Skip to main content
Log in

Fram Strait sea ice export affected by thinning: comparing high-resolution simulations and observations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Variability and trends of Fram Strait sea ice area and volume exports are examined for the period of 1990–2010. Simulations from a high-resolution version of the MPIOM model (STORM project) reproduce area and volume export well when compared with NSIDC and ICESat satellite data and in-situ ice thickness observations. The fluxes derived from ice thickness and drift satellite products vary considerably, indicating a high uncertainty in these estimates which we mostly assign to the drift observations. The model captures the observed average seasonal cycles and interannual variability of ice export. The simulated mean annual sea ice area export is 860 × 103 km2 a− 1 (1990–2010), and the correlation with the NSIDC-based area fluxes is r = 0.67. The simulated mean annual volume export is 3.3 × 103 km3 a− 1 (1990–2010), close to the ICESat/ULS values, with a correlation of r = 0.58. The simulated monthly area export has a significant positive trend of + 10% per decade, explained by wind forcing. The major contribution to the robust trend in area export between June and September. Fram Strait ice volume export variability is mainly controlled by ice drift with a dominant role of the Transpolar Drift and, to a lesser extent thickness variability. The area export increase reflects increasing ice-drift speed, but is balanced with a reduced thickness over time when it comes to volume export, giving no significant trend in volume export. The spatial variability of ice drift indicates that the export influences a large area upstream in the Trans-Polar Drift stream, and that high volume export events lead to a thinner thickness there. The central Arctic is well connected drift-wise to the Fram Strait via the Transpolar Drift while for thickness, the region north of Greenland is dominated and controlled by the Fram Strait ice export.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

We acknowledge the STORM consortium for ensuring the computational resources, and acknowledge AWI, CliSAP, MPI, HGZ for their financial support. We also acknowledge German Climate Computing Center (DKRZ) for their technical support, particularly regarding the code optimization. Through the provision observational data, our study was supported by the CORESAT project funded by the Norwegian Research Council (No. 222681). The AMSR-E and SSM/I data were provided by NSIDC (Boulder, USA). Lars H. Smedsrud was supported by the ice2ice project (ERC grant 610055) from the European Community’s Seventh Framework Programme (FP7/2007–2013). We thank Ron Kwok (Jet Propulsion Laboratory, USA), Gunnar Spreen (University of Bremen, Germany), for providing us the satellite data and Edmond Hansen (Norwegian Polar Institute, Norway) for giving us access to the ULS data. We also thank the two anonymous reviewers who provided helpful and constructive comments and suggestions to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behnam Zamani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani, B., Krumpen, T., Smedsrud, L.H. et al. Fram Strait sea ice export affected by thinning: comparing high-resolution simulations and observations. Clim Dyn 53, 3257–3270 (2019). https://doi.org/10.1007/s00382-019-04699-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-04699-z

Keywords

Navigation