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Abstract 

A seismic wide-angle experiment was conducted in southeastern Wyoming, USA to investigate the seismic 
character of a postulated Proterozoic magmatic arc south of the suture (Cheyenne Belt) to the Archean Wyoming 
Province. Recordings from vibrator and dynamite sources with offsets between 34 and 126 km reveal no evidence for 
Moho reflections. The large-offset recordings contain multicyclic bands of reflective phases from the middle to lower 
crust. The data were transformed into the intercept t ime-ray parameter (~--p) domain to estimate local depth 
bounds. A subsequent 1D inversion using high-amplitude ~'-p arrivals shows that the reflective part of the crust 
ranges from the depths of 25 to 40 km. This part of the crust exhibits velocities increasing from about 6.5 to 7.5 
km/s .  Reflectivity modeling shows that the lower crust might consist of a zone of alternating low- and high-velocity 
layers with average velocity increasing. The average lower crustal velocity of about 6.9 k m / s  suggests a predomi- 
nantly mafic composition with interlayered intermediate to felsic components generating impedance contrasts that 
cause observable amplitudes from reflections at large offsets but not at clearly pre-critical and near-vertical 
distances. Our model is consistent with observations of interlayered sequences of gabbroic to ultramafic rocks with 
more felsic anorthositic and charnockitic rocks in the exposed lower crust of magmatic arc complexes. The lack of 
wide-angle Moho reflections might be explained by a gradational compositional boundary, or a transitional phase 
change from granulite to eclogite facies. 

1. Introduction 

The  na tu re  of  the  c r u s t - m a n t l e  b o u n d a r y  and 
the crusta l  s t ruc ture  in d i f ferent  tec tonic  regimes  
is still an impor t an t  p rob lem.  The  b o u n d a r y  of  
the  A r c h e a n  Wyoming  Province  in the  wes te rn  
U n i t e d  Sta tes  is cons ide red  to be  an acc re t ionary  
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fea tu re  of  a coll is ion be tw e e n  a P ro te rozo ic  is- 
land  arc and the  A r c h e a n  t e r r a ne  in sou theas t e rn  
Wyoming  [1-6].  Ques t ions  tha t  r ema in  open  in- 
c lude  the  s t ruc ture  and compos i t ion  of  the  mid-  
crusta l  and  lower  crus ta l  rocks and the  cha rac t e r  
of  the  c r u s t - m a n t l e  b o u n d a r y  of  the  deep  crust  
of  the  P ro te rozo ic  be l t  south  of  the  su ture  
(Cheyenne  Belt).  To  address  some of  these  ques-  
t ions,  the  Univers i ty  of  Wyoming  conduc t ed  sev- 
era l  seismic wide -ang le  and no rma l - inc idence  re- 
f lect ion expe r imen t s  in sou theas t e rn  Wyoming .  
H e r e  we p re sen t  wide -ang le  da t a  f rom vibroseis  
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and dynamite shots recorded into receiver pro- 
files located on the bedrock of the Laramie Range 
and the northern Colorado Front Range to ob- 
tain deep crustal velocity information and to 
search for high-amplitude critical reflections from 
the Moho. The seismic data also show the use of 
vibrators at long offsets in a favorable geologic 
environment. 

2. Geology and previous geophysical studies 

The most prominent geologic feature in south- 
eastern Wyoming is the N E - S W  striking 
Cheyenne Belt (Fig. 1), a major shear zone that 
bounds the Archean Wyoming Province to the 
north against the lithologically different Protero- 
zoic terrane to the south [3,4,5,7,8]. 2700 to 2500 
Ma old exposed basement in the Laramie Range, 
Medicine Bow Mountains and Sierra Madre con- 

sists of quartzofeldspathic gneisses, Archean 
supracrustal rocks, and late Archean intrusive 
granites. A sequence of quartz-rich metasedimen- 
tary rocks in the Medicine Bow Mountains is 
interpreted as rift deposits within an early Pro- 
terozoic basin along the southern margin of the 
Archean craton [9]. Proterozoic basement rocks 
south of the Cheyenne Belt are different in com- 
position from rocks to the north. They consist of 
1800-1600 Ma old highly deformed amphibolite- 
grade metavolcanic rocks. The existence of pillow 
basalts and agglomerates possibly indicates the 
presence of an early Proterozoic island arc [6]. 
Syn- and post-tectonic anorthositic and granitic 
intrusions, such as the Laramie anorthosite 
(1400-1500 Ma) and Sherman granite (1400 Ma) 
complexes [1,10,11] cover areas on top and south 
of the Cheyenne Belt. Northward thrusting of an 
island arc over the northern craton as a conse- 
quence of S-dipping subduction is one model for 
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Fig. 1. Schematic map of geologic units in southeastern Wyoming including seismic wide-angle shot and receiver locations. Both 
wide-angle lines SY and BR served as reversed vibroseis shot and receiver profiles. The dynamite shots TS and WL were recorded 
on profile BR. The broken line across the Laramie Range indicates the location of the recently recorded CDP profile (HC) as 
described in [20]. 
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the juxtaposition of the terranes [3,11]. A second 
model, based on isotopic data of Proterozoic 
granitoids in the Laramie Range, suggests a pre- 
dominantly Proterozoic lower crust under the 
Cheyenne Belt, generated by magmatic under- 
plating or underthrusting of Proterozoic crust 
during terrane accretion [12]. The large time dif- 
ference of about 200-400 Ma between the forma- 
tion of the metavolcanics and the emplacement of 
the granitic and anorthositic plutons, however, 
suggests an extended history of possibly several 
accretional events. 

Widely spaced seismic refraction data indicate 
a crust that thickens from 37-41 km in southeast- 

ern Wyoming to about 48-54 km beneath the 
Colorado Front Range [13-15]. COCORP reflec- 
tion profiles across the Laramie Range exhibit 
low-amplitude, discontinuous, multicyclic arrivals 
that are observed over the Denver and Laramie 
Basins [16,17]. These events were interpreted as 
possible Moho reflections arriving from depths of 
48 km north of the Cheyenne Belt. Events in 
profiles south of the Cheyenne Belt were identi- 
fied as possible Moho reflections from a depth of 
about 37-39 km. Reanalyses of the COCORP 
data, however, suggest that the events interpreted 
as Moho reflections below the basins are likely to 
be due to strong reverberations within the sedi- 
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Fig. 2. Vibroseis records from receiver profiles (a) SY87 and (b) BR87. Sources are on reversed profiles. Records are stacks of 19 
sweeps with a frequency of 10-42 Hz. Bands of seismic arrivals are observed in both recordings. 
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mentary sequence [18,19]. More recent reflection 
data from a profile crossing the Laramie Range 
approximately 25 km south of the Cheyenne Belt 
show no continuous phases from the lower crust 
and Moho [20]. Gravity data indicate a gradual 
increase in crustal thickness southward a n d / o r  a 
Proterozoic crust of more intermediate to felsic 
composition than the Archean block, causing a 
difference of about 100 mGal across the suture 
zone [3]. 

3. Seismic experiment 

The seismic experiments were designed to 
record wide-angle reflections mainly from the 
lower crust and crust-mantle  boundary of the 

Proterozoic accreted terrane south of the 
Cheyenne Belt (Fig. 1) over the same depth points 
where we had normal-incidence reflection data. 
In two summer field seasons, the University of 
Wyoming seismic crew acquired data from vibro- 
seis sources and dynamite shots with offsets of up 
to 126 kin. Three densely spaced receiver spreads 
were deployed. A 48-channel (96 channels in 
parts of the profile) profile (SY87) with 100 m 
group spacing was located in the Laramie Range; 
two spreads (BR87 and BR89), with 86 and 192 
channels with 100 m group spacing, were de- 
ployed in the northernmost Colorado Front 
Range. Vibroseis sources, consisting of four trucks 
with up to 21 linear sweeps of 10-42 Hz per 
vibrator point (VP), were situated at 54 locations 
(50 m spacing) in the Laramie Range and at 64 
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Fig. 3. Coherency-filtered slant stacks (~--p) of  vibroseis records from (a) VP 22 of profile SY87 and (b) VP 143 of profile BR87. 
~'-p arrivals are scattered. High-ampli tude events were picked for extremal inversion scheme to estimate depth bounds of 
reflectors. 
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Fig. 4. Dynamite shot records (BR89), vertical component  and source location: (a) TS. (b) WL. The  shorter offset recording TS 
contains high-ampli tude direct and uppermost  crustal P-wave arrivals, but  no mid-crustal or lower crustal events and no Moho 
arrival. The  large-offset recording W L  shows multicyclic midcrustal and lower crustal P-wave arrivals. Al though the WL recording 
approaches critical distance, it does not contain distinct Moho reflections. 
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Fig. 4. (c) A 5 s long band of low-amplitude arrivals beginning at about 35 s was recorded on the transverse components of shot 
WL. (d) Their travel time and ray parameter identify them as lower crustal S-wave reflections. The record does not contain a 
distinct S-wave Moho reflection either. 

locations (50 m spacing) in the Front Range to be 
recorded from profiles BR87 and SY87 respec- 
tively. Eight dynamite shots were detonated from 
the eastern Laramie Range (WL) and the south- 
ern Laramie Basin (TL) and were recorded by 
profile BR89. Horizontal component geophones 
replaced the vertical component geophones on 
profile BR89 for some shots to record shear 
waves. 

4. Processing and data description 

All the vibroseis recordings were corrected for 
elevation statics, edited, vertically stacked, and 
bandpass filtered within the sweep frequency. 
The data quality of the recordings changes among 
the individual VP gathers, probably due to 

changes in coupling when sources were moved 
along the profiles. We slant stacked the data 
from 27 VPs of profile SY87 and 36 VPs of 
profile BR87 to obtain an immediate estimate of 
apparent velocities. A coherency filter applied to 
individual slant stacks by calculating the sem- 
blance [21] aided in the identification of pre-criti- 
cal and post-critical phases of high-amplitude co- 
herent signals. The coherency-filtered slant stacks 
for each receiver profile were summed into a 
single intercept t ime-ray parameter (7-p)  gather. 

Some vibroseis records contain distinct arrivals 
(e.g., at 14.5-18.5 s at the 90 km offset (Fig. 2a 
and b)). From their ray parameters and intercept 
times (Fig. 3a and b), these phases are identified 
as first arrivals (Pg), a series of mid-crustal refrac- 
tions and reflections, and multicyclic precritical 
lower crustal reflections. The peak signal fre- 
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quency lies at about 20 Hz. The ~--p transforma- 
tion enhances weak-amplitude phases in other 
record sections. 

The seismic sections from the dynamite shots 
contain series of coherent but short arrivals (Fig. 
4a-c). Low- and high-frequency noise was elimi- 
nated by a 10-30 Hz bandpass filter. Peak signal 
frequencies lie at about 20 Hz. We also slant 
stacked the shot gathers to enhance phase corre- 
lation. The summed ~--p gather of the two largest 
shots from WL (maximum 126 km offset) and TS 
(maximum 50 km offset) shows a branch of high- 
amplitude upper crustal arrivals and a branch of 
scattered mid-crustal and lower crustal reflection 
arrivals (Fig. 5c). 

The records of the dynamite shots contain 
stronger coherent arrivals than the vibroseis data. 

First breaks and mid-crustal as well as lower 
crustal phases arrive within a band of high-ampli- 
tude signals on gather WL (Fig. 4b). A high-am- 
plitude Moho reflection is not visible, although 
the maximum offset of 126 km is assumed to be 
close to the critical distance in that area. We 
calculated a critical distance of 118-125 km for 
P-wave Moho arrivals for a 40 km deep crust with 
velocities for the upper crust of 5.5 km/s, for the 
middle crust of 6.5 km/s,  and a velocity increase 
for the lower crust of 6.8-7.4 km/s. A critical 
arrival from the Moho may be hidden within the 
multicyclic band of lower crustal arrivals, but 
transformation into the t-p domain does not 
indicate evidence for a distinct Moho reflection 
either (Fig. 5a-c). 

The transverse components of shot gather WL 
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Fig. 5. Summed slant stacks of vibroseis records (a) SY87 and (b) BR87, and (c) dynamite record BR89 from source locations TS 
and WL. High-ampli tude events were picked for extremal inversion. Because of better defined arrivals from profile SY87 within the 
first 3 s (~-) of profile BR89, the assigned uncertainties were only between 0.1 and 0.15 s, resulting in narrower depth bounds in 
Fig. 7. 
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show a broad band of arrivals between 35 and 42 
s (Fig. 4c). Their  travel time and ray parameter  
(Fig. 4d) identify them as lower crustal S-wave 
reflections from the same broad depth range as 
the corresponding lower crustal P-wave reflec- 
tions. The record does not contain a distinct 
S-wave Moho reflection either. 

5. Inverse and forward modelling 

We used picks from P-wave arrivals of individ- 
ual and summed r - p  gathers (Fig. 5a-c)  to invert 
for minimum and maximum depth bounds using 
an extremal inversion method [22,23]. The S-wave 
dataset was too sparse to perform an inversion 
reliable enough for an interpretation. The model 
was parameter ized by implementing a stack of 
layers with constant slownesses with slowness val- 
ues decreasing with depth. Minimum and maxi- 
mum depth bounds were calculated for each layer; 
slownesses are displayed as layer velocities. Be- 

cause of the narrow horizontal aperture of the 
shot gathers (between 4 and 9 km), the slant 
stacks consist of accumulations of data points 
rather than elliptic curves. In a first at tempt to 
invert the data, we picked only a few high-ampli- 
tude data points with uncertainties in r of 0.1- 
0.15 s. After  successfully modelling these initial 
picks, we picked more data points with uncertain- 
ties in r between 0.1 and 0.2 s. The smallest 
widths of depth bounds could be reached for the 
dynamite profile BR89 and the vibroseis record- 
ings of profile SY87 (Fig. 6). The summed slant 
stack of profile BR87 (Fig. 6) contains a few 
distinct but scattered high-amplitude arrivals, 
producing wide depth bounds. An interesting re- 
sult from the 1D inversion model is the observa- 
tion of bands of different reflectivity within the 
sections rather  than distinct reflections. The crust 
appears  to consist of an upper  and lower crust 
that is more reflective than the middle crust. The 
lower crust seems to contain a series of disconti- 
nuities. A distinct Moho reflection is not ob- 
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Fig. 6. Results from 1D extremal inversion. Curves represent upper and lower depth bounds. Note the narrower depth bounds of 
model SY87 and the upper part of  BRg9, because of smaller uncertainties in r-p picks. Depth bound curves contain upper crustal 
discontinuities down to about 11 km, and a series of lower crustal discontinuities between the 22 and 35 krn depths. A distinct 
Mobo is not observed, and therefore the uncertainties in crustal depth are large. There is evidence of  high velocity of  > 7 km/s  for 
the lowermost g-10 kin. 
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served, not even in the large-distance recording 
of shot WL. The lowermost reflections are best 
modelled with discontinuities at depths of 25-40 
km. 

Lower crustal models chosen for the reflectiv- 
ity modelling method [24] include a transitional 
zone from the 25 to the 40 km depth consisting of 
layers of alternating low and high velocities (Fig. 
7a-d).  This type of model is chosen to represent 
our observations in which we identify a broad 
band of lower crustal reflections at large offsets 

but not at pre-critical and normal-incidence [20] 
geometries. This type of model also represents 
observations of exposed lower crust of Phanero- 
zoic and Proterozoic arcs consisting of differenti- 
ated layered plutonic complexes ranging from 
ultramafic to felsic in composition [25-27]. The 
thickness of the individual layers within the tran- 
sitional zone of our models varies between 0.3 km 
(about one wavelength) and 1.5 km. Velocities 
range from 6.5 km on top of the zone to an upper  
mantle velocity of 8.2 k m / s  at the base. The 
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velocity difference between layers lies between 
0.4 and 0.5 k m / s ,  corresponding to observed 
velocity contrasts between nor i t ic-anor thosi t ic-  
charnockitic and garnet- and pyroxene-granu- 
litic-eclogitic rocks at lower crustal depths and 
pressure [28-32]. Laboratory experiments at lower 
crustal pressures of up to 10 kbar show P-wave 
velocities for garnet- and pyroxene-granulites and 
anorthosites of about 6.7-7.4 k m / s  and for eclog- 
ites of more than 7.6 k m / s ,  and often exceeding 
8 k m / s  [28-32]. One of the models (Fig. 7d) 
consists of layering with random velocity varia- 
tions. Such randomness might be more likely to 
exist in the real earth than evenly incremented 
velocity differences. The synthetic seismograms 
show similar features in all four models, such as a 
0.8-1.3 s broad band of high-amplitude arrivals at 
the critical angle (offset of 120-130 km) and a 
~ 2 s broad band of reflections at the 80-90 km 
offset. Corresponding reflection bands in the real 
data at these offsets a~:e 2 -4  s broader  compared 
to the synthetic data, possibly due to coda and 
multiples. The random velocity model (Fig. 7d) 
illustrates the best match with the observed data, 
because it contains a short strong amplitude band 
of arrivals, as observed in parts of the large-offset 
(maximum 130 km) dynamite recording, and in 
the pre-critical (85-100 km)vibroseis  recordings. 
The broad band of scattered arrivals of the ob- 
served data might be due to small-scale random 
lateral heterogeneities in the lower crust creating 
a scattering effect in the wide-angle data [33,34]. 
Calculated maximum amplitudes at the 30-40 km 
offset are about 16 db smaller than the maximum 
amplitudes at critical distance, and they are 
spread over a broad band of 4 s. Slant stacking is 
usually a valuable process in enhancing such co- 
herent low-amplitude arrivals, but there is no 
evidence for pre-critical lower crustal arrivals in 
dynamite shot recording TS. 

6. Discussion 

Previous seismic normal-incidence and wide- 
angle reflection and refraction data as well as our 
data show that the Proterozoic lower crust in 
southeastern Wyoming is reflective at large 

source-receiver  offsets but not at pre-critical or 
near-vertical [20] distances. We do not, however, 
observe distinct P-wave and S-wave Moho reflec- 
tions, although we reach the critical distance of 
approximately 120 km for Moho reflections from 
a presumed 40 km deep crust, depending on the 
velocity distribution, particularily in the lower- 
most crust. Our observation is consistent with 
earlier refraction surveys in northern Colorado 
and southeastern Wyoming [14,15]. These earlier 
studies reveal no critical Moho reflections from 
the area just south of the Archean province, in 
contrast to high-amplitude wide-angle reflections 
from the Archean in Wyoming and the Protero- 
zoic in northern-central  Colorado. 

The depth bounds derived from 1D inversion 
indicate a steady increase in lower crustal veloci- 
ties, ranging from 6.5 k m / s  at the 25 km depth to 
about 7.5 k m / s  at the lowest observable depths. 
We modelled a sequence of alternating low- and 
high-velocity layers with velocities ranging from 
6.5 to 7.5 k m / s  between the 25 and 37 km 
depths. Models of a layered or laminated lower 
crust and crus t -mant le  transition zone have been 
described by several authors [35-37] but seldom 
with such a high average velocity in the lower 
crust and a total lack of a critical Moho reflec- 
tion. If  the Proterozoic crust is considered to be 
the relict of an accreted island arc as the 
metavolcanic surface rocks suggest [5,6], a possi- 
ble upper  and mid-crustal bulk composition would 
consist of metavolcanic rocks and felsic plutons. 
Exposures of island arc middle crust (e.g., in 
northern Pakistan (Kohistan)), are dominated by 
migmatites and tonalitic batholiths with increas- 
ing grade of metamorphism from amphibolite to 
granulite facies with depth [26,27]. The lower 
crust, which is highly reflective at wide-angle dis- 
tances, may contain rocks of more marie to ultra- 
mafic composition interlayered with charnockitic 
and anorthositic complexes. The metamorphic  
grade of layered sequences in island arc com- 
plexes increases with depth from low-pressure to 
high-pressure granulite and eclogite facies [26]. 
Examples of such interlayered lower crustal is- 
land arc sequences are exposed in northern Pak- 
istan [27,38] and New Zealand [39]. Xenoliths 
from the lower crust of the Aleutian arc are of 
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ultramafic to intermediate composition [40]. Our 
reflectivity models approximate a sequence of 
interlayered rock types in which the velocities lie 
within the range of the observed values for 
anorthosites, charnockites, garnet-granulites and 
eclogites [29-32]. Hamil ton [25,26] argues that 
the Moho in magmatic arcs is either a zone of 
intercalated mafic and ultramafic rocks rather 
than a sharp boundary, or a phase transition from 
granulite to eclogite facies. Both increasing meta- 
morphic grade and a gradual increase from mafic 
to ultramafic components with depth cause an 
increase in rock velocities to those close to upper  
mantle velocities, explaining the lack of impe- 
dance contrasts necessary to generate critical re- 
flections. 

The lack of distinct Moho reflections seems to 
be a common observation in other Proterozoic 
accreted arc complexes. For instance, reflection 
data from the Precambrian midcontinent of the 
Great  Lakes region [41] show features similar to 
our wide-angle data. In the Great  Lakes region, a 
highly reflective lower crustal zone and a lack of 
a distinct Moho reflection is observed beneath an 
early Proterozoic island arc terrane bounded by 
two Archean blocks. 

The lack of Moho reflections does not permit 
us to verify the crustal model of southwest 
Wyoming derived from gravity and low-resolution 
refraction data [3,15] in which the crust deepens 
from the Archean craton to the Proterozoic ac- 
creted crust. Although the inversion and forward 
modelling results might be biased to a small de- 
gree by a dipping structure, our data provide an 
estimate of crustal composition and formation of 
an early Proterozoic island arc complex whose 
compositional character might have been pre- 
served through time. 

7. Conclusions 

crust. Veloci ty-depth models derived from mid- 
crustal to lower crustal P-wave arrivals of large- 
offset (85-126 km) vibroseis and dynamite 
recordings show that the lower crust may consist 
of a 10-12 km thick zone of alternating high and 
low velocities. The lower crustal layer P-wave 
velocities range from 6.5 to 7.5 k m / s .  The aver- 
age lower crustal velocity of 6.9 k m / s  suggests a 
predominantly mafic composition with interlay- 
ered intermediate components generating impe- 
dance contrasts that cause observable amplitudes 
from reflections at large offsets but not at clearly 
pre-critical and near-vertical distances. Our  model 
resembles observations from the exposed lower 
crust of magmatic arc complexes that show inter- 
layered sequences of gabbroic to ultramafic rocks 
with more felsic anorthositic and charnockitic 
rocks. Despite an increased lower crustal reflec- 
tivity in the wide-angle data, it is striking that we 
do not observe distinct Moho reflections in our 
wide-angle recordings, not even at the large dis- 
tance of 126 km. This is consistent with the lack 
of Moho reflections in previous and more recent 
normal-incidence reflection profilings. A grada- 
tional boundary with predominantly olivine-free 
norites and gabbros above and ultramafic rocks 
below, or a transitional phase change from high- 
pressure granulite to eclogite facies [25,41], might 
explain the lack of Moho reflections. The loss of 
Moho arrivals in crossing from Archean into Pro- 
terozoic crust is observed at other boundaries too 
[42], indicating a major difference in the two 
types of crust. Although the data coverage is 
sparse, our observations are consistent with the 
interpretation that the Proterozoic terrane south 
of the Cheyenne Belt might be an accreted mag- 
matic arc which predominantly consists of com- 
plexes of highly fractionated island arc products 
causing seismic wide-angle reflections from the 
lower crust but not the Moho. 

Seismic wide-angle data for the Proterozoic 
crust south of the boundary against the Archean 
Wyoming Province in southeastern Wyoming in- 
dicate a moderately reflective lower crust at large 
(critical) offsets, whereas previous normal-inci- 
dence reflection data lack events from the lower 
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