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The relationship between biodiversity and ecosystem functioning (BEF) is a

topic of considerable interest to scientists and managers because a better

understanding of its underlying mechanisms may help us mitigate the conse-

quences of biodiversity loss on ecosystems. Our current knowledge of BEF

relies heavily on theoretical and experimental studies, typically conducted

on a narrow range of spatio-temporal scales, environmental conditions, and

trophic levels. Hence, whether a relationship holds in the natural environment

is poorly understood, especially in exploited marine ecosystems. Using large-

scale observations of marine fish communities, we applied a structural

equation modelling framework to investigate the existence and significance

of BEF relationships across northwestern European seas. We find that ecosys-

tem functioning, here represented by spatial patterns in total fish biomass, is

unrelated to species richness—the most commonly used diversity metric in

BEF studies. Instead, community evenness, differences in species composition,

and abiotic variables are significant drivers. In particular, we find that high

fish biomass is associated with fish assemblages dominated by a few general-

ist species of a high trophic level, who are able to exploit both the benthic and

pelagic energy pathway. Our study provides a better understanding of

the mechanisms behind marine ecosystem functioning and allows for the

integration of biodiversity into management considerations.
1. Introduction
The unprecedented loss of biodiversity worldwide is accelerating despite global

conservation efforts to protect vulnerable species and habitats [1]. The extinc-

tion of species and shifts in community composition, either globally or

locally, raises important questions regarding the consequences of biodiversity

loss for the integrity, functioning, and services of ecosystems [2]. Consequently,

there is a growing interest in ecology and conservation to understand the

relationship between biodiversity and ecosystem functioning (BEF). Tradition-

ally, the BEF relationship has been studied by experimentally investigating

how the number of species occurring at a given site affects the total productivity

[3]. Meta-analyses summarizing such experimental studies and field studies
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have demonstrated a generally positive and saturating effect

of species richness on ecosystem processes [4–7]. In parallel,

theoretical studies have provided more insight into the mech-

anisms underlying these effects [8–11]. Through those

complementary approaches, two mechanisms at the origin of

BEF relationships have been identified: the ‘complementarity’

mechanism by which more species lead to higher ecosystem

functioning and the ‘selection’ mechanism by which the dom-

inance of species or traits lead to higher ecosystem functioning

[12]. The BEF concept has expanded to account for links

between multiple aspects of biodiversity (e.g. the variety of

genes, species, and functional traits) and ecosystem function-

ing (e.g. biomass production, nutrient cycling, ecosystem

metabolism, and physical engineering) [13]. Furthermore, the

field of research has broadened considerably to encompass a

range of organisms and trophic levels across terrestrial,

freshwater, and marine ecosystems [7,14–16].

However, a fundamental limitation of our current knowl-

edge on BEF is the degree to which relationships hold in real

ecosystems, characterized by complex trophic interactions,

highly variable environmental conditions, and vast spatio-

temporal scales [17,18]. This is particularly important because

the environment, including heterogeneity in resource supply

and landscapes, is thought to have a direct influence on BEF

relationships [19,20]. The effects of biodiversity and environ-

ment on ecosystem functioning also appear to be scale-

dependent [21,22]. Hence, combining and analysing large

observational datasets of biodiversity and ecosystem func-

tioning is needed in order to ground truth BEF expectations

with empirical evidence. Such analyses require statistical

tools capable of handling the increasing size and resolution

of data available and the complexity of interactions between

biodiversity, ecosystem functioning, and environmental dri-

vers [18]. Structural equation modelling (SEM) is an

appropriate statistical framework to account for some of

this complexity since it allows testing hypotheses about caus-

ality between multiple drivers and response variables

simultaneously [18,23].

In this study, we empirically test the BEF concept by

exploring the existence of links between biodiversity, ecosys-

tem functioning, and the environment using SEM and a

comprehensive collection of scientific survey data on

marine demersal (bottom-living) fish species sampled

across western European seas. This large geographical area

represents an ideal case study to test the BEF concept in a

natural marine environment thanks to its pronounced gradi-

ents in diversity and environmental conditions [24].

Furthermore, European seas are exposed to multiple human

stressors including fishing, eutrophication, and warming.

More specifically, coastal European shelf seas are perturbed

systems, where historical fishing has modified marine com-

munities and ecosystems in the past century [25,26].

Consequently, understanding the cumulative effects of the

environment and stressors on the diversity, functions, and

services of European seas is of major concern to resource

managers, policymakers, and the general public. To test

whether relationships between biodiversity metrics and eco-

system functioning (here represented by the total demersal

fish biomass) hold, we set out to answer the following

research questions: (i) is there a relationship between multiple

metrics of fish biodiversity and community biomass?

(ii) Which mechanism mostly explains fish community bio-

mass (complementarity or selection)? (iii) What is the
relative importance (both direct and indirect effects) of differ-

ent metrics of biodiversity and environmental conditions to

explain fish community biomass? (iv) What are the key charac-

teristics of fish communities in terms of species composition

and traits leading to high or low biomass?
2. Methods
(a) Data and case study
The analysis was conducted within the European seas and was

based on scientific bottom-trawl survey data available from the

International Council for the Exploration of the Sea (ICES)

online database (datras.ices.dk). Six winter-time bottom-trawl

surveys were combined from 1997 to 2016, covering the North

Sea, the eastern English Channel, the Scottish west coast, the

Celtic Sea, and the Bay of Biscay (electronic supplementary

material, S1). For each survey haul (i.e. sampling unit), the

species were identified, the number of individuals were counted,

and their length was measured, representing an indirect measure

of abundance in number of individuals at size caught per species

and haul. Hauls last approximately 30 min and the data was con-

verted into abundance per hour fishing. Only taxonomic groups

for which the species names were specified were kept, and scien-

tific names were checked with the World Register of Marine

Species [27]. All invertebrates and strictly pelagic species were

excluded, limiting the analysis to demersal and other bottom-

related fish species. To standardize for haul duration, only

hauls with duration over 20 min were retained. A minimum

hauling depth of 20 m was selected to exclude samples from

coastal or estuarine areas, as these areas were not adequately

sampled in the surveys [24]. A spatial grid with cells of 1
2

degree latitude and longitude was created, resulting in 526 grid

cells. Hauls from all surveys and years were assigned to their cor-

responding grid cell. Our dataset included in total 20 400 hauls

and 204 species.

(b) Biodiversity and ecosystem functioning metrics
The total fish biomass per grid cell was used as a proxy for eco-

system functioning. The biomass was estimated from the survey

abundances and length of individuals using species-specific

length–weight relationships available from FishBase [28],

which was then transformed into tons per hour trawled.

Although methods to standardize for swept area exist [29], miss-

ing information on the duration of hauls, the speed of the vessel,

and the opening of the gear would have resulted in a loss of a

third of the data. Therefore, data standardized by swept area

was used only as a sensitivity test while the main analysis

used all available data.

The number of samples (e.g. hauls) per grid cell for all years

was highly uneven, varying from just a few to more than a hun-

dred. This heterogeneity in sampling effort can affect the

biodiversity measurements, especially species richness [30]. In

order to standardize for sampling effort, we constructed Species

Accumulation Curves (SACs) [31,32] for each grid cell with the

‘vegan’ R package [33]. We then fitted nonlinear Michaelis–

Menten curves to each of the SACs and estimated the minimum

number of hauls required to reach the 50% threshold of the

derived asymptotic species richness for each grid cell, integrat-

ing all years from 1997 to 2016. Finally, we randomly selected

the minimum required number of hauls identified above for

each grid cell, calculated the metrics of interest, repeated the

process 100 times, and calculated the average of each metric

per grid cell. This technique is further detailed in electronic

supplementary material, S2.

In order to take multiple facets of biodiversity into account,

several commonly used biodiversity indices were estimated
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from the information contained in the randomly selected hauls.

First, we estimated species richness as the mean number of

species recorded in the randomly selected hauls within each

grid cell. Since the dominance of species can reflect other pat-

terns than richness [34], we also estimated the mean Simpson’s

evenness based on species abundance [35]. Furthermore, for

each iteration, we quantified differences in species composition

between grid cells with the average Jaccard dissimilarity index

based on species presence-absence per site [36], using the ‘beta-

part’ R package [37]. For each grid cell and iteration, we

calculated the mean dissimilarity to all other cells in the

sampling grid in order to reflect the distinctness of the local

species assemblages. Because the differences in community com-

position might be related to differences in trait composition as

well, we calculated community-weighted mean (CWMs) traits

of species linked to their diet (type of diet [generalist/benthivor-

ous/piscivorous/planktivorous] and trophic level weighted by

species biomass, electronic supplementary material, S3), using

the R package ‘FD’ [38], and a collection of species traits [39].

(c) Environmental and fisheries data
To assess the contribution of abiotic variables explaining the spatial

variation in total biomass, a number of environmental predictors

were included in the analysis. Mean sea surface temperatures

(SST) were estimated based on average monthly values for 1997–

2016 available from the Hadley’s Centre [40] (HadISST). To account

for seasonality, a proxy for the stability of the environment, we

used the coefficient of variation of monthly mean SST (SST.sea).

Depth was taken from the ETOPO1 model (ngdc.noaa.gov/

mgg/global/). To account for diversity in seafloor habitats, we

also quantified the seafloor diversity by calculating Pielou’s even-

ness based on the mean proportions of sand/gravel/mud for

each grid cell [41]. High seafloor evenness indicates an even distri-

bution of the three types of bottom habitats whereas a low

evenness indicates the dominance of one of the categories in the

grid cell. To quantify the productivity of the ecosystems in each

grid cell, we used chlorophyll a concentration (mg Chl/m3/day)

from the GlobColour data, as a mean of the years 1997–2016 [42]

(globcolour.info, GSM merged data from various satellite obser-

vations, Garver, Siegel, Maritorena Model). Finally, we accounted

for fishing impacts by investigating potential effects of spatial fish-

ing effort estimates using the fished swept area in 1/year, gathered

from the Vessel Monitoring System [43] as a mean of the years

2010–2012, and the Global Fishing Watch database where we esti-

mated the fishing effort in kWh/year [44], as a mean of the years

2012–2016. All environment and fisheries data are presented in

more detail and plotted in electronic supplementary material, S4.

(d) Statistical analysis
We used a SEM to test for potential spatial relationships between

mean values of total biomass, biodiversity (i.e. species richness,

evenness, dissimilarity), environmental conditions (i.e. depth,

SST, seasonality in SST, seafloor diversity), and food availability

(e.g. chlorophyll a concentration) across all grid cells in the study

area. Since hypotheses on causal links in the system have to be

established a priori, we postulated that total biomass (i.e. the pri-

mary response variable) could be explained by all the different

biodiversity metrics and environmental drivers. In this analysis,

we are interested in whether realized productivity (biomass) is

driven by species niche complementarity (e.g. more species

lead to higher biomass), or by selection (e.g. dominance of

species/traits lead to higher biomass). We acknowledge that

the hypothesized relationships between biodiversity and bio-

mass might be bi-directional [45], especially across large-scale

environmental gradients [46]. The number of species in a

system can be a result of the potential productivity of a system,

but is highly variable and has been debated [47]. However, we
restricted the focus of the study and the structure of the SEM

to the research questions that we are interested in. Richness

and evenness are non-independent components of diversity

[48,49], we found a correlation between them, and as a result

included a non-causal correlation between the variables in the

model (electronic supplementary material, S5). The same was

done with richness and dissimilarity; and evenness and dissimi-

larity. The three biodiversity indices were thus response

variables (we allowed environmental variables to explain biodi-

versity) as well as explanatory variables of biomass. The model

construction and hypotheses are further discussed in electronic

supplementary material, S5.

We explored the relationships between fishing effort, bio-

mass, and biodiversity metrics. The patterns observed led us to

rule out fishing effort from the model for several reasons. First,

fishing effort data was only available for recent years (from

2010), did not cover the entire time series of the analysis, or

did not distinguish between pelagic and bottom-trawl fishing

gears. As such, any historical fishing effort effect on the current

spatial distribution of biodiversity and biomass cannot be ident-

ified. Second, the only significant relationship found for fishing

was between fishing effort and evenness, where fishing effort

is high when fish community dominance is high. A priori, it

might be expected that intense fishing decreases the abundance

of dominant species, but we find the opposite pattern in our

analysis. This suggests that fishing occurs in communities with

very abundant species, resulting in a causal relationship from

evenness to fishing effort (and not vice versa). Since the direc-

tionality of the observed fishing effect is uncertain, we did

not include fishing effort in the main model, but present the

analysis in electronic supplementary material, S5.

Before fitting linear generalized least squares gls models

(there were four models explaining biomass, richness, dissimilar-

ity, and evenness), we used the natural logarithm transformation

of some variables (biomass, evenness, depth, and chlorophyll a).

As the analysis is based on spatial patterns, we tested for spatial

autocorrelation and selected the best covariance structure for

each relationship before running the SEM. To account for non-

linearity of some of the links, we included quadratic terms

with the following transformation ðx�meanð xÞÞ2 [50]. The non-

linear relationships were explored a priori and included in the final

SEM if they were statistically significant and improved the

explained variance of each gls model. In order to reduce complex-

ity and avoid model saturation, we evaluated the goodness-of-fit

with the Fisher’s statistic test after removing non-significant path-

ways between environmental variables and biodiversity or

biomass from the SEM. We kept all biodiversity links in the

model and biomass pathways, links that related to our main

research hypotheses whether they were significant or not. We cre-

ated and ran all models with the R package ‘piecewiseSEM’ [51].

Model validation of residuals of each relationship was performed

a posteriori (electronic supplementary material, S5).

(e) Sensitivity analyses
The sensitivity of results to differences in sampling design were

tested on the model residuals in order to verify the potential

effects of mean sampling duration (min), gear opening (m),

vessel speed (knots), the sampling season (summer, winter, or

both), the type of gear, and the total number of samples. These

variables were introduced as predictors in linear regressions

against each of the four gls model residuals including richness,

dissimilarity, evenness, and biomass. Also, the SEM was repeated

with prior swept area standardization on a sub-dataset. To explore

the consistency of the derived patterns and relationships between

biomass and biodiversity through time, we tested the sensitivity of

the relationships when fitted over each 5-year period from 1997 to

2016. Furthermore, we checked for the consistency of relationships

regarding the effect of seasonality by comparing results with an
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analysis using fish survey data collected during summer, available

for the North Sea. Finally, we checked for the consistency of our

results in the North Sea when considering the catchability of the

gear for different species using published estimates [52]. The sen-

sitivity analyses are described in electronic supplementary

material, S5 and S6.
3. Results
The geographical patterns in standardized species richness

show large spatial variability with relatively lower numbers

of species in the central North Sea compared to the Celtic

Sea and Bay of Biscay (figure 1a). European fish communities

are characterized by an uneven distribution of species abun-

dances (except in the central North Sea and the Celtic Seas)

and the highest evenness is only 0.35 (figure 1b), indicating

strong dominance in most European demersal fish commu-

nities. The spatial patterns in community composition

indicate the presence of a clearly distinguished community

in the southern North Sea compared to the rest of the Euro-

pean seas as well as high dissimilarity overall (Jaccard .

0.5, figure 1c). However, the Bay of Biscay shows lower dis-

similarity, indicating that it is inhabited by species that are

present throughout the area. Finally, there is a marked

south-north gradient in total fish biomass. The highest

values are found in the northern North Sea and along the

west coast of Scotland, while the coastal areas of the Bay
of Biscay, the Celtic Seas, and the southern North Sea show

considerably lower values (figure 1d ).

The final SEM, including spatial autocorrelation, explains

a moderate to large degree of spatial variation in total bio-

mass (50%), species richness (29%), and dissimilarity (64%),

whereas evenness is poorly explained (5%). The Fisher stat-

istic test shows a satisfying goodness-of-fit of the model

( p ¼ 0.48). Furthermore, the results are robust to a number

of potential confounding effects, including differences in

sampling gear, duration, seasons, and number of hauls (elec-

tronic supplementary material, S5 and S6). The SEM is also

reproduced with a prior standardization of abundance and

biomass by the swept area, without changing the main

results (electronic supplementary material, S6). We find a sig-

nificant negative relationship between biomass and evenness

and a non-significant relationship between biomass and

species richness (figure 2a,b, electronic supplementary

material, S5). The strongest links in the model are between

temperature seasonality and biomass (estimated slope from

the SEM: 20.42, figure 2c), and temperature seasonality and

dissimilarity (0.62, figure 2e). We find high fish biomass

where evenness is low (i.e. high dominance), where dissimi-

larity and seasonality are at an intermediate level

(figure 2c,d ), and where temperature and chlorophyll a (as

a proxy for primary productivity) are low (figure 2a). In

terms of species richness, we find more species in areas

with high temperature, high primary productivity, a diverse
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seafloor habitat, and a low degree of seasonality. Conversely,

we find low evenness (i.e. high dominance) prevailing in

deeper environments and less diverse seafloor habitats. The

largest differences in species composition occur in highly sea-

sonal and productive areas. The SEM also includes indirect

effects. For instance, depth does not significantly affect fish

biomass but it is negatively related to evenness (20.13).

The net effect of depth on biomass calculated from the stan-

dardized coefficients is found to be weakly positive (20.13 .

(20.28) ¼ 0.04). Seafloor evenness, on the other hand, affects

biomass both directly and indirectly (through evenness), and

the net effect of seafloor evenness is negative (20.04).

The identity and trait characteristics of the dominant

species can bring additional information on the potential bio-

mass of communities in different environments. We

identified several interactions between diversity, the environ-

ment, and biomass (figure 3). First, communities with a low

evenness and high biomass (figure 3a) are dominated
primarily by gadoid species, such as Norway pout (Trisop-
terus esmarkii), haddock (Melanogrammus aeglefinus), and

whiting (Merlangius merlangus). These communities are

found in environments with a moderate degree of seasonality

and beta-diversity (figures 2c,d and 3a). These communities

are also characterized by a low proportion of benthivorous

species and an overall higher mean trophic level

(figure 3b,c). Conversely, areas with low evenness but low

biomass, are primarily dominated by benthivorous flatfish

species, such as common dab (Limanda limanda) and Euro-

pean plaice (Pleuronectes platessa), that occur in more

shallow and seasonal environments. The differences in bio-

mass between communities dominated by gadoids or

flatfish are consistent even after correcting abundance and

biomass by the gear catchability in the North Sea (electronic

supplementary material, S6). The third group, demonstrating

low biomass, is primarily found in warm environments with a

low degree of seasonality and is characterized by a high
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richness of more equally abundant species. This in turn gives

rise to higher evenness and a lower degree of dissimilarity in

species composition compared to the other areas.

4. Discussion and conclusion
Species richness is a simple and commonly used measure of

diversity employed in many experimental and field studies

where a higher number of species increase ecosystem pro-

cesses (via niche complementarity), such as biomass

production [4,7]. Support from natural systems for the positive

effect of species richness on community biomass is developing

[7,53], including large-scale observational studies demonstrat-

ing higher reef fish biomass with increasing richness [54,55].

Contrary to these findings, we found a non-significant

relationship of species richness on fish biomass across north-

western European seas. Our findings are supported by a

temporal study on North Sea demersal fish species where no

relationship between number of species and biomass was

found [29]. Similarly, weak or even negative relationships

between richness and biomass have been found in regional

studies, for instance for phytoplankton [56] and benthic macro-

fauna [57], indicating that a universal positive relationship

between species richness and biomass is not necessarily to

be expected in natural marine environments.

Several reasons might explain the absence of a species rich-

ness–biomass relationship. First, we studied exploited marine

systems with a long and intense history of fishing, especially in

the North Sea. Fishing has been shown to cause local declines

and extinctions of rare and sensitive species such as sharks and

skates [58,59], and has, as a result, altered the natural compo-

sition and diversity of fish communities. Consequently, past

effects of fishing might have disrupted a previously existing

richness–biomass relationship. Unfortunately, we cannot test

for such an effect as no historical records of fishing effort or

species composition exist at the spatial scale and resolution

needed. Second, a richness–biomass relationship is perhaps

absent as it is a scale-dependent relationship and present fore-

most along significantly larger richness gradients, as

demonstrated by previous studies and meta-analyses
[7,54,55]. Third, the relationship may be absent in the studied

region as there are fundamental differences in richness–

biomass dynamics compared to areas where a positive

relationship has been observed.

Our results show for the first time that greater dominance

(e.g. low evenness in distribution of species abundances) is

related to higher total biomass of marine fish at a large spatial

scale. Interestingly, not all uneven communities are character-

ized by high biomass, and relationships between species

composition and environmental conditions need to be

accounted for to understand these differences. Evenness

and dominance have been thought to more directly affect

the functioning of ecosystems [17,34], as large and numeri-

cally abundant species are suggested to promote

productivity via the ‘selection effect’ [12,60]. Yet, the metric

is rarely used in BEF studies [61]. Recently, evenness was

discovered as an important driver of ecosystem functioning

in plankton [56,62,63], macrophytes [64], and in benthic

communities [65].

More specifically, the identity and performance of the

dominating species and their associated traits may explain

ecosystem functioning [34,66]. We found that highly uneven

communities composed of species with a high mean trophic

level and a low proportion of benthivory (e.g. gadoids and

generalist/piscivorous species) had considerably higher

total biomass under moderate seasonality and low tempera-

tures. On the contrary, equally uneven communities but

with low total biomass contained lower trophic level species

primarily feeding on benthos (e.g. flatfish) and were found in

more seasonal environments. This indicates that demersal

fish communities consisting of generalist species, that are

able to feed on both benthos and pelagic fish, may use a

larger food supply [67] than specialist species primarily

adapted to feed on benthos. Hence, we argue that environ-

ments where high trophic level fish species utilize both the

pelagic and benthic energy pathway have considerably

higher densities and population sizes of demersal species

compared to areas with mostly benthivorous consumers

that primarily utilize the benthic food chain. The reliance

on the benthic food chain may explain the dominance of
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benthivorous species in the southern North Sea where the

biomass of benthic macrofauna was shown to be greatest

[57]. In addition to higher food availability, the prevalence

of benthivorous species in the southern North Sea may be

due to lower competition and predation from large gadoids

that follow a lower temperature envelope and therefore

reside primarily in the deeper, colder northern North Sea.

Consequently, the specific adaptations and traits of these

species in terms of their feeding and habitat preferences can

largely be explained by the different types of environments

in which they dominate. This environmental filtering process

is indicated by pronounced differences in mean temperature,

degree of seasonality, productivity, and depth between the

habitats preferred by the distinct communities [24].

The importance of these environmental factors in deter-

mining not only differences in species and trait composition,

but the overall diversity and biomass of fish communities is

clearly evidenced by their pronounced direct and indirect

effects in the SEM. The higher relative importance of environ-

mental factors compared to the effect of biodiversity on

biomass alone is well in accordance with the idea that large-

scale patterns are more environmentally driven than in local

and regional systems [46]. In particular, the SEM emphasizes

higher biomass in cooler, moderately seasonal, less pro-

ductive, and deeper environments. This differs from a

previous study conducted on reef fish communities, where

high biomass was found in warm and less seasonal waters

[55]. Additionally, higher biomass of benthic macrofauna

was found in the warmer and more productive southern

parts of the North Sea [57]. The contrasting spatial patterns

and relationship between the environment and biomass in

these studies might reflect differences in: (i) the spatial and

temporal scale of the analyses, (ii) the environmental con-

ditions and potential productivity between the ecosystems

and habitats considered, (iii) and/or a fundamental difference

in the way traits of different organism groups determine diets,

resource use, and biomass potential.

While many of the environmental variables demonstrated

strong, direct, and indirect effects on biomass, we found no

significant relationship between fishing effort and biomass

(electronic supplementary material, S4). On the contrary,

we found a negative correlation between fishing effort and

evenness, suggesting that fishing effort is higher in areas

where a few species are dominant and potentially reflecting

preference of fishery for dominant target species. As such,

fishing seems to have a limited impact on the spatial

distribution of biomass, richness, and evenness, as also

suggested in a previous regional study [68] (electronic sup-

plementary material, S5). Additionally, we found that the

slope of the biomass–evenness relationship remained stable

over time (electronic supplementary material, S6), indicating

that fishing is not significantly modifying this relationship,

despite pronounced changes in fishing effort and exploitation

rates of individual fish stocks throughout the time period

considered [43,69,70]. On the other hand, historical changes

in community evenness have been demonstrated indicating

that fisheries-induced changes may have occurred well

before the time period of our analysis [71], and the results

observed in the data might be a result of historical fishing

activities. Moreover, recent climate warming has changed

the diversity and species assemblages in western European

seas [72,73], and caused an increase in the number of species

[68,74], with a gradual displacement of gadoid species
towards northern, deeper, and colder waters [72,75]. Such

warming and fishing-induced effects on fish communities

ecosystem functioning are still unknown.

In summary, our observational study of demersal fish

assemblages in a naturally variable environment illustrates

that the potential relationships between biodiversity, ecosys-

tem functioning, and the surrounding environment are

highly context dependent and far from universally applicable

[17,18]. In particular, we have shown that species richness,

the most commonly applied biodiversity metric, may provide

a poor proxy for ecosystem functioning, defined here as the

total biomass of demersal fish. Instead, we found the environ-

ment (notably, seasonality) and evenness to be good

predictors of biomass, as greater dominance and intermediate

seasonality gave rise to considerably higher fish biomass.

However, not all uneven communities had high biomass,

since the identity of the dominant species and their feeding

traits seemed to determine the actual level of demersal bio-

mass. This relates to the specific morphological and

behavioural adaptations of species to the available food

resources in their preferred environments and habitats.

Hence, environmentally driven heterogeneity in the avail-

ability of resources may determine community composition,

diversity (i.e. channelled through traits and assembly pro-

cesses), and biomass, which in turn affects ecosystem

processes and the associated services for human well-being

[2]. Finally, we wish to emphasize that while our analysis

demonstrated strong and significant relationships between

evenness, environmental drivers, and fish community bio-

mass, these relationships may not necessarily hold for other

ecosystem functions, spatial-temporal scales, ecosystem

types, or taxonomic groups. Hence, we stress the need to

further explore and test the BEF concept using simulations,

large-scale observational data, and suitable statistical tools

to better account for the complex interactions across multiple

metrics of biodiversity, ecosystem functioning, and environ-

mental conditions. Only then can we better understand the

underlying processes and mechanisms by which biodiversity

creates and maintains the structure and integrity of ecosys-

tems and predict the impacts of biodiversity loss and

climate change on ecosystems and human wellbeing.
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