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Summary

� The macroevolutionary processes that have shaped biodiversity across the temperate realm

remain poorly understood and may have resulted from evolutionary dynamics related to

diversification rates, dispersal rates, and colonization times, closely coupled with Cenozoic cli-

mate change.
� We integrated phylogenomic, environmental ordination, and macroevolutionary analyses

for the cosmopolitan angiosperm family Rhamnaceae to disentangle the evolutionary pro-

cesses that have contributed to high species diversity within and across temperate biomes.
� Our results show independent colonization of environmentally similar but geographically

separated temperate regions mainly during the Oligocene, consistent with the global expan-

sion of temperate biomes. High global, regional, and local temperate diversity was the result

of high in situ diversification rates, rather than high immigration rates or accumulation time,

except for Southern China, which was colonized much earlier than the other regions. The rela-

tively common lineage dispersals out of temperate hotspots highlight strong source-sink

dynamics across the cosmopolitan distribution of Rhamnaceae.
� The proliferation of temperate environments since the Oligocene may have provided the

ecological opportunity for rapid in situ diversification of Rhamnaceae across the temperate

realm. Our study illustrates the importance of high in situ diversification rates for the estab-

lishment of modern temperate biomes and biodiversity hotspots across spatial scales.

Introduction

Understanding the historical processes responsible for heteroge-
neity in the distribution of species richness across the globe is a
major goal in evolutionary biology (Schluter & Pennell, 2017).
The most prominent diversity pattern at the global scale is the
tendency for species richness to increase toward the equator, that
is the latitudinal diversity gradient (Hillebrand, 2004; Jablonski
et al., 2006; Mittelbach et al., 2007). However, deviations from
this global pattern, such as the high species richness and

endemism in temperate biomes (i.e. bimodal latitudinal diversity
gradient) rather than tropical biomes, remain puzzling (Orr
et al., 2021). Indeed, one-third of the world’s biodiversity hot-
spots (Myers et al., 2000) – regions that contain high levels of
plant species richness and endemism yet are under threat from
human activities – are located in temperate zones (Igea &
Tanentzap, 2019), such as the five Mediterranean-type ecosys-
tems (MTEs, i.e. California Floristic Region, Mediterranean
Basin, Cape Floristic Province, Southwest Australia, Chilean
Winter Rainfall-Valdivian Forests; Rundel et al., 2016) and the
Northern-Hemisphere mountain hotspots (e.g. Hengduan
Mountains, Himalayas; Xing & Ree, 2017). A series of studies*These authors contributed equally to this work and share senior authorship.
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has clarified patterns of high species richness and endemism in
specific temperate areas, such as mountains, through uplift-driven
diversification (Hughes, 2017; Zhang et al., 2021). However,
whether high diversification rates characterize temperate biodi-
versity hotspots more generally remains unclear due to the lack of
a global analysis focused on temperate diversification. A global
perspective is needed to understand whether temperate biodiver-
sity is the result of similar drivers, such as climatic changes at glo-
bal scales (e.g. global cooling and aridification since the Eocene–
Oligocene boundary; Zachos et al., 2001) and evolutionary pro-
cesses (e.g. rapid speciation), or whether each region has a unique
set of diversity drivers.

Current species diversity in temperate regions may be the out-
come of three main evolutionary processes. First, in situ diversifi-
cation rates – the balance between speciation and extinction
within temperate regions – may have contributed to extant diver-
sity. Indeed, many plant evolutionary radiations characterized by
high diversification rates are thought to have occurred entirely in
temperate biomes, such as the Phylica (Rhamnaceae) and Moraea
(Iridaceae) radiations in the Cape flora of southern Africa
(Richardson et al., 2001; Goldblatt et al., 2002), and the Dia-
nthus (Caryophyllaceae), Tragopogon (Asteraceae), and Cistus
(Cistaceae) radiations in the Mediterranean Basin (Guzman
et al., 2009; Valente et al., 2010; Bell et al., 2012; Rundel
et al., 2016). Second, differences in historic rates of lineage dis-
persal can result in some temperate areas acting as ‘sources’, that
is providing frequent dispersal of lineages emigrating to other
regions where climatic conditions are suitable, and others as
‘sinks’, with high dispersal rates of lineages immigrating into the
region, thereby increasing overall species richness. Immigration
has been shown to play a significant role in the formation of
regional biodiversity in the Hengduan Mountains and Himalayas
(Xing & Ree, 2017; Ding et al., 2020). Lastly, the time-for-
speciation hypothesis (Stephens & Wiens, 2003) states that gra-
dual diversification over time may lead to the build-up of species
richness in a region, predicting that dispersal and diversification
regimes do not differ among regions but instead regions that were
colonized early harbor higher species richness than regions colo-
nized later, either as a result of differences in biome or region age
or differences in colonization opportunities. Time-for-speciation
is often invoked to explain high diversity in the tropics, because
tropical biomes are generally thought to be older than temperate
ones, and may thus have accumulated diversity over longer peri-
ods of time (Mittelbach et al., 2007; Pontarp et al., 2019). Over-
all, contrasting mechanisms have been invoked to explain the
distribution of biodiversity across individual temperate areas, but
we lack global clarity on which processes are most important.

Macroevolutionary processes of lineage diversification, disper-
sal, and gradual diversity accumulation reflect a background of
dynamic environmental and geological change. For example,
although hot and humid rainforest biomes probably date back to
the Cretaceous (c. 100 million years ago (Ma)) at middle paleola-
titudes (Morley, 2000), climate cooling and aridification since
the Eocene–Oligocene boundary (c. 34 Ma) has led to the global
proliferation of temperate biomes (Zachos et al., 2001; Palazzesi
et al., 2022). Expansion of temperate habitats is thought to have

provided ecological opportunities for lineages to colonize and
diversify (Simpson, 1953; Donoghue, 2008; Stroud & Losos,
2016). Indeed, many temperate-adapted lineages evolved and
diversified around and after the Oligocene, such as drought- and
cold-adapted C4 grasses (Poaceae), succulents (e.g. Aizoaceae
and Cactaceae), and orchids (Orchidoideae), leading to the sub-
sequent spread of grasslands and deserts (Arakaki et al., 2011;
Spriggs et al., 2014; Palazzesi et al., 2022; Thompson et al.,
2023a,b). In most of these cases, it is thought that lineages
already possessed traits needed for colonizing a new region, and
that the niche was largely conserved as lineages radiated after arri-
val (Wiens & Donoghue, 2004; Donoghue, 2008; Crisp et al.,
2009; Donoghue & Edwards, 2014). Thus, niche conservation
likely limits evolutionary transitions between biomes, especially
between tropical and temperate biomes (Wiens & Donoghue,
2004; Crisp et al., 2009), which greatly differ in terms of envir-
onmental challenges (Folk et al., 2020). While rare, the gain of
physiological adaptations to tolerate abiotic stress, such as freez-
ing pressure, has been observed repeatedly across the angiosperm
Tree of Life (Zanne et al., 2018; Folk et al., 2020). As a reflection
of niche conservatism, it is thought that transitions from tropical
to temperate biomes were facilitated by adaptations to seasonally
dry tropical environments, because ancestral tropical lineages
already possessed traits facilitating seasonal stressors such as
drought complementary to the physiological traits needed for
surviving freezes (Edwards et al., 2017; Folk et al., 2020). While
such exaptations provided a means for tropical lineages to shift
into temperate regions, these shifts were rare and it is more likely
that lineage dispersals happened frequently between temperate
regions, thereby contributing to the overall build-up of
temperate biodiversity. Temperate biomes are also thought to
differ in age across the globe, with old temperate biomes (e.g.
sclerophyll biomes) tending to serve as a source for lineage disper-
sal to younger ones (e.g. arid, alpine, grassland) (Crisp
et al., 2009; Donoghue & Edwards, 2014). Thus, work to date
suggests that any of the three potential diversity drivers (in situ
diversification, dispersal, and time-for-speciation) may be respon-
sible for centers of temperate diversity.

To understand the processes that underlie temperate centers of
biodiversity, we examine historical eco-evolutionary dynamics
through a suite of phylogenetic comparative methods with a
focus on one angiosperm clade. We defined temperate biomes in
terms of both geographic and K€oppen-Geiger climatic definitions
of tropics (Peel et al., 2007), because different criteria may result
in different inferences (Feeley & Stroud, 2018). The geographic
definition identifies the region outside the range between 23.4°N
and 23.4°S as temperate biomes, whereas the climatic definition
identifies the region with year-round monthly mean temperatures
of < 18°C as temperate biomes. We hypothesize (H1) that the
colonization of temperate biomes happened independently and
contemporaneously across lineages, due to global cooling
and drying since the Oligocene, leading to parallel origins of tem-
perate environments on different continents. Second, we
hypothesize (H2) that global and regional species richness in tem-
perate biomes are the result of high in situ diversification rates,
rather than high immigration rates or early colonization times.
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Specifically, we expect that temperate systems provided novel
ecological opportunities or ‘adaptive zones’ (Simpson, 1953) for
increased diversification rates with limited immigration from tro-
pical regions and relatively recent and similar colonization times
across areas. This scenario down-weights models assuming gra-
dual diversity accumulation over time, since it explicitly suggests
late origination and provides little time for temperate diversity to
differentially increase among areas. Finally, we hypothesize (H3)
that movement between temperate regions is relatively common;
that is, there are strong source-sink dynamics that provide an
engine for the unequal accumulation of lineages in today’s centers
of diversity.

To test these hypotheses, we focus on the buckthorn family
Rhamnaceae (Rosales), a clade with a nearly cosmopolitan distri-
bution of c. 1100 species within 63 genera (POWO,
http://plantsoftheworldonline.org/). Rhamnaceae comprise pre-
dominantly woody shrubs with sclerophyllous leaves, exhibiting
high diversity in fire-prone scrublands in temperate
Mediterranean-type ecosystems, but also occurring in desert
environments and temperate to tropical forests (Medan & Schir-
arend, 2004; Ladiges et al., 2005; Onstein et al., 2015, 2016).
We reconstructed and dated the most comprehensive Rhamna-
ceae phylogeny to date, with extensive sampling of genera and
species (574 species in 58 genera, or c. 52.2% and 92.0%, respec-
tively) and genetic regions (89 low-copy nuclear loci). We then
defined geographic- and climatic-based temperate biomes, and
reconstructed the diversification history of Rhamnaceae across
the temperate biome as a whole, within the most species-rich
regions, and across local assemblages, in an effort to identify
cross-scale macroevolutionary processes.

Materials and Methods

Plant sampling, sequencing, and data processing

We sampled 574 Rhamnaceae species (c. 52.2% of the 1100
recognized species according to POWO) from 58 genera (of the
63 genera according to POWO), with representatives of all 11
tribes and 9 of 10 genera unassigned to any tribe (Richardson
et al., 2000a,b; Hauenschild et al., 2016). Three species of
Elaeagnaceae and one species each of Barbeyaceae and Dirachma-
ceae (Rosales) were included as outgroups (Li et al., 2021).

Leaf material was collected from the following herbaria: A,
AD, BRI, CAS, F, KUN, MEL, MO, NY, OS, PERTH, TEX,
and US as well as from the field (Supporting Information
Dataset S1), and total DNA was extracted using a modified
CTAB method following the protocol described in Folk et al.
(2021). Target enrichment probes (Folk et al., 2021; Fu
et al., 2022) were used to capture 100 low-copy nucleotide genes,
and hybridization enrichment sequencing (Hyb-seq) was con-
ducted by Rapid Genomics (Gainesville, FL, USA). Raw
sequenced reads were cleaned and filtered as follows: Illumina
adapter sequence artifacts were trimmed, low-quality reads were
discarded, and low-quality read ends were trimmed using TRIM-

MOMATIC v.0.32 (Bolger et al., 2014). Assembly of the processed
nuclear reads was performed using HYBPIPER v.1.2 (Johnson

et al., 2016), a reference-based assembler, using the 100 protein
sequences from Arabidopsis thaliana used for probe design as the
reference. Reads were mapped to each reference using BLASTX

v.2.7.1 (Camacho et al., 2009), each gene was assembled de novo
using SPADES v.3.12.0 (Bankevich et al., 2012), and coding
sequences were extracted using EXONERATE v.2.4.0 (Slater & Bir-
ney, 2005). Each gene missing > 75% of the sampled species was
excluded. As a result, 89 loci were kept for further analysis.

Phylogenetic analyses and divergence time estimation

The sequences of each targeted gene region were initially aligned
using MAFFT (Katoh & Standley, 2013) using default settings. To
reduce errors in our alignments (i.e. gap-heavy and ambiguously
aligned sites), we cleaned the original alignment of each gene
using ‘pxclsq’ in PHYX (Brown et al., 2017), removing alignment
columns with < 30% occupancy. The cleaned alignments were
concatenated into a supermatrix using the ‘pxcat’ function in
PHYX. This supermatrix (Dataset S2) was then used to infer phylo-
genetic relationships in Rhamnaceae using the GTR-GAMMA
model with 1000 bootstrap replicates in RAXML v.8.2.11 (Sta-
matakis, 2014). In addition, a coalescent species tree was inferred
from the 89 best maximum likelihood (ML) single-gene trees,
which were built in RAXML v.8.2.11 using the GTR-GAMMA
model with 200 bootstraps (BS), using ASTRAL-III v.5.6.3 (Zhang
et al., 2018). Branches with < 10% BS in each gene tree were col-
lapsed using Newick utilities (Junier & Zdobnov, 2010).

The concatenated supermatrix and the corresponding ML tree
were used for dating analysis. We estimated divergence times
using the penalized likelihood method implemented in TREEPL
(Smith & O’Meara, 2012). Six fossils and a secondary calibration
were used to calibrate node ages (more details in Methods S1).
We used an optimal smoothing parameter determined by the
‘random subsample and replicate’ cross-validation method to
accommodate rate heterogeneity. To assess uncertainty in age
estimates, we estimated confidence intervals on inferred ages by
dating all 100 ML bootstrap trees from the concatenated dataset
(Maurin, 2020). Results from the dating of the bootstrapped
trees were then summarized and visualized on the concatenated
ML tree using TREEANNOTATOR v.2.6.3 (Bouckaert et al., 2014).

Global patterns of Rhamnaceae temperate biomes, species
diversity, and biodiversity ‘hotspots’

To illustrate the distribution and species richness of Rhamnaceae
across temperate biomes, we collected occurrence data of all
Rhamnaceae species from the global biodiversity information
facility (GBIF, https://www.gbif.org/). The World Checklist of
Vascular Plants (WCVP, http://wcvp.scien ce.kew.org/) was used
to standardize species with accepted names, and the infraspecific
taxa and exotic and hybrid species were excluded. POWO was
used to provide the native status for each species. These occur-
rence datasets were carefully assessed, and records that lacked geo-
graphic coordinates occurred in the oceans and were duplicates
were removed by customized R scripts. Additionally, cultivation
records were removed manually. Finally, a total of 291 041
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unique distribution records from 1022 Rhamnaceae species,
including 574 species used in the phylogenetic analysis, were used
in subsequent steps (Dataset S3).

To identify the global temperate biomes, we initially divided
the global map into the grid cells of 1°9 1°. Then, we used geo-
graphic and climatic definitions for the tropics (Peel et al., 2007;
Owens et al., 2017) to classify grid cells as occurring in temperate
or tropical (nontemperate) biomes. According to the geographic
definition, we classified grid cells falling outside the range
between 23.4°N and 23.4°S (the Tropics of Cancer and Capri-
corn) as temperate, while classified those within this range as tro-
pical. According to the K€oppen-Geiger climatic definition (Peel
et al., 2007), we classified grid cells with a year-round monthly
mean temperature < 18°C as temperate and classified those with
a temperature ≥ 18°C as tropical (Dataset S4). In addition, we
used these two definitions to classify each Rhamnaceae species as
occurring in temperate and/or tropical biomes, while considering
occurrence frequency, that is species with > 70% of their occur-
rences in the temperate region were classified as temperate; spe-
cies with > 70% of their occurrences in the tropics were classified
as tropical; otherwise, species were classified as both
(temperate + tropical) (Dataset S5). We associated all grid cells
and species occurrence points with average monthly annual mean
temperature data using bio1 from WORLDCLIM (Fick & Hij-
mans, 2017).

To identify the global pattern of Rhamnaceae species richness,
we matched the global filtered distribution dataset of 1022 spe-
cies to the grid cells of 1°9 1° based on the presence/absence of
species within each grid cell (Dataset S4). We then calculated the
species richness of each grid cell using the R package PHYLORE-

GION (Daru et al., 2020). We conducted an optimization analysis
using the Gi* local statistic (Getis & Ord, 1996) implemented in
QGIS v.3.2 with the Hotspot Analysis plugin (Oxoli et al., 2017)
to identify regions particularly species-rich, hereafter Rhamna-
ceae ‘hotspots’. This method calculated the local spatial autocor-
relation to cluster grid cells of high species richness. We
identified each hotspot as a region consisting of adjacent grid cells
with Z scores ≥ 1.65 (Suissa et al., 2021), enforcing at least 30
grid cells per hotspot to ensure that each hotspot has a sufficient
sample size and spatial extent. Once hotspots were identified, we
defined nonhotspot regions as all remaining grid cells with at
least one Rhamnaceae species (Dataset S4). Finally, we assessed
whether the same hotspots were identified when we only included
Rhamnaceae species that were sampled in the phylogenetic tree.
Therefore, we calculated Spearman’s correlation between grid-
based species richness when including all species distribution
data (n = 1022 species) to species richness when including only
phylogenetically sampled species (n = 574 species) (Spearman’s
q = 0.93 in our dataset).

Environmental niche of temperate biomes and biodiversity
hotspots

To characterize and compare the environmental conditions in
temperate biomes and hotspots, we collected 35 environmental
variables, including 19 bio-climatic variables at 2.5 m resolution

(https://www.worldclim.org), two topographical layers
(https://lta.cr.usgs.gov/GTOPO30), eight soil layers (averaged in
QGIS across layers at 5-, 15-, 30-, and 60-cm sampling depths;
https://soilgrids.org/), and six land cover classes (https://www.
earthenv.org/landcover). All environmental variables were
extracted as mean values per 1°9 1° grid cells using the zonal sta-
tistics in the QGIS v.3.2 (QGIS Development Team, 2018).
Mean values of the variables for each grid cell were used in the
subsequent environmental niche analysis (Dataset S4).

To assess whether high Rhamnaceae species richness calculated
from 1022 species was linked to environmental conditions typical
for temperate biomes, and to assess whether hotspots shared such
environmental space, we performed principal coordinate analyses
(PCoA). All environmental variables (i.e. climate, topography,
soil, and land cover) were log-transformed to improve homosce-
dasticity, and we scaled them between 0 and 1 to impose equal
variable weight. PCoA was computed to describe the composi-
tion of environmental space of each hotspot region, using Eucli-
dean dissimilarities calculated in the R packages VEGAN

(Dixon, 2003) and APE (Paradis et al., 2004). The volume of the
convex hull composed of two independent axes (PCoA1 and
PCoA2, collectively capturing 59.6% of the environmental varia-
tion) was then used to measure the overlap in climatic hypervo-
lume space of temperate biomes and for each Rhamnaceae
hotspot region.

Inference of biogeographic history of biodiversity hotspots

To assess the independent and contemporaneous colonization of
temperate regions (H1) and subsequent diversity accumulation
through time (H2), we traced the biogeographic history of
Rhamnaceae lineages across the temperate hotspots. Ancestral
ranges were inferred by implementing a series of biogeographic
models in the R package BIOGEOBEARS v.1.1.2 (Matzke, 2013).
Outgroups were excluded from the time-calibrated phylogenetic
tree. We used the corrected Akaike information criterion (AICc)
to compare the fit of three biogeographical models: DEC, DIVA-
LIKE, BAYAREALIKE, and versions of these three models that
allowed for founder event speciation (+J) (Matzke, 2014), that is
DEC+J, DIVALIKE+J, and BAYAREALIKE+J. We defined
eight areas, following our identification of Rhamnaceae hotspot
regions: California, Mexico-Central America, Mediterranean
Basin, Southern China, South African Cape, Southwest Australia,
Southeast Australia, and nonhotspot. Species were assigned to
one or more biogeographic areas based on occurrence frequency
within these regions, with presence only being assigned if species
with > 10% of its occurrences fell within a particular biogeo-
graphic area. The maximum number of areas was set to three, to
reflect distributions of extant taxa.

We performed 100 biogeographical stochastic mappings
(BSMs) (Dupin et al., 2016) with the parameter rate estimates of
the best-fitting model from the BioGeoBEARS analysis. The
BSMs produced a probabilistic sample of the chronology of ana-
genetic and cladogenetic events, which allowed us to count and
date anagenetic dispersals, extinctions, cladogenic range expan-
sions (i.e. sympatry), and founder events. In addition, we binned
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these events into 0.5-Ma periods and calculated the 95%
confidence interval of the number of lineages occupying
each region at each time step from 100 BSMs using the R pack-
age LTSTR (Skeels, 2019). Then, we extracted median values
from the 95% confidence intervals to calculate the relative pro-
portion of lineages in each hotspot and nonhotspot at each
time bin.

Diversification and dispersal rates of biomes and
biodiversity hotspots

To assess whether high in situ diversification rates explained high
Rhamnaceae species richness in temperate biomes and hotspots
(H2) and whether the dispersal of lineages between temperate
regions was relatively common (H3), we estimated speciation,
extinction, and dispersal rates with the Geographic State Specia-
tion and Extinction (GeoSSE) model (Goldberg et al., 2011)
implemented in the R package DIVERSITREE (FitzJohn, 2012). To
this end, we used the classification of species as assigned above as
‘temperate’, ‘tropical’, or ‘both’. Furthermore, we also fitted
GeoSSE models in which we classified species for each hotspot
region (California, Mexico-Central America, Mediterranean
Basin, Southern China, South African Cape, Southwest Australia,
and Southeast Australia) against species occurring elsewhere, that
is seven analyses in total. ‘Elsewhere’ therefore includes species
occurring in all other recognized hotspots (except the specific
hotspot of interest) as well as Rhamnaceae occurring in ‘nonhot-
spot’ regions. Each species was assigned to a hotspot based on its
occurrence frequency (i.e. species with > 90% of occurrences
within a specific hotspot were assigned to that hotspot). Species
with > 90% of their occurrences outside any recognized hotspot
were classified as occurring ‘Elsewhere’; finally, species were clas-
sified as widespread if they occurred both in specific hotspot and
‘Elsewhere’ (i.e. species with > 10% and < 90% of their occur-
rences within a specific hotspot). In addition, we ran another ana-
lysis in which we contrasted species in any hotspot region to
species in nonhotspot areas.

All diversification analyses were conducted on the time-
calibrated phylogenetic tree without outgroups. We compared
the fit of eight models that allowed speciation, extinction, and
dispersal rates to vary between temperate and tropical biomes
or between lineages in hotspots vs ‘Elsewhere’ and selected the
best-fitting model as assessed by a likelihood ratio test. The
best-fit model was then used in a subsequent Bayesian MCMC
run for 5000 generations (ESS > 200), using ML rate estimates
as starting points and an exponential prior whose distribution
was in relation to the overall diversification rate, estimated
using the Kendall–Moran estimate for net diversification rate
(Kendall, 1949; Moran, 1950). Because species in the Mediter-
ranean Basin hotspot and the Southwest Australian hotspot
consisted of < 10% of the total species richness of Rhamnaceae,
we were not able to infer rates for these hotspots individually
due to sample size constraints (Davis et al., 2013), but they
were included in the analysis in which all hotspots were com-
bined and compared with diversification and dispersal rates in
nonhotspots.

Phylogenetic assemblage structure of biodiversity hotspots

Another signature of high diversification rates can be captured by
phylogenetic clustering – that is, species within a local assemblage
are phylogenetically more closely related than expected by chance,
suggesting in situ diversification from a common ancestor. We
therefore calculated the net relatedness index (NRI) (Webb
et al., 2002) for each grid cell that contained more than one Rham-
naceae species (n = 3266). NRI measures how mean phylogenetic
distance between all species pairs in a grid cell deviates from a null
model generated by shuffling taxa labels across the tips of the phy-
logeny. The calculation of NRI and associated 999 randomization
tests was conducted with the R package PICANTE (Kembel
et al., 2010), and values were compared between assemblages in
temperate and tropical biomes and hotspots.

Sensitivity of macroevolutionary processes to hotspot
definitions

To test whether diversification rates, dispersal rates, and coloniza-
tion time inferences were robust to the size of hotspot delimita-
tions from the Gi* local statistic, we used a distance of 1 degree
as a buffer distance around each hotspot (hereafter buffer hot-
spots), and repeated the BioGeoBEARS, BSMs, and GeoSSE,
analyses with this new classification. All analyses above were car-
ried out in R (R Core Team, 2022), unless mentioned otherwise.

Results

Phylogenetic analyses and divergence time estimation

After assembling and filtering, 89 low-copy nuclear genes were
obtained for 574 Rhamnaceae species and five outgroup species.
The concatenated data matrix was 93 936 bp in length. The three
main Rhamnaceae groups, that is the rhamnoid group, the zizi-
phoid group, and the clade containing several Rhamnaceae taxa
of few genera (Bathiorhamnus, Doerpfeldia, Sarcomphalus, and
Ziziphus), were fully supported in the phylogeny (BS = 100%;
LPP = 1) using both concatenation and coalescent methods
(Figs 1a, S1, S2). The concatenated ML tree and coalescent
ASTRAL tree were largely congruent, with most of the deeper
nodes and branches resolved and strongly supported, except for a
few nodes within the ziziphoid clade (Figs S1, S2). These showed
conflicts and obtained relatively low support. Rhamnaceae were
estimated to have originated at c. 113.54 Ma (113.33–
113.60Ma; 95% confidence interval) in the Cretaceous based on
the concatenated ML tree, and details for the age estimates of
clades are presented in Fig. S3.

Global patterns of species diversity, temperate biomes, and
biodiversity hotspots in Rhamnaceae

Based on the global species richness map (Fig. 2a), Rhamnaceae
species diversity was markedly higher in temperate (mid-latitude)
than in tropical (low-latitude) regions (Fig. 2b), resulting in a
bimodal latitudinal diversity gradient. Rhamnaceae assemblages
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and species were predominantly temperate based on geography
(60.85% assemblages and 61.06% species) but not based on tem-
perature (50.45% assemblages and 49.51% species; Datasets S4, S5).
Some species were scored as belonging to both temperate and
tropical areas (4.30% and 12.16% based on geographic and cli-
matic definitions, separately), so tropical percentages were lower
than temperate for both definitions. We identified seven distinct
regions as ‘hotspots’, that is regions that comprise much higher
species richness than nonhotspots (Z scores ≥ 1.65; Figs 2a, S4;
Dataset S4): California (n = 60/48 (number of occupied grid cells/
species)), Mexico-Central America (n = 224/107), Mediterranean

Basin (n = 57/10), Southern China (n = 221/118), South African
Cape (n = 33/136), Southwest Australia (n = 51/95), and South-
east Australia (n = 126/116). Grid cells outside the seven hotspots,
defined as ‘nonhotspots’, were more numerous (n = 5254/553).

Similarities in environmental features across temperate
Rhamnaceae hotspots

We quantified the hypervolume of the environmental space as
defined by PCoA1 (explaining 38.9% of the variance) and
PCoA2 (20.7%) in temperate biomes and each hotspot (Fig. 3).

Fig. 1 Ancestral range estimates and time for
speciation of Rhamnaceae lineages in biodiversity
hotspots. (a) Divergence times estimated using
TREEPL based on the concatenated supermatrix of
89 low-copy loci, and the ancestral areas
reconstructed by BioGeoBEARS using the
BAYAREALIKE + J model. Pie charts at each node
correspond to ancestral reconstructions and are
color-coded for the area with the probability of
each area. Only the probability > 50% of each
hotspot in each node is colored. I, the group
containing genera (Bathiorhamnus, Doerpfeldia,
Sarcomphalus, and Ziziphus); II, the rhamnoid
group; III, the ziziphoid group. CA, California;
Cape, South African Cape; MB, Mediterranean
Basin; MCA, Mexico-Central America; NH,
nonhotspot; SC, Southern China; SEA, Southeast
Australia; SWE, Southwest Australia.
(b) Colonization and time for speciation of
Rhamnaceae lineages in biodiversity hotspots.
The relative proportion of lineages in each
hotspot region through time, estimated from the
biogeographical stochastic mappings (BSMs)
analysis using a sliding window and median value
from the 95% confidence interval of the number
of lineages occupying each region at each time
bin. The global temperature curve is taken from
Zachos et al. (2001, reprinted with permission
from AAAS) over the past 65million years. Pli.,
Pliocene; Plt., Pleistocene.
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The PCoA showed that environmental space of all hotspots was
nested within the temperate biome environmental space accord-
ing to both geographic and climatic definitions (Figs 3, S5a),
with the exception of parts of Mexico-Central America. The

environmental space in Mexico-Central America was more
diverse, spanning temperate to tropical biomes (Figs 2, 3, S4,
S5). Furthermore, the PCoA showed substantial overlap (on
average 14.8–56.4% per hotspot; Table S1) among the seven hot-
spots in environmental hypervolume space. A biplot showed
that temperature variables (e.g. isothermality and annual mean
temperature) along the PCoA1 axis and soil variables (e.g. soil
organic carbon and soil pH) along the PCoA2 axis were the
most important predictors of the environmental hypervolume
(Fig. S5b). The biplot also showed tropical climatic features
(right side of the biplot) in Mexico-Central America, relatively
nutrient-rich soils in the Southeast Australia hotspot (top side of
the biplot), and colder temperatures in the Southern China hot-
spot (left side of the biplot), that distinguish environments in
these hotspots from the other hotspots.

Historical biogeography of hotspots

The BioGeoBEARS and BSMs analyses were used to infer the
colonization time of each hotspot relevant to assess H1, and to
evaluate the time-for-speciation within each region relevant for
testing H2. The BAYAREALIKE + J model was selected in the
ancestral biogeographic reconstruction of Rhamnaceae hotspots
based on the AICc (Table S2; Fig. S6). By comparing the relative
accumulation of lineages through time in each hotspot (Fig. 1b),
we detected the earliest colonization of the temperate region at
c. 49.0 Ma (46.5–83.5Ma; 95% confidence interval of age of
lineages occupying each region from 100 BSMs), that is with the
colonization of Southern China during the Eocene. Subse-
quently, lineages independently colonized Mexico-Central Amer-
ica at c. 35Ma (29.5–83.5 Ma), the South African Cape at
c. 31.0 Ma (23.0–83.5Ma), Southwest Australia at c. 28.5 Ma
(28.5–83.5Ma), Southeast Australia at c. 28.5 Ma (27.0–57Ma),
and California at c. 24.5 Ma (24.5–62.0Ma). Thus, Rhamnaceae
achieved their modern distribution through a series of largely
contemporaneous dispersals during the Oligocene, consistent

Fig. 3 Occupancy of hypervolume environmental space in Rhamnaceae
geographic-based temperate and tropical biomes and each diversification
hotspot. Colored polygons are two-dimensional environmental
hypervolumes based on 772 assemblages (grid cells) in seven hotspots
using principal coordinates analysis (PCoA). The light green, dark green,
and gray dashed polygons are the environmental hypervolumes of
temperate and tropical biomes, as well as nonhotspot regions,
respectively. Colored points represent grid cells. Colored shapes are
hypervolume centroids. CA, California; Cape, South African Cape; MB,
Mediterranean Basin; MCA, Mexico-Central America; NH, nonhotspot;
SC, Southern China; SEA, Southeast Australia; SWE, Southwest Australia.

Fig. 2 Global distribution of Rhamnaceae species richness across assemblages in the temperate realm. (a) Rhamnaceae species richness estimated from
291 041 unique distribution records of 1022 species. Colored squares indicate estimated species richness in grid cells of 1°9 1°. Regions containing
hotspots of Rhamnaceae diversity outlined with solid lines. Dashed lines represent the Tropics of Cancer and Capricorn. (b) Species richness across latitude.
Each point represents the species richness within a 1°9 1° grid cell plotted against the grid cell’s latitudinal centroid.
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with H1. Lineages colonized the Mediterranean Basin somewhat
later during the early Miocene, c. 20.5 Ma (7.0–83.5Ma). We
found that the proportion of Rhamnaceae lineage diversity in the
hotspot regions compared with elsewhere continued to increase
rapidly and in parallel across hotspots from the Miocene onward.
The BAYAREALIKE model was selected in the biogeographic
analysis of buffer hotspots (Table S2), but ancestral biogeo-
graphic reconstruction, colonization times, and lineage accumu-
lation curves in buffer hotspots were similar overall to those in
the main hotspot analysis (Figs S6–S8).

Macroevolutionary rates of diversity in hotspots

The GeoSSE analyses were used to infer in situ diversification
and dispersal rates linked to H2, and to evaluate source-sink
dynamics (i.e. dispersal rate asymmetries) relevant for testing H3.
The best-fitting GeoSSE models indicated distinct diversification
and/or dispersal rates for temperate vs tropical biomes, and for
each hotspot vs ‘Elsewhere’, based on likelihood ratio tests
(Table S3). Lineages in temperate biomes showed higher specia-
tion and net diversification rates than lineages in tropical biomes,
a result that was robust to geographic (Fig. 4a,c) and climatic
(Fig. S9a,c) definitions of temperate biomes. Furthermore,

lineages occurring in hotspots showed higher net diversification
rates than lineages occurring ‘Elsewhere’, except Southern China,
thus mostly consistent with H2, but speciation and extinction
rates differed among the five hotspots (Fig. 4e–g). Specifically,
California, South African Cape, and Southeast Australia showed
higher speciation rates, resulting in higher net diversification rates
for lineages in these hotspots than lineages in Mexico-Central
America and Southern China. For Mexico-Central America, the
lowest speciation rates resulted in relatively low net diversification
rates. For Southern China, the relatively low speciation rates and
the highest extinction rates resulted in the lowest net diversifica-
tion rates across hotspots, similar to diversification rates in non-
hotspots. Rates of speciation, extinction, and net diversification
in buffer hotspots were qualitatively similar to those in hotspots
(Figs 4e–g, S9d–f).

GeoSSE results showed equal migration and immigration (i.e.
dispersal) rates between temperate and tropical regions according
to the geographical definition (Fig. 5). Furthermore, dispersal
rates from hotspots to ‘Elsewhere’ were significantly higher than
vice versa in all five hotspots (Fig. 5), consistent with H3. Among
hotspots, we found that dispersal rates out of Mexico-Central
America and Southern China were comparatively high, while dis-
persal rates out of the South African Cape and Southeast Australia

Fig. 4 Diversification rates and net relatedness index (NRI) across geographic-based temperate and tropical biomes and each diversification hotspot in
Rhamnaceae. Estimated parameter distributions in temperate vs tropical biomes as well as of Rhamnaceae lineages evolving in one hotspot vs ‘Elsewhere’
(all other hotspots plus nonhotspots). The Mediterranean Basin and Southwest Australia were excluded because sampling of species in these two hotspots
was < 10% compared with ‘Elsewhere’. Boxplots show (a) speciation rates (lineagesmillion years (Myr)�1), (b) extinction rates (lineagesMyr�1), (c) net
diversification rates (lineagesMyr�1), and (d) NRI of temperate and tropical biomes; (e) speciation rates (lineagesMyr�1), (f) extinction rates
(lineagesMyr�1), (g) net diversification rates (lineagesMyr�1), and (h) NRI of the five hotspots. Boxes in figures (a–c, e–g) are colored by region and repre-
sent parameter distributions from the Bayesian MCMC using the best-fitting GeoSSE model on the time-calibrated Rhamnaceae phylogenetic tree. The
upper boundary of each box represents the third quartile (Q3), the lower boundary represents the first quartile (Q1), the horizontal line inside the box
represents the median (Q2), and the extending lines (whiskers) display the maximum and minimum values, excluding outliers identified by filled circles.
Dashed lines shown in figures (e–h) are averaged parameter values of nonhotspot lineages. CA, California; Cape, South African Cape; MCA, Mexico-
Central America; SC, Southern China; SEA, Southeast Australia.
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hotspots were relatively low. Rates of dispersal in buffer hotspots
were qualitatively similar to those in hotspots (Fig. S10).

Geographic and climatic definitions differed in inferences of
extinction and dispersal rates between temperate and tropical
biomes. Specifically, we inferred lower extinction rates in geogra-
phically temperate areas but equal extinction rates in climatically
temperate areas (Figs 4b, S9b). Furthermore, climatically tempe-
rate areas showed higher dispersal rates to tropical areas than the
reverse (Fig. S10), whereas dispersal rates were equal in geogra-
phically temperate areas (Fig. 5). Nevertheless, both geographical
and climatic definitions consistently illustrated higher speciation
and correspondingly higher net diversification rates in temperate
biomes compared with tropical biomes, which explained high
species richness. Therefore, we presented results based on the
geographical definition in the main text, but provide results from
the climatic definition in Figs S9 and S10. In addition, we
plotted ancestral state estimates and per-state probabilities of
Rhamnaceae biomes according to both the geographic and the
climatic definitions from the best-fitting GeoSSE models
(Figs S11, S12).

Phylogenetic clustering of lineages in hotspots

Net relatedness index showed significant phylogenetic clustering
in temperate compared with tropical biomes, as well as within
assemblages in California, South African Cape, and Southeast
Australia (Figs 4d,g, S13), suggesting that these assemblages are
composed of closely related species, thus consistent with high,
primarily in situ diversification rates in these hotspots (supporting
H2, Fig. 4). By contrast, the NRI comparison among the seven
hotspots indicated that both Mexico-Central America and South-
ern China had an overall random/overdispersed structure with
relatively low NRI compared with those of the other hotspots,

suggesting that assemblages are instead composed of distantly
related species that may reflect multiple dispersal events into and/
or out of these regions.

Discussion

We dissected relationships between environment, diversification,
and dispersal to understand high biodiversity in temperate
biomes across global, regional, and local scales, using Rhamna-
ceae as a model system. We identified temperate biomes at the
global level and seven hotspots particularly high in Rhamnaceae
species richness: California, Mexico-Central America, Mediterra-
nean Basin, Southern China, Cape, Southwest Australia, and
Southeast Australia (Figs 2a, S4). Most hotspots are located
within temperate regions according to the geographic and cli-
matic definitions of temperate biomes, except for Mexico-Central
America, which spans temperate to tropical biomes. With South-
ern China as an exception, our results overall point to high in situ
diversification rates (Figs 4, S9), rather than high immigration
rates or accumulative time (Figs 1b, 5, S9, S10) as the primary
process behind the high diversity of Rhamnaceae in temperate
biomes.

We show that all Rhamnaceae hotspots overlap in current
environmental space, particularly in the climatic facets most
important for defining the unique stressors of temperate – and
especially Mediterranean – ecosystems (Figs 3, S5). Notably,
California, the Mediterranean Basin, South African Cape, and
Southwest Australia all share a Mediterranean climate with dry,
hot summers, cooler, wet winters, and fire-prone and woody
shrubland vegetation (Donoghue & Edwards, 2014; Rundel
et al., 2016). This overlap in environment among Rhamnaceae
hotspots, which comprise phylogenetically disparate species clus-
ters and independent colonizations from tropical ancestors

Fig. 5 Source and sink dynamics of Rhamnaceae
in geographic-based temperate biomes and each
diversification hotspot. Boxes are colored by
region and represent parameter distributions (dis-
persal rates out of a region minus dispersal rates
into that region) from the Bayesian MCMC from
the best-fitting GeoSSE model on the time-
calibrated Rhamnaceae phylogenetic tree. The
upper boundary of each box represents the third
quartile (Q3), the lower boundary represents the
first quartile (Q1), the horizontal line inside the
box represents the median (Q2), and the extend-
ing lines (whiskers) display the maximum and
minimum values, excluding outliers identified by
filled circles. Above the dashed line represents
the source, and below represents the sink. CA,
California; Cape, South African Cape; MCA,
Mexico-Central America; SC, Southern China;
SEA, Southeast Australia.
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during the Oligocene (Fig. 1b), suggests an important role of
niche conservatism or evolutionary predisposition in the assembly
of Rhamnaceae across the temperate biomes (Crisp et al., 2009;
Ackerly & Onstein, 2018). In addition, the similarity in environ-
mental space highlights a possible role of ecological sorting (Ack-
erly, 2004). Indeed, before the emergence of Mediterranean
climates, similar environments in the Mediterranean regions may
have filtered for lineages possessing functional traits (e.g. small,
evergreen, and sclerophyllous leaves) that facilitated survival on
old, stable, infertile soils (Hopper, 2009; Onstein et al., 2016;
Ackerly & Onstein, 2018).

Rhamnaceae colonizations of several geographically separated
temperate regions show a striking similarity in timing (i.e. 35–
24.5Ma), but lineage diversity increases in these biomes later,
particularly so from 23Ma onward (Figs 1b, S8). We argue that
diversity within the Mediterranean temperate hotspots has
resulted from a set of in situ – possibly nested – radiations, where
a combination of global climate change and preadapted traits
(e.g. sclerophyllous leaves) facilitated parallel and rapid diversifi-
cation across seasonal and xeric climatic regions (Onstein
et al., 2016; Rundel et al., 2016). This is consistent with H1,
namely that the global expansion of temperate biomes from the
Oligocene onward (34Ma) due to strong climate cooling events
and drying, provided ecological opportunities for temperate bio-
diversity to originate and expand. Similar patterns of increased
diversification coinciding with the onset of colder and drier cli-
mates in the Miocene have been found in some angiosperm
lineages, such as Poaceae, Asteraceae, Saxifragales, rosids, and
orchids (Folk et al., 2019; Soltis et al., 2019; Sun et al., 2020;
Palazzesi et al., 2022; Thompson et al., 2023a).

Lineages in California, South African Cape, and Southeast
Australia showed high speciation and low extinction rates and
strong phylogenetic clustering of assemblages (Fig. 4d–g). Our
results are consistent with the many evolutionary radiations char-
acterized in Rhamnaceae in previous work, such as Ceanothus
(c. 60 species) in Californian chaparral (Burge et al., 2011), Phyli-
ceae (c. 150 species) in South African Cape fynbos (Linder, 2003),
and Pomaderreae (c. 240 species) in Australian shrublands (Kel-
lermann, 2020; Nge et al., 2021). Furthermore, Rhamnaceae
share this signature of high diversification with other lineages in
these regions, such as Arctostaphylos (Ericaceae) in California
(Stebbins & Major, 1965), Moraea (Iridaceae) in the South Afri-
can Cape (Goldblatt et al., 2002), and Acacia (Caesalpinioideae)
in Australia (Renner et al., 2020). Although Mexico-Central
America showed phylogenetic overdispersion, and it harbors dis-
tinct Rhamnaceae lineages (Ceanothus, Colubrina, Sarcomphalus,
and Rhamneae), these lineages showed overall high net diversifi-
cation rates compared with Rhamnaceae lineages evolving
‘Elsewhere’ (Fig. 4d–g). It is likely that the phylogenetic
overdispersion here may be related to high mixed endemism and
high diversity of Mexico-Central America, as this region is at a
crossroads between temperate and tropical regions and also has
highly heterogeneous environments because of its topographic
complexity – a unique combination (Sosa et al., 2018). There-
fore, our results are consistent with H2, that is that high in situ
diversification rates explain high species richness.

The exception to the high in situ diversification of Rhamna-
ceae in hotspots is Southern China. Here, lineages showed rela-
tively low speciation rates and high extinction rates, resulting in
much lower net diversification rates than lineages in any of the
other hotspots, similar to rates in nonhotspot areas (Fig. 4d–g).
Furthermore, assemblages in Southern China showed phyloge-
netic overdispersion (Fig. 4g), comprising distinct Rhamnaceae
lineages (e.g. Rhamnus, Berchemia, Rhamnella, and Ziziphus), and
the region was colonized much earlier than the other regions
(Figs 1b, S8). High species richness in Southern China may
therefore be explained by the time-for-speciation hypothesis, with
gradual accumulation of species diversity since the Eocene (Yan
et al., 2018). Even though NRI is similar between Southern
China and Mexico-Central America compared with the other
three hotspots (Fig. 4h), it has potentially resulted from different
evolutionary processes (Fig. 4e,f) – thus, different extinction rates
can create similar assemblage NRI patterns. Our results empha-
size that we cannot fully understand past evolutionary processes
by simply looking at NRI patterns of assemblages today. It has
been suggested that extinction over time may be the reason for
phylogenetic overdispersion in Southern China (Zhang et al.,
2022). Indeed, Southern China is a center of paleo- and mixed
paleo/neo-endemism of woody plants (Wang et al., 2022) and
acts as refugium (i.e. paleo-endemism) for rare Chinese angios-
perms, characterized by magnoliids and other ancient angiosperm
lineages that survived extinction events and persist in a much nar-
rower area than previously or places of more recent diversification
(i.e. neo-endemism) (Lu et al., 2018; Wang et al., 2022; Zhang
et al., 2022). Orogenic movements, annual temperature, and
annual precipitation may have experienced little change in
mountainous areas of this region since the Cretaceous (Lu et al.,
2018), and long-term climate stability may have provided the
opportunity for some but not all lineages to persist in this refugial
landscape. Thus, our results for Rhamnaceae provide macroevo-
lutionary evidence that is consistent with Southern China, but
not other hotspots, namely that long-term stability may facilitate
the gradual accumulation of diversity over geological time.

Our GeoSSE analysis showed that dispersal rates out of tempe-
rate biomes were equal or higher than out of tropical biomes
overall, and dispersal rates into hotspots were significantly lower
than dispersal rates out of hotspots (Figs 5, S10; also see Onstein
et al., 2015), suggesting that while hotspots differed in dispersal
rates, it is unlikely that high immigration rates have influenced
the globally high Rhamnaceae species richness in temperate
biomes, which is consistent with H2. In addition, our results sug-
gest that Rhamnaceae temperate hotspots may have acted as
sources for recruitment of species in neighboring areas, that is
primarily nonhotspot temperate regions (e.g. Ceanothus dispersal
to regions outside the Mexico-Central America hotspot, Phylica
dispersal to regions outside the South African Cape hotspot),
making the hotspots ‘source’ rather than ‘sink’ regions. The crea-
tion of such a source may be linked to the high in situ diversifica-
tion rates in these regions, resulting in high numbers of lineages
and species. Our results suggest that these dispersals may have
been to both temperate and tropical biomes (Figs 5, S10–S12).
Thus, reversals to more tropical systems (e.g. seasonally dry
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tropical biome) from temperate regions are not uncommon in
Rhamnaceae, probably because the temperate biomes they dominate
are characterized by (seasonal) drought, rather than frost, which may
be a less challenging transition to overcome physiologically
(Figs S11, S12). Furthermore, our results suggest that Rhamnaceae
lineages generally retained ancestral temperate niche preferences and
were more often subject to dispersal into montane tropical biomes
(i.e. climatically temperate biomes in the geographical tropics)
(Owens et al., 2017). Overall, our results do not point to dispersal
rate asymmetries as a major explanation of temperate diversity, but
they do suggest that movement between temperate regions is rela-
tively common and reflects source–sink dynamics primarily between
temperate regions, and thus consistent with H3.

Furthermore, we found that dispersal rates out of the Mexico-
Central America and Southern China hotspots were higher com-
pared with dispersal rates from any of the other hotspots (Figs 5,
S10). These two hotspot regions cover a wide geographical distri-
bution with high environmental heterogeneity (Figs 2, 3, S5a),
the relatively higher proportion of unique climatic hypervolumes
compared with other hotspots, thus possibly providing more
opportunities for exchange of lineages with subjacent regions
around these two hotspots. Moreover, Mexico-Central America
forms a transition zone between the Nearctic and Neotropical
biotas, and > 50% of Mexico is arid or semi-arid, which may
have favored the dispersal of tropical lineages that were prea-
dapted to survive under extreme seasonal and arid climates (Pen-
nington & Lavin, 2016; Sosa et al., 2018). However, the MTEs
are heterogeneous in environment as well, characterized by the
seasonal climate (i.e. extreme summer drought almost compar-
able to dry tropics as well as warm, wet winters comparable to
mild temperate summer), in combination with differences in fire,
topography, and soils, such as uplift, old bedrock and variation
in soil types depending on the region, which could facilitate
reproductive isolation and allopatric speciation (Onstein
et al., 2016; Rundel et al., 2016; Ackerly & Onstein, 2018). This
suggests that the availability of diverse, heterogeneous environ-
ments may also have contributed to the evolution of Rhamnaceae
species richness, and these differences may also explain differences
in ‘source’ and ‘sink’ dynamics between the regions (Fig. 5).

Finally, it is noted that many of these Rhamnaceae temperate
hotspots are relatively young (e.g. MTEs) compared with the
much earlier (Oligocene) colonization of these regions by Rham-
naceae (Onstein et al., 2015), and diversification rates may have
only shifted when climates changed (e.g. after the onset of the typi-
cal cool and dry MTE climate). However, the GeoSSE models we
used here were not able to detect such time-dependent shifts in
diversification rates within regions. Furthermore, model inferences
may be biased by uncertainties in phylogenetic dating and disen-
tangling speciation and extinction rates from phylogenies that
include extant species only (Louca & Pennell, 2020). Information
from, for example, paleoclimate data and fossils could improve
historical model-based inferences and our understanding of tem-
poral changes in macroevolutionary processes and their drivers.

In conclusion, our study offers an integrative approach to elu-
cidate why certain temperate biomes, such as Mediterranean-type
ecosystems, harbor high species diversity. We identify rapid in

situ diversification rates in response to the onset and expansion of
temperate biomes in the Oligocene as the best explanation; this
history left a consistent signature on Rhamnaceae species compo-
sition across spatial scales, both within the temperate biomes as a
whole and in regional species-rich hotspots. Although we identi-
fied a consistent global pattern, we also detected region-specific
histories, with some areas illustrating higher historical connectiv-
ity through lineage dispersals to other temperate and tropical sys-
tems (e.g. Southern China, Mexico-Central America) and others
indicative of evolution in situ, reflecting their spatial isolation
from other hotspots (e.g. South African Cape). Finally, our deli-
neated species-rich regions broadly overlap with established bio-
diversity hotspots (Myers et al., 2000; CEPF, 2016) except for
Southern China, which was mostly unique to Rhamnaceae.
However, Southern China features exceptional plant endemism
across diverse lineages, which appears to have arisen from differ-
ing mechanisms and is under increasing human threat (L�opez-
Pujol et al., 2011; Wang et al., 2022). Overall, our study provides
a large and well-supported case study of global diversity in tempe-
rate regions. Rhamnaceae are an excellent model system, with
high diversity in multiple temperate hotspots, particularly within
MTEs. More studies of widely distributed groups that exhibit
diversity in temperate regions, such as Rosaceae, Iridaceae, and
Fagales, can further test generalities about the processes underly-
ing plant diversity in temperate biomes (e.g. Davies et al., 2005;
Xing et al., 2014; Sun et al., 2020).
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