 mg.l21 of individual materials, and

confirmed that lithogenic particles aggregate efficiently with POC

and may significantly increase the sinking rate of the produced

aggregates. Although his work did not include a mix of the more

important ballasts, it supplied a range of concentrations within

which our aggregation experiments could be carried out. Model

aggregates were produced in a Couette chamber similar in design

to that of Drapeau et al. [17]. A culture of Thalassiosira weissflogii

(OD 0.8) was incubated under a shear rate of 0.7 s21 with a mix of

25 mg.l21 of carbonate, 25 mg.l21 of kaolinite and 25 mg.l21 of

smectite. This produced aggregates that were small and resilient

enough to be used in our experimental setup, while retaining the

three more important ballasts identified by Klaas and Archer [13].

Settling Microcosm
A new chamber was designed for the simulation of sinking

aggregates at different settling velocities, the settling microcosm.

Inside the chamber were three experimental cylinders, a pump

and two sensors (Fig. 1). The three cylinders had in their central

section an experimental volume, delimited below and above by

a 63 mm mesh. The pump inside the experimental chamber

creates an upward fluid flow throughout the cylinders, to simulate

the direction of flow experienced by the particles as they sink

through a natural environment. This is a variation on the concept

of Plough and Jorgensen [18] in which model aggregates were

suspended in an upward flow mediated by a nylon mesh. The

carbonate chemistry was controlled in real time by a CO2 sensor

(Microelectrodes Inc.) and a pH sensor (AMT GmbH). The CO2

sensor had a range up to 9000 matm. The pH sensor had

a measuring range between 0 and 14 pH. The settling microcosms

and the sensors therein can be used at pressures up to 60 MPa.

The settling microcosm was placed inside a pressure chamber, its

pump and sensors connected to the outside control and readout

systems through SubConn underwater connectors. The whole

setup was kept in a refrigerated chamber to keep it at the

appropriate temperature (60.3uC).

Carbonate Chemistry Perturbation
The carbonate chemistry of the water used in the experiment

was altered by chemical manipulation [19]. Conditions expected

in future oceans of 1100 matm were achieved by addition of

0.1 M HCl, 0.001 M Na2CO3 and 0.1 M NaHCO3 to the

filtered artificial seawater. The volumes of the chemicals added

were calculated using the seacarb package for R [20,21]. The

carbonate chemistry was altered in the closed experimental

chamber to prevent gas exchange. Measurements of pH and

Figure 1. The settling microcosm used in our experiment; A: Diagram showing the components of the settling microcosm: a) pump,
b) 63 mm mesh delimiting the experimental volume, c) collimators to regulate the water flow, d) p,h sensor, e) CO2 sensor, f)
flexible membrane to equalize the pressure; 1 B: a) closed settling microcosm, connected to the lid of the pressure chamber, with
the experimental tubes in first plan, b) detail of the settling microcosms, with the pH sensor and recirculation pump in first plan, c)
detail of the settling microcosms, with the CO2 sensor in first plan, d) closed pressure chamber, e) refrigerated chamber.
doi:10.1371/journal.pone.0050865.g001
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CO2 concentration confirmed that the carbonate system was

altered as planned. Samples were prepared and processed

following the ‘‘Guides to Best Practices for Ocean CO2

Measurements’’ [22].

Incubation Setup
The aggregates were placed inside the settling microcosm. The

microcosm was filled with GF/F filtered, artificial seawater (32

psu) with a carbonate chemistry adjusted to the present or future

conditions. This reduced the biological activity to the community

originally present in the aggregates. The microcosm was

continuously pressurized at a rate of 30 MPa/day, until it reached

10 MPa, the equivalent to a depth of 1000 m. The full incubation

lasted 80 h. The experiment was triplicated at a pCO2 of

380 matm and 1100 matm. Additional incubations of similar

duration were done at atmospheric pressure, with triplicates at

a pCO2 of 380 matm and 1100 matm. These aimed at isolating the

effect of the increase in hydrostatic pressure.

Determination of Organic and Inorganic Carbon Content
Aggregate samples were concentrated onto precombusted

Whatman GF/F glass filters and analyzed for organic carbon

[23]. The filters were dried at 60uC overnight. After weighting,

a section of each filter was placed into a silver cup and

decarbonated with 1 M HCl to determine the organic carbon

content. The samples were dried at 60uC and the process repeated

until bubbling stopped. The cups were closed and compacted into

spheres. These samples were analyzed with a Euro-EA Elemental

analyzer (Hekatech) standardized with acetanilide. The inorganic

carbon content was determined from the difference between the

total carbon content and the organic carbon content.

Determination of Particle Size and Settling Velocity (ws)
A Laser In Situ Scattering and Transmissiometry device

(LISST-100X) was used to measure the variations in particle size

distribution of the model aggregates before and after the

incubations. The particle size vs. settling velocity relationship of

phytodetrital aggregates was investigated by using a settling

column of square cross-section [24]. The particles were back-

illuminated and recorded with a digital video camera (Imageworks

DFK-41F02) for determination of settling rates and particle sizes.

The camera was capable of resolving particles of .11 mm
diameter. The analysis of the particle sizes and settling velocities

was done using the ImageJ (v.1.61) software. The resulting settling

speeds were converted into m day21 velocities, and the average

speed for each of the aggregate size classes was calculated for the

equivalent size classes of the LISST analysis (.63 mm, .75 mm,

.88 mm, .104 mm, .122 mm, .144 mm, .170 mm, .201 mm,

.237 mm, .280 mm, .331 mm, .390 mm, .460 mm).

Statistical Analysis
The raw data were plotted (median with standard deviations) for

presentation. For statistical analysis the data were standardized

using the quotient of the values after the incubation (Post-Inc) by

the values before the incubation (Pre-Inc).

The normality of the data was assessed with the Shapiro-Wilk

test. A two-way ANOVA was performed to determine the

statistical significance of the effects of pressure, pCO2, and the

combination of both on the POC and PIC data.

For the ws and size data a multivariate general linear model was

used to determine the statistical significance of the effects of

pressure, pCO2, and the combination of both on the different

aggregate size classes.

All the statistical analyses were performed using the software

SPSS20 (IBM).

Results

PIC and POC
A significant decrease of particulate inorganic carbon (PIC)

occurred under both the pCO2 conditions tested during the

pressurized treatments, being most pronounced at 1100 matm
(Fig. 2). PIC score was normally distributed for all group

combinations of pCO2 and pressure, as assessed by the Shapiro-

Wilk test (p.0.05). There was homogeneity of variances, as

assessed by the Levene Test of Homogeneity of Variance

(p = 0.383). There was a statistically significant effect of both

pCO2 (p,0.001) and pressure (p,0.001) on the PIC decrease.

Under atmospheric pressure the variation of PIC was less

pronounced. There was a statistically significant interaction

between pCO2 and pressure, F(1,8) = 297, p,0.001, partial

g2= 0.974. Under future ocean conditions of 1100 matm the

pressurized treatment led to the loss of almost 50% of the CaCO3

ballast in the aggregates.

There was a significant decrease of particulate organic carbon

(POC), in all treatments (Fig. 2). POC score was normally

distributed for all group combinations of pCO2 and pressure, as

assessed by the Shapiro-Wilk test (p.0.05). There was homoge-

neity of variances, as assessed by the Levene Test of Homogeneity

of Variance (p = 0.164). There was a statistically significant effect

of both pCO2 (p,0.001) and pressure (p,0.001). There was

a higher loss of POC under future ocean conditions when

compared to present conditions. There was a statistically signif-

icant interaction between pCO2 and pressure (p = 0.009) that

seems to decrease the POC degradation. The pressurized

treatments showed a lower loss of POC than their unpressurized

counterparts (Fig. 2).

Particle Size
There was significant variation in particle size (Fig. 3) for the

separate size classes. The particle size score was normally

distributed for all group combinations of pCO2 and pressure, as

assessed by the Shapiro-Wilk test (p.0.05). There was homoge-

neity of variances, as assessed by the Levene Test of Homogeneity

of Variance (p.0.05). Under simulated future pCO2 conditions of

1100 matm, but only during the pressurized treatment, there was

a significant shift from larger aggregates to smaller ones. There

was a decrease of aggregate abundance in the .390 and

.460 mm size classes, while the .280 and .331 mm sized

aggregates increased in numbers. These four size classes comprised

more than 75% of the aggregate numbers. Pressure had

a significant effect on this number variation in 3 of the 4 largest

size classes (.460 mm, p= 0.023; .331 mm, p=0.004; .280 mm,

p= 0.031). The interaction of pressure and pCO2 only had

a significant effect on the largest size class (.460 mm, p=0.037).

Settling Velocity (ws)
In the sinking simulations, under both present and future pCO2

conditions, the aggregate settling velocities (ws) decreased in

virtually all the size classes (Fig. 4). In the atmospheric pressure

simulations there was a decrease in the ws of the larger size classes

(.237 and above for the present pCO2 conditions, .280 and

above for the future pCO2 conditions). For both the present and

simulated atmospheric conditions, the decrease in larger particle

sizes was accompanied by an increase in the smaller size classes.

Pressure had a significant effect on the ws of the 8 smallest size

classes: .63 mm (p= 0.002), .75 mm (p= 0.024), .88 mm

Effects of OA on the Ballast of Sinking Aggregates
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(p = 0.046), .104 mm (p= 0.017), .122 mm (p=0.004),

.144 mm (p= 0.011), .170 mm (p= 0.002), .201 mm
(p= 0.008), and of the largest size class (.460 mm, p= 0.034).

The pCO2 had a significant effect on the ws of the aggregates

.104 mm (p= 0.04), .122 mm (p= 0.031), .280 mm (p= 0.033),

.331 mm (p= 0.007) and .390 mm. The interaction of pressure

and pCO2 had a significant effect on the ws of aggregates.63 mm
(p= 0.018), .201 mm (p= 0.047), .237 mm (p= 0.047) and

.280 mm (p= 0.008). Settling velocity was normally distributed

for all group combinations of pCO2 and pressure, as assessed by

the Shapiro-Wilk test (p.0.05). There was homogeneity of

variances, as assessed by the Levene Test of Homogeneity of

Variance (p.0.05).

Discussion

PIC and POC
The influence of hydrostatic pressure on the dissolution of PIC

in the ocean has been previously calculated [25], and some

experimental data exist on the effect of hydrostatic pressure on the

dissolution-precipitation of calcite [26] and aragonite [27]. Our

experiments confirmed an enhanced dissolution of PIC in

aggregates under increasing hydrostatic pressure. The increased

PIC dissolution under acidified conditions means that, in future

acidified oceans, there will be an increased release of alkalinity in

an earlier stage of the aggregate flux, at shallower depths than at

present, due to the dissolution of carbonates. This effect can slow

down the vertical transfer of alkalinity, effectively reducing a net

source of atmospheric CO2 [28].

In contrast, differences in POC degradation were larger under

conditions of atmospheric pressure. These results suggest that the

degradation of POC within the twilight zone was reduced under

enhanced hydrostatic pressure. An inhibition of the bacterial

community of surface aggregates under enhanced hydrostatic

pressure has been previously described [29,30,31], and is

potentially an important mechanism in the preservation of organic

matter during fast vertical transport. Additionally, the degradation

of POC was intensified under simulated future pCO2 conditions.

This suggests that more acidified future oceans will increase the

rate of dissolution of organic matter in the upper water column.

This would increase the pCO2 of the upper layers, which would

affect the equilibrium with the atmosphere, thus slowing the

uptake of atmospheric CO2 [32].

Particle Size
Approximately 75% of the particles were larger than 280 mm,

both before and after the incubation. These largest size classes

were more affected by the simulated environmental conditions

Figure 2. Variation of the percentages of POC and PIC before (Pre-Inc) and after the incubation (Post-Inc), for all the treatments. The
horizontal bars show the standard deviation.
doi:10.1371/journal.pone.0050865.g002
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of increased pCO2 and pressure, with the higher loss of particle

numbers occurring in the 390 and 460 mm size classes. This

suggests that a disaggregation process occurred with these larger

aggregates. This disaggregation resulted in a relative increase of

the 280 and 331 mm size classes. This disaggregation process

can be an effect of the higher rates of inorganic carbon

dissolution observed, which would alter the mineral matrix of

the aggregate. Changes in mineral matrix have been observed

to alter the size of aggregates [33]. Based on that study [33] the

increase of mineral load would lead to a disaggregation, with

a reduction in size of the aggregates. Thus we would not expect

a disaggregation as consequence of the reduction of ballast.

However, the overall alumino-silicate load of the system

remained constant during the experiment, which might imply

a greater role of carbonates in establishing the cohesion of

larger aggregates. This was noted by Engel et al [34], who

observed that the presence of CaCO3 stimulated aggregation

processes in phytoplanktonic aggregates and resulted in larger

and faster sinking aggregates. The loss of carbonates would then

result in enhanced disaggregation.

Settling Velocity (ws)
Under future pCO2 conditions, the size classes of 280 and

330 mm show a reduction in settling velocity. This result is also in

accordance with the results of Engel et al [34] and can be related

to the decrease in CaCO3 and disaggregation of larger aggregates.

These size classes increased as a percentage of total particles due to

the disaggregation of larger particles. As seen above, this

disaggregation can be related to the loss of CaCO3 ballast, which

would also explain the reduction in settling velocity. This decrease

of the settling velocity would consequently slow the flux of matter

to the deep-sea because the settling velocity of an aggregate is

directly related to the amount and quality of organic matter that

will resist degradation during the descent [12,13]. Such a decrease

in the settling speed would result in enhanced residence times

during which aggregates could be colonized by barophilic bacteria

and degraded [31]. The statistical analysis indicates that this effect

is dependent both on the pCO2 conditions and the hydrostatic

pressure. This suggests that in a future acidified ocean aggregates

formed at the surface would settle slower, and consequently be

more effectively degraded than in the present ocean.

Figure 3. Variation of particle size before (Pre-Inc) and after the incubation (Post-Inc), for all the treatments. The horizontal bars show
the standard deviation.
doi:10.1371/journal.pone.0050865.g003
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Implications
The CO2 exchanges between the atmosphere and the ocean are

biologically mediated, and depend on the ‘‘rain ratio’’ [13,35]

which is the ratio between the production and vertical export of

POC and the production and vertical export of PIC. This ratio

will affect the pH of deeper waters, determining the long term

capture of CO2 [35]. It is not clear from our data how the rain

ratio will be affected in future oceans, since there are competing

mechanisms at play. On the one hand, the vertical export of PIC

will be reduced due to a shallower dissolution of carbonates. On

the other hand, there will be an elevated degradation of POC,

which the consequent reduction of settling velocity due to loss of

ballast will further enhance. Nonetheless, and independently of the

rain ratio, overall lower amounts of labile organic carbon would be

exported to the deep-sea communities via benthic pelagic

coupling. Our results also suggest that studying these phenomena

solely under atmospheric pressure will underestimate the effects on

the size and settling velocity of the aggregates, while over-

estimating the export flux of the organic matter.

Conclusions
This experiment has shown that future pCO2 conditions can

significantly change the ballast composition of sinking aggregates.

The change in aggregate composition in turn shifts the size

distribution of the aggregates, and the shift to smaller aggregates

leads to a higher residence time of the aggregates in the water

column, where it can be continuously degraded. In the environ-

ment, such an effect would result in a reduction of the carbon flux

to the deep-sea. This reduction would impact those benthic

communities, which rely on the vertical flow of carbon as primary

source of energy. This effect will be felt in the beginning of the

22nd century, or – if projections continue to prove conservative –

even in the later part of the 21st century. It will possibly pose a great

threat to biodiversity in these communities, especially in areas at

high latitudes, where the impact of temperature increase and drop

of pH will already be felt in deeper waters.

This experiment also shows the need for the use of experimental

setups that assure realistic conditions of hydrostatic pressure, when

studying the effects of ocean acidification in deeper waters.

Figure 4. Variation of settling velocity per particle size before (Pre-Inc) and after the incubation (Post-Inc), for all treatments. The
horizontal bars show the standard deviation.
doi:10.1371/journal.pone.0050865.g004
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