Skip to main content
Log in

Modelling seasonality in extreme precipitation

A UK case study

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We examine a statistical model for the description of the seasonal variation of extreme daily precipitation at 689 stations across the UK. The probability distribution for monthly maximum precipitation intensity is modelled with a generalised extreme-value distribution (GEV). Instead of modelling the distribution of precipitation maxima separately for every month, we propose an overall model with seasonally-varying location and scale parameters and a constant shape parameter. This model is tested against an augmented version with the shape parameter allowed to vary as well. Furthermore, we compare model adequacy for block length of one and two month and found no major improvements for the longer block-length. Based on this model, the 10 and 100-year return levels are calculated conditioned on the month of the year. The interpolation of return levels to a complete coverage of the UK allows for an identification of spatial patterns and their temporal evolution. These patterns suggest that different mechanisms for extreme precipitation are dominant in different regions of the UK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • K.E. Trenberth, P.D. Jones, P. Ambenje, R. Bojariu, D. Easterling, A.K. Tank, D. Parker, F. Rahimzadeh, J.A. Renwick, M. Rusticucci, B. Soden, P. Zhai, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007), Chap. Observations: Surface and Atmospheric Climate Change, p. 235

  • G.A. Meehl, T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M. Gregory, A. Kitoh, R. Knutti, J.M. Murphy, A. Noda, S.C.B. Raper, I.G. Watterson, A.J. Weaver, Z.C. Zhao, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007), Chap. Global Climate Projections, p. 747

  • D. Maraun, T.J. Osborn, N. Gillett, Int. J. Climatol. 28, 833 (2008)

    Google Scholar 

  • T.J. Osborn, M. Hulme, Phil. Trans. R. Soc. Lond. A 360, 1313 (2002)

    Google Scholar 

  • T.J. Osborn, M. Hulme, P.D. Jones, T.A. Basnett, Int. J. Climatol. 20, 347 (2000)

    Google Scholar 

  • H.J. Fowler, C.G. Kilsby, Int. J. Climatol. 23, 1313 (2003)

    Google Scholar 

  • J. Beirlant, Y. Goegebeur, H. Segers, J. Teugels, Statistics of Extremes: Theory and Applications, Series in Probability and Statistics (Wiley, 2004)

  • S.G. Coles, An Introduction to Statistical Modelling of Extreme Values (Springer, London, 2001)

  • P. Embrechts, C. Klüppelberger, T. Mikosch, Modelling Extremal Events for Insurance and Fincance (Springer, Berlin, 1997)

  • B.G. Brown, R.W. Katz, J. Climate 8, 108 (1995)

    Google Scholar 

  • S.G. Coles, J.A. Tawn, Appl. Stat. 45, 463 (1996)

    Google Scholar 

  • R.W. Katz, M.B. Parlange, P. Naveau, Adv. Water Res. 25, 1287 (2002)

    Google Scholar 

  • P. Naveau, M. Nogaj, C. Ammann, P. Yiou, D. Cooley, V. Jomelli, C.R. Geoscience 377, 1013 (2005)

    Google Scholar 

  • D. Maraun, H.W. Rust, T.J. Osborn, Int. J. Climatol, doi:10.1002/joc.1811 (2009)

  • M. Nogaj, P. Yiou, S. Parey, F. Malek, P. Naveau, Geophys. Res. Lett. 33, L10801 (2006)

  • M. Kallache, Trends in the Mean and Extreme Values of Hydro-Meteorological Time Series, Ph.D. thesis (University of Bayreuth, Bayreuth, 2007)

  • J. Méndez, M. Menédez, L. Luceño, I.J. Losada, J. Atmos. Oceanic Technol. 24, 894 (2007)

    Google Scholar 

  • R.A. Fisher, L.H.C. Tippett, Proc. Cambridge Phil. Soc. 24, 180 (1928)

    Google Scholar 

  • M.R. Leadbetter, G. Lindgren, H. Rootzén, Extremes and related properties of random sequences and processes (Springer, New York, 1983)

  • H.W. Rust, Eur. Phys. J. Special Topics 174, 91 (2009)

    Google Scholar 

  • J.R.M. Hosking, J.R. Wallis, E.F. Wood, Technometrics 27, 251 (1985)

  • R.L. Smith, Biometrika 72, 67 (1985)

  • R.W. Katz, M.B. Parlange, C. Tebaldi, Clim. Change 60, 189 (2003)

    Google Scholar 

  • T.J. Osborn, J.M.G.D. Conway, M. Hulme, P.D. Jones, Clim. Res. 13, 173 (1999)

    Google Scholar 

  • D. Maraun, H.W. Rust, T.J. Osborn, Clim. Dyn. (2009) (submitted)

  • R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2004)

  • Original S functions by Stuart Coles and R port and R documentation files by Alec Stephenson. ismev: An Introduction to Statistical Modeling of Extreme Values (2006) R package version 1.3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. W. Rust.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rust, H., Maraun, D. & Osborn, T. Modelling seasonality in extreme precipitation. Eur. Phys. J. Spec. Top. 174, 99–111 (2009). https://doi.org/10.1140/epjst/e2009-01093-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2009-01093-7

Keywords

Navigation