Skip to main content

Phase Field Modeling of Cracks in Ice

  • Chapter
  • First Online:
Progress in Structural Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 199))

  • 175 Accesses

Abstract

Calving of iceberg at ice shelves and floating glacier tongues is a poorly understood process, hence a physically motivated calving law is not yet existing. The demands on developing appropriate models for calving is large, as calving rates are needed for large scale ice sheet models that simulate the evolution of ice sheets. Here, we present a new approach for simulating fracture in ice. Our model is based on a finite strain theory for a viscoelastic Maxwell material, as the large simulation time leads to high strains. The fracturing process is simulated using a fracture phase field model that takes into account the elastic strain energy. We conduct simulations for a typical calving front geometry, with ice rises governing the formation of cracks. To represent the stress state adequately,we first conduct a spin-up to allow the viscous contribution to develop before the fracture phase field is computed. The analysis comprises the assessment of the crack path in comparison to observations, the influence of the spin-up, as well as elastic versus viscous strain contributions based on Hencky strain. Additionally, an estimate of released energy based on high resolution optical imagery of a Greenlandic calving front is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Petrovic JJ (2003) Review mechanical properties of ice and snow. Journal of Materials Science 38(1):1–6

    Article  ADS  MathSciNet  Google Scholar 

  2. Christmann J, Müller R,Webber KG, Isaia D, Schader FH, Kipfstuhl S, Freitag J, Humbert A (2015) Measurement of the fracture toughness of polycrystalline bubbly ice from an antarctic ice core. Earth System Science Data 7(1):87–92

    Article  ADS  Google Scholar 

  3. Reeh N, Christensen EL, Mayer C, Olesen OB (2003) Tidal bending of glaciers: a linear viscoelastic approach. Annals of Glaciology 37:83–89

    Article  ADS  Google Scholar 

  4. Gudmundsson GH (2011) Ice-stream response to ocean tides and the form of the basal sliding law. The Cryosphere 5(1):259–270

    Article  ADS  Google Scholar 

  5. Christmann J, Helm V, Khan S, Kleiner T, Müller R, Morlighem M, Neckel N, Rückamp M, Steinhage D, Zeising O, Humbert A (2021) Elastic deformation plays a non-negligible role in Greenland’s outlet glacier flow. Communications Earth & Environment 2(1)

    Google Scholar 

  6. Christmann J, Müller R, Humbert A (2019) On nonlinear strain theory for a viscoelastic material model and its implications for calving of ice shelves. Journal of Glaciology 65(250):212–224

    Article  ADS  Google Scholar 

  7. Humbert A, Christmann J, Corr HFJ, Helm V, Höyns LS, Hofstede C, Müller R, Neckel N, Nicholls KW, Schultz T, Steinhage D,Wolovick M, Zeising O (2022) On the evolution of an ice shelf melt channel at the base of Filchner Ice Shelf, from observations and viscoelastic modeling. The Cryosphere 16(10):4107–4139

    Article  ADS  Google Scholar 

  8. FrancfortGA,Marigo JJ (1998)Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bourdin B (2007) Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces and Free Boundaries 9(3):411–430

    Article  MathSciNet  MATH  Google Scholar 

  11. Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phasefield description of dynamic brittle fracture. Computer Methods in Applied Mechanics and Engineering 217-220:77–95

    Article  ADS  MATH  Google Scholar 

  12. Schlueter A, Kuhn C, Müller R, Gross D (2016) An investigation of intersonic fracture using a phase field model. Archive of Applied Mechanics 86:321–333

    Article  ADS  Google Scholar 

  13. Ren HL, Zhuang XY, Anitescu C, Rabczuk T (2019) An explicit phase field method for brittle dynamic fracture. Computers & Structures 217:45–56

    Article  Google Scholar 

  14. Lo YS, Borden MJ, Ravi-Chandar K, Landis CM (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132:103,684

    MathSciNet  MATH  Google Scholar 

  15. Schreiber C,Kuhn C, Müller R, Zohdi T (2020) Aphase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225:89–100

    Article  Google Scholar 

  16. Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 237:1–14

    Article  Google Scholar 

  17. Heider Y (2021) A review on phase-field modeling of hydraulic fracturing. Engineering Fracture Mechanics 253:107,881

    Google Scholar 

  18. Aldakheel F, Noii N, Wick T, Wriggers P (2021) A global–local approach for hydraulic phase-field fracture in poroelastic media. Computers & Mathematics with Applications 91:99–121, robust and Reliable Finite Element Methods in Poromechanics

    Google Scholar 

  19. Teichtmeister S, Kienle D, Aldakheel F, Keip MA (2017) Phase field modelling of fracture in anisotropic brittle solids. International Journal of Non-Linear Mechanics 97:1–21

    Article  ADS  Google Scholar 

  20. Bleyer J, Alessi R (2018) Phase-field modeling of anisotropic brittle fracture including several damage mechanisms. Computer Methods in Applied Mechanics and Engineering 336:213–236

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Schreiber C (2021) Phase field modeling of fracture: Fatigue and anisotropic fracture resistance. Phd thesis, TU Kaiserslautern, Kaiserslautern

    Google Scholar 

  22. Ambati M, Gerasimov T, De Lorenzis L (2015) Phase-field modeling of ductile fracture. Computational Mechanics 55(5):1017–1040

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Miehe C, Aldakheel F, Raina A (2016) Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory. International Journal of Plasticity 84:1–32

    Article  Google Scholar 

  24. Noll T, Kuhn C, Olesch D, Müller R (2020) 3d phase field simulations of ductile fracture. GAMM-Mitteilungen 43(2):e202000,008

    Google Scholar 

  25. Shen R,Waisman H, Guo L (2019) Fracture of viscoelastic solids modeled with a modified phase field method. Computer Methods in Applied Mechanics and Engineering 346:862–890

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Yin B, Kaliske M (2020) Fracture simulation of viscoelastic polymers by the phase-field method. Computational Mechanics 65(2):293–309

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Dammaß F, Ambati M, Kästner M (2021) A unified phase-field model of fracture in viscoelastic materials. Continuum Mechanics and Thermodynamics 33(4):1907–1929

    Article  ADS  MathSciNet  Google Scholar 

  28. Sun X, Duddu R, Hirshikesh (2021) A poro-damage phase field model for hydrofracturing of glacier crevasses. Extreme Mechanics Letters 45:101,277

    Google Scholar 

  29. Clayton T, Duddu R, Siegert M, neda EMP (2022) A stress-based poro-damage phase field model for hydrofracturing of creeping glaciers and ice shelves. Engineering Fracture Mechanics 272:108,693

    Google Scholar 

  30. Sondershaus R, Humbert A, Müller R (2023) A phase field model for fractures in ice shelves. PAMM 22(1):e202200,256

    Google Scholar 

  31. Lee EH (1969) Elastic-Plastic Deformation at Finite Strains. Journal of Applied Mechanics 36(1):1–6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Haupt P (2000) Continuum Mechanics and Theory of Materials. Springer, Berlin, Heidelberg

    Book  MATH  Google Scholar 

  33. Becker W, Gross D (2002) Mechanik elastischer Körper und Strukturen. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  34. Neff P, Ghiba ID, Lankeit J (2015) The exponentiated hencky-logarithmic strain energy. Part I: Constitutive issues and rank-one convexity. Journal of Elasticity 121(2):143–234

    Google Scholar 

  35. Ambrosio L, Tortorelli VM (1990) Approximation of functional depending on jumps by elliptic functional via t-convergence. Communications on Pure and Applied Mathematics 43(8):999–1036

    Article  MathSciNet  MATH  Google Scholar 

  36. Bourdin B (1998) Une méthode variationnelle en mécanique de la rupture. Phd thesis, Université Paris-Nord, Paris

    Google Scholar 

  37. ChambolleA(2004) An approximation result for special functions with bounded deformation. Journal de Mathématiques Pures et Appliquées 83(7):929–954

    Google Scholar 

  38. Alnæs M, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes M, Wells G (2015) The fenics project version 1.5. Archive of Numerical Software 3(100):9–23

    Google Scholar 

  39. Amestoy PR, Duff IS, L’Excellent JY, Koster J (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications 23(1):15–41

    Article  MathSciNet  MATH  Google Scholar 

  40. Geuzaine C,Remacle JF (2009) Gmsh: A3-d finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering 79(11):1309–1331

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Humbert A, Helm V, Neckel N, Zeising O, Rückamp M, Khan SA, Loebel E, Gross D, Sondershaus R, Müller R (2022) Precursor of disintegration of Greenland’s largest floating ice tongue. The Cryosphere Discussions in review:1–29

    Google Scholar 

  42. Christmann J (2017) Viscoelastic modeling of calving processes at Antarctic ice shelves. Phd thesis, TU Kaiserslautern, Kaiserslautern

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabea Sondershaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sondershaus, R., Müller, R., Gross, D., Humbert, A. (2024). Phase Field Modeling of Cracks in Ice. In: Altenbach, H., Hohe, J., Mittelstedt, C. (eds) Progress in Structural Mechanics. Advanced Structured Materials, vol 199. Springer, Cham. https://doi.org/10.1007/978-3-031-45554-4_11

Download citation

Publish with us

Policies and ethics