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Overview

• Assimilation system: AWI-CM and PDAF
• Weakly-coupled assimilation into the ocean component
• Toward strongly coupled assimilation
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Coupled Models and Coupled Data Assimilation

Coupled models

§ Several interconnected compartments, like

§ Atmosphere and ocean

§ Ocean physics and biogeochemistry 
(carbon, plankton, etc.)

Coupled data assimilation

§ Assimilation into coupled models

§ Weakly coupled: separate assimilation in the compartments

§ Strongly coupled: joint assimilation of the compartments

§ Use cross-covariances between fields in compartments

§ Plus various “in between” possibilities …

€ 
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2013) and uses total wavenumbers up to 63, which corre-
sponds to about 1.85 × 1.85 degrees horizontal resolution; 
the atmosphere comprises 47 levels and has its top at 0.01 
hPa (approx. 80 km). ECHAM6 includes the land surface 
model JSBACH (Stevens et al. 2013) and a hydrological 
discharge model (Hagemann and Dümenil 1997).

Since with higher resolution “the simulated climate 
improves but changes are incremental” (Stevens et al. 
2013), the T63L47 configuration appears to be a reason-
able compromise between simulation quality and compu-
tational efficiency. All standard settings are retained with 
the exception of the T63 land-sea mask, which is adjusted 
to allow for a better fit between the grids of the ocean and 
atmosphere components. The FESOM land-sea distribu-
tion is regarded as ’truth’ and the (fractional) land-sea mask 
of ECHAM6 is adjusted accordingly. This adjustment is 
accomplished by a conservative remapping of the FESOM 
land-sea distribution to the T63 grid of ECHAM6 using an 
adapted routine that has primarily been used to map the 
land-sea mask of the MPIOM to ECHAM5 (H. Haak, per-
sonal communication).

2.2  The Finite Element Sea Ice-Ocean Model (FESOM)

The sea ice-ocean component in the coupled system is 
represented by FESOM, which allows one to simulate 
ocean and sea-ice dynamics on unstructured meshes with 
variable resolution. This makes it possible to refine areas 
of particular interest in a global setting and, for example, 
resolve narrow straits where needed. Additionally, FESOM 
allows for a smooth representation of coastlines and bottom 
topography. The basic principles of FESOM are described 
by Danilov et al. (2004), Wang et al. (2008), Timmermann 
et al. (2009) and Wang et al. (2013). FESOM has been 
validated in numerous studies with prescribed atmospheric 
forcing (see e.g., Sidorenko et al. 2011; Wang et al. 2012; 
Danabasoglu et al. 2014). Although its numerics are fun-
damentally different from that of regular-grid models, 

previous model intercomparisons (see e.g., Sidorenko et al. 
2011; Danabasoglu et al. 2014) show that FESOM is a 
competitive tool for studying the ocean general circulation. 
The latest FESOM version, which is also used in this paper, 
is comprehensively described in Wang et al. (2013). In the 
following, we give a short model description here and men-
tion those settings which are different in the coupled setup.

The surface computational grid used by FESOM is 
shown in Fig. 1. We use a spherical coordinate system 
with the poles over Greenland and the Antarctic continent 
to avoid convergence of meridians in the computational 
domain. The mesh has a nominal resolution of 150 km in 
the open ocean and is gradually refined to about 25 km in 
the northern North Atlantic and the tropics. We use iso-
tropic grid refinement in the tropics since biases in tropi-
cal regions are known to have a detrimental effect on the 
climate of the extratropics through atmospheric teleconnec-
tions (see e.g., Rodwell and Jung 2008; Jung et al. 2010a), 
especially over the Northern Hemisphere. Grid refinement 
(meridional only) in the tropical belt is employed also in 
the regular-grid ocean components of other existing climate 
models (see e.g., Delworth et al. 2006; Gent et al. 2011). 
The 3-dimensional mesh is formed by vertically extending 
the surface grid using 47 unevenly spaced z-levels and the 
ocean bottom is represented with shaved cells.

Although the latest version of FESOM (Wang et al. 
2013) employs the K-Profile Parameterization (KPP) for 
vertical mixing (Large et al. 1994), we used the PP scheme 
by Pacanowski and Philander (1981) in this work. The rea-
son is that by the time the coupled simulations were started, 
the performance of the KPP scheme in FESOM was not 
completely tested for long integrations in a global setting. 
The mixing scheme may be changed to KPP in forthcom-
ing simulations. The background vertical diffusion is set 
to 2 × 10−3 m2s−1 for momentum and 10−5 m2s−1 for 
potential temperature and salinity. The maximum value of 
vertical diffusivity and viscosity is limited to 0.01 m2s−1.  
We use the GM parameterization for the stirring due to 

Fig. 1  Grids correspond-
ing to (left) ECHAM6 at T63 
(≈ 180 km) horizontal resolu-
tion and (right) FESOM. The 
grid resolution for FESOM is 
indicated through color coding 
(in km). Dark green areas of the 
T63 grid correspond to areas 
where the land fraction exceeds 
50 %; areas with a land fraction 
between 0 and 50 % are shown 
in light green

Atmosphere Ocean

coupling
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Assimilation System

AWI-CM-PDAF
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Coupler library
OASIS3-MCT

Two separate executables for atmosphere and ocean

Assimilation into coupled model: AWI-CM

Atmosphere
§ ECHAM6
§ JSBACH land
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domain. The mesh has a nominal resolution of 150 km in 
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the northern North Atlantic and the tropics. We use iso-
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climate of the extratropics through atmospheric teleconnec-
tions (see e.g., Rodwell and Jung 2008; Jung et al. 2010a), 
especially over the Northern Hemisphere. Grid refinement 
(meridional only) in the tropical belt is employed also in 
the regular-grid ocean components of other existing climate 
models (see e.g., Delworth et al. 2006; Gent et al. 2011). 
The 3-dimensional mesh is formed by vertically extending 
the surface grid using 47 unevenly spaced z-levels and the 
ocean bottom is represented with shaved cells.

Although the latest version of FESOM (Wang et al. 
2013) employs the K-Profile Parameterization (KPP) for 
vertical mixing (Large et al. 1994), we used the PP scheme 
by Pacanowski and Philander (1981) in this work. The rea-
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Fig. 1  Grids correspond-
ing to (left) ECHAM6 at T63 
(≈ 180 km) horizontal resolu-
tion and (right) FESOM. The 
grid resolution for FESOM is 
indicated through color coding 
(in km). Dark green areas of the 
T63 grid correspond to areas 
where the land fraction exceeds 
50 %; areas with a land fraction 
between 0 and 50 % are shown 
in light green

Atmosphere Ocean

fluxes

ocean/ice state
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Fig. 1  Grids correspond-
ing to (left) ECHAM6 at T63 
(≈ 180 km) horizontal resolu-
tion and (right) FESOM. The 
grid resolution for FESOM is 
indicated through color coding 
(in km). Dark green areas of the 
T63 grid correspond to areas 
where the land fraction exceeds 
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OASIS3-MCT

Ocean
§ FESOM
§ includes sea ice

Goal: Develop data assimilation methodology for
cross-domain assimilation (“strongly-coupled”)

AWI-CM: Sidorenko et al., Clim Dyn 44 (2015) 757
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PDAF: A tool for data assimilation

Open source: 
Code, documentation, and tutorial available at 

http://pdaf.awi.de
L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118

PDAF - Parallel Data Assimilation Framework
§ a program library for ensemble data assimilation

§ provides support for parallel ensemble forecasts

§ provides filters and smoothers - fully-implemented & parallelized 
(EnKF, LETKF, LESTKF, NETF, PF … easy to add more)

§ easily useable with (probably) any numerical model
(coupled to e.g. NEMO, MITgcm, FESOM, HBM, MPI-ESM, SCHISM)

§ run from laptops to supercomputers (Fortran, MPI & OpenMP)

§ Usable for real assimilation applications and to study assimilation methods
§ ~400 registered users; community contributions
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Augmenting a Model for Data Assimilation

Extension for 
data assimilation

revised parallelization enables 
ensemble forecast

plus:
Possible 

model-specific 
adaption

e.g. in NEMO 
or ECHAM: 

treat leap-frog
time stepping

Start

Stop

Do i=1, nsteps

Initialize Model
Initialize coupler

Initialize grid & fields

Time stepper
in-compartment step

coupling

Post-processing

Model
single or multiple 

executables

coupler might be 
separate program

Initialize parallel. Aaaaaaaa

Aaaaaaaa

aaaaaaaaa

Stop

Initialize Model
Initialize coupler

Initialize grid & fields

Time stepper
in-compartment step

coupling

Post-processing

Init_parallel_PDAF

Do i=1, nsteps

Init_PDAF

Assimilate_PDAF

Start

Initialize parallel.
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Assimilation-enabled Model

Couple PDAF with model
§ Modify model to simulate ensemble of model states
§ Insert correction step (analysis) to be executed at prescribed interval
§ Run model as usual, but with more processors and additional options

Forecast 1

Forecast 2

Forecast 40

Forecast 1

Forecast 2

Forecast 40

Observation

...

Day 1
00:00h

...

Day 1
12:00h

...

Day 1
12:00h

Day 2
00:00h

...

Analysis step in 
between time steps

Ensemble forecast
with changed fields

Initialize 
ensemble

Ensemble 
forecast

Single program

Analysis
(EnKF)
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Ensemble Filter Analysis Step

case-specific 
call-back 
routines

Filter analysis
update ensemble

assimilating observations

Analysis operates 
on state vectors 
(all fields in one 

vector)

Ensemble of
state vectors

X

Vector of
observations

y

Observation 
operator

H(...)

Observation error
covariance matrix

R-1 . A

Local ensemble

Xloc

Model
interface

Localization
module

Local
observations

yloc, H(x)loc

Observation module



Lars Nerger et al. – Ensemble DA with PDAF

Weakly-coupled Assimilation in Ocean
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Data Assimilation Experiments

§ Observations
§ Satellite SST

§ Profiles temperature & salinity

§ Updated: ocean state (SSH, T, S, u, v, w)

§ Assimilation method: Ensemble Kalman Filter (LESTKF)

§ Ensemble size: 46

§ Simulation period:  year 2016, daily assimilation update

§ Run time: 5.5h, fully parallelized using 12,000 processor cores

Model setup
§ Global model

§ ECHAM6: T63L47 

§ FESOM: resolution 30-160km

Data assimilation experiments
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cal regions are known to have a detrimental effect on the 
climate of the extratropics through atmospheric teleconnec-
tions (see e.g., Rodwell and Jung 2008; Jung et al. 2010a), 
especially over the Northern Hemisphere. Grid refinement 
(meridional only) in the tropical belt is employed also in 
the regular-grid ocean components of other existing climate 
models (see e.g., Delworth et al. 2006; Gent et al. 2011). 
The 3-dimensional mesh is formed by vertically extending 
the surface grid using 47 unevenly spaced z-levels and the 
ocean bottom is represented with shaved cells.

Although the latest version of FESOM (Wang et al. 
2013) employs the K-Profile Parameterization (KPP) for 
vertical mixing (Large et al. 1994), we used the PP scheme 
by Pacanowski and Philander (1981) in this work. The rea-
son is that by the time the coupled simulations were started, 
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ing to (left) ECHAM6 at T63 
(≈ 180 km) horizontal resolu-
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FESOM mesh resolution
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Offline Coupling - Efficiency

Offline-coupling is simple to implement
but can be very inefficent

Example: 
Timing from atmosphere-ocean 
coupled model (AWI-CM) 
with daily analysis step:

Model startup: 95 s
Integrate 1 day: 33 s
Model postprocessing: 14 s

Analysis step: 1 s

overhead

Restarting this model is ~3.5 times
more expensive than integrating 1 day

➜ avoid this for data assimilation
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0 10 20 30 40 50
ensemble size

0

5

10

15

20

25

30

35

40

tim
e 

[s
]

Execution times per model day

forecast
couple
forecast-couple
analysis
prepoststep

Execution times (weakly-coupled, DA only into ocean)

MPI-tasks

§ ECHAM: 72

§ FESOM: 192

§ Increasing integration time with growing 
ensemble size (11%; more parallel 
communication; worse placement)

§ some variability in integration time over 
ensemble tasks

12,144 
processor 

coresImportant factors for good performance

§ Need optimal distribution of programs over compute 
nodes/racks (here set up as ocean/atmosphere pairs)

§ Avoid conflicts in IO (Best performance when each AWI-
CM task runs in separate directory)

528 
processor 

cores

Nerger et al., GMDD (2019), doi:10.5194/gmd-2019-167
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Assimilate sea surface temperature (SST)

§ Satellite sea surface temperature
(level 3, EU Copernicus) 

§ Daily data

§ Data gaps due to clouds

§ Observation error: 0.8 oC

§ Localization radius: 500 km

SST on Jan 1st, 2016 
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SST DA: Achieving stable assimilation

SST difference: observations-model

Coupled model only represents
climate, not weather: 

Large initial SST deviation up to 10oC

DA in this case is unstable!

For stabilization:
omit SST observations where
|SSTobs- SSTens_mean| >  1.6 oC

(30% initially, <5% after 2 months) 
oC

Further omit SST observations at grid points
where model has ice

(mismatch between ice and no-ice conditions)
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Assimilation of satellite SST: Effect on the ocean

SST difference (obs-model): strong decrease of deviation
Free run Assimilation4/30/2016

Day 120

Subsurface temperature difference (obs-model); all model layers at profile locations

4/30/2016
Day 120

Free run Assimilation

Necessary
effect: 

dependent
data

independent
data
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Assimilate subsurface observations: Profiles

§ Temperature and Salinity
§ EN4 data from UK MetOffice

§ Daily data
§ Subsurface down to 5000m

§ About 1000 profiles per day
§ Observation errors

§ Temperature profiles: 0.8 oC

§ Salinity profiles: 0.5 psu
§ Localization radius: 1000 km

Profile locations on Jan 1st, 2016
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Assimilation of Profiles: Effect on the ocean

SST difference (obs-model)
Free run Assimilation4/30/2016

Day 120

Subsurface temperature difference (obs-model); all the model layers at profile locations

4/30/2016
Day 120

Free run Assimilation

larger deviations
than for SST 
assimilation

(independent data)

smaller deviations
than for SST 
assimilation

(dependent data)
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Assimilation effect: RMS errors

0,00

0,50

1,00

1,50

2,00

2,50

3,00

RMSE(SST) RMSE(proT) RMSE(proS)

Free_run DA_SST DA_proTS DA_all

Overall lowest errors with
combined assimilation

§ But partly a compromise

*

*

*

* Independent data

*
*

*
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Mean increments

Temperature
at surface

Mean increments (analysis – forecast) for days 61-366 (after DA spinup)
§ non-zero values indicate regions with possible biases

Temperature at 
100m depth
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2-meter temperature
(ERA-Interim – Model)

Free run Assimilation

Effect on Atmospheric State
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)

• Strong improvements over ocans – model SST slightly too cold
• Smaller improvements over land

§ Compare to ERA-Interim
§ mean over 2016
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10 meter zonal wind velocity
Free run Assimilation

Effect on Atmospheric State

10 meter meridional wind velocity
Free run Assimilation
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Toward Strongly-coupled Assimilation
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Strongly Coupled Data Assimilation

§ joint assimilation of the compartments

§ First step: assimilation ocean observations 
into atmosphere

§ Unfortunately, no results yet 

€ 
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2013) and uses total wavenumbers up to 63, which corre-
sponds to about 1.85 × 1.85 degrees horizontal resolution; 
the atmosphere comprises 47 levels and has its top at 0.01 
hPa (approx. 80 km). ECHAM6 includes the land surface 
model JSBACH (Stevens et al. 2013) and a hydrological 
discharge model (Hagemann and Dümenil 1997).

Since with higher resolution “the simulated climate 
improves but changes are incremental” (Stevens et al. 
2013), the T63L47 configuration appears to be a reason-
able compromise between simulation quality and compu-
tational efficiency. All standard settings are retained with 
the exception of the T63 land-sea mask, which is adjusted 
to allow for a better fit between the grids of the ocean and 
atmosphere components. The FESOM land-sea distribu-
tion is regarded as ’truth’ and the (fractional) land-sea mask 
of ECHAM6 is adjusted accordingly. This adjustment is 
accomplished by a conservative remapping of the FESOM 
land-sea distribution to the T63 grid of ECHAM6 using an 
adapted routine that has primarily been used to map the 
land-sea mask of the MPIOM to ECHAM5 (H. Haak, per-
sonal communication).

2.2  The Finite Element Sea Ice-Ocean Model (FESOM)

The sea ice-ocean component in the coupled system is 
represented by FESOM, which allows one to simulate 
ocean and sea-ice dynamics on unstructured meshes with 
variable resolution. This makes it possible to refine areas 
of particular interest in a global setting and, for example, 
resolve narrow straits where needed. Additionally, FESOM 
allows for a smooth representation of coastlines and bottom 
topography. The basic principles of FESOM are described 
by Danilov et al. (2004), Wang et al. (2008), Timmermann 
et al. (2009) and Wang et al. (2013). FESOM has been 
validated in numerous studies with prescribed atmospheric 
forcing (see e.g., Sidorenko et al. 2011; Wang et al. 2012; 
Danabasoglu et al. 2014). Although its numerics are fun-
damentally different from that of regular-grid models, 

previous model intercomparisons (see e.g., Sidorenko et al. 
2011; Danabasoglu et al. 2014) show that FESOM is a 
competitive tool for studying the ocean general circulation. 
The latest FESOM version, which is also used in this paper, 
is comprehensively described in Wang et al. (2013). In the 
following, we give a short model description here and men-
tion those settings which are different in the coupled setup.

The surface computational grid used by FESOM is 
shown in Fig. 1. We use a spherical coordinate system 
with the poles over Greenland and the Antarctic continent 
to avoid convergence of meridians in the computational 
domain. The mesh has a nominal resolution of 150 km in 
the open ocean and is gradually refined to about 25 km in 
the northern North Atlantic and the tropics. We use iso-
tropic grid refinement in the tropics since biases in tropi-
cal regions are known to have a detrimental effect on the 
climate of the extratropics through atmospheric teleconnec-
tions (see e.g., Rodwell and Jung 2008; Jung et al. 2010a), 
especially over the Northern Hemisphere. Grid refinement 
(meridional only) in the tropical belt is employed also in 
the regular-grid ocean components of other existing climate 
models (see e.g., Delworth et al. 2006; Gent et al. 2011). 
The 3-dimensional mesh is formed by vertically extending 
the surface grid using 47 unevenly spaced z-levels and the 
ocean bottom is represented with shaved cells.

Although the latest version of FESOM (Wang et al. 
2013) employs the K-Profile Parameterization (KPP) for 
vertical mixing (Large et al. 1994), we used the PP scheme 
by Pacanowski and Philander (1981) in this work. The rea-
son is that by the time the coupled simulations were started, 
the performance of the KPP scheme in FESOM was not 
completely tested for long integrations in a global setting. 
The mixing scheme may be changed to KPP in forthcom-
ing simulations. The background vertical diffusion is set 
to 2 × 10−3 m2s−1 for momentum and 10−5 m2s−1 for 
potential temperature and salinity. The maximum value of 
vertical diffusivity and viscosity is limited to 0.01 m2s−1.  
We use the GM parameterization for the stirring due to 

Fig. 1  Grids correspond-
ing to (left) ECHAM6 at T63 
(≈ 180 km) horizontal resolu-
tion and (right) FESOM. The 
grid resolution for FESOM is 
indicated through color coding 
(in km). Dark green areas of the 
T63 grid correspond to areas 
where the land fraction exceeds 
50 %; areas with a land fraction 
between 0 and 50 % are shown 
in light green

Atmosphere Ocean

coupling

Technical Challenges: 

§ ECHAM is spectral model

§ Need fields in grid point space for localization
(just identified the right place in the code; thank to ECHAM developers)

§ Need coordinate information in ECHAM 
(hidden in the code, but found it)

ECHAM6 FESOM
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Cpl. 2

Model 
Comp. 

1 Task 2

2 compartment system – weakly coupled DA

Filter
Comp. 1

Forecast Analysis Forecast

Model 
Comp. 

1 Task 1

Model 
Comp. 

2 Task 1
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Comp. 
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Comp. 

2 Task 1
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Filter
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§ Simpler setup than
strongly coupled

§ Different DA methods
possible

§ But: 
Fields in different 
compartments can be
inconsistent
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Cpl. 1

Model 
Comp. 

1 Task 1

2 compartment system – strongly coupled DA

Forecast Analysis Forecast

Model 
Comp. 

1 Task 1

Model 
Comp. 

2 Task 1

Cpl. 1

Model 
Comp. 

1 Task 1

Cpl. 1

Model 
Comp. 

1 Task 1

Model 
Comp. 

1 Task 1

Model 
Comp. 

2 Task 1

Cpl. 1

Model 
Comp. 

1 Task 1

Filtermight
be

separate
programs

Strongly coupled

Difficulties:
§ Different assimilation

frequency

§ Different time scales

§ Which fields are
correlated?

§ Do we have
(bi-)Gaussian
distributions? 
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Strongly coupled: Parallelization of analysis step

We need innovation: d = Hx - y

Observation operator links different 
compartments

1. Compute part of d on process 
‘owning’ the observation

2. Communicate d to processes for 
which observation is within 
localization radius

State vector
X

At
m

os
ph

er
e

O
ce

an

Proc. 0

Proc. k

Hx

apply H

Comm.

distribute 
y and d

In PDAF: 
achieved by changing the communicator for 
the filter processes (i.e. getting a joint state 
vector decomposed over the processes)
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Summary

§ Assimilation system of AWI-CM with PDAF for coupled DA

§ Weakly coupled assimilation

§ Good effects of assimilation for ocean

§ Improvements in atmosphere

§ Strongly coupled

§ Getting there

§ Technically not difficult for analysis step

§ ECHAM6 is tricky

§ Further current work 

§ Upgrade to FESOM2 (finite-volume) coupled to IFS

Lars.Nerger@awi.de


