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Abstract The ability of state-of-the-art regional climate models (RCMs) to simulate the trends 
of  intense cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations 
from 11 models from the Arctic-CORDEX initiative. Some models employ large-scale spectral 
nudging techniques. Cyclone characteristics simulated by the ensemble in winter and summer 
are compared with the results from four reanalyses (ERA-Interim, NCEP-CFSR, NASA-
MERRA2 and JMA-JRA55) in winter and summer for 1981-2010 period.  
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1. Introduction 
Cyclones play a key role in the changing of Arctic climate system, in particular contributing to the 
meridional atmospheric heat and moisture transport from mid-latitudes into the Arctic, thereby 
changing cloud feedbacks with impacts on the sea ice retreat in a warming climate [1-8]. An example 
was the destruction of sea ice by the intense Arctic cyclone that occurred in summer 2012 contributing 
to the record low sea ice minimum in that September [9]. Thus, cyclones, in particular, intense 
cyclones, are a key component of the Arctic climate system and the understanding of their role in 
Arctic climate change is an important task. 

The aim of this study is to assess the performance of Arctic Coordinated Regional Downscaling 
Experimen (CORDEX) regional climate models (RCMs) with respect to ensemble of four state-of-art 
reanalysis products to represent the trends of intense cyclone activity in the Arctic.  

2. Data and Methods 
We analyze cyclone characteristics obtained from 6-hourly mean sea level pressure (MSLP) data from 
an ensemble of 13 atmospheric RCMs simulations and four reanalysis products (Table 1) during the 
1981–2010 period for the Arctic region (north of 65°N) for two seasons – winter (DJF) and summer 
(JJA).  

The four reanalyses products used are ERA-Interim, NCEP-CFSR, NASA-MERRA2 , and JMA-
JRA55, hereafter called ERA-Interim, CFSR, MERRA2, and JRA55 (Table 1). The 13 Arctic-
CORDEX RCM simulations (Table 1) are based on the standard Arctic CORDEX model setup 
(http://climate-cryosphere.org/activities/targeted/polar-cordex/arctic). The domain and the horizontal 
resolution is nearly the same (rotated 0.44 deg. x 0.44 deg. grid, 116 x 133 grid points) for all models. 
Only the CCLM model applies a higher resolution (15 km), but data is only available for the winter 
season.  The key model and reanalyses information are presented in Table 1, and we refer to [10]. For 
the analysis, the reanalyses have been regridded onto the Arctic-CORDEX grid. 

We use an algorithm of cyclone identification similar to [11,12] with some modifications for the 
Arctic region [10,13,14]. The algorithm is based on the MSLP field and has been shown to be useful to 
investigate the changes in cyclone activity in extratropical and high latitudes [13,15-18].  

We calculate cyclone frequency, depth and size. The cyclone frequency is defined as the number of 
cyclone events per season. To map spatial patterns of cyclone characteristics we use the grid with 
circular cells of a 2.5° latitude radius.  

We consider cyclone depth as a measure of cyclone intensity. The cyclone depth is determined as 
a difference between the minimum central pressure in the cyclone and the outermost closed isobar. 
As shown in previous studies [19,20], the depth provides a direct measure of the kinetic energy of the 
system. Deep cyclones are identified by anomalously strong depth exceeding an arbitrary threshold 
chosen to be the 95th percentile of cyclone depth distribution from all reanalyses, which corresponds to 
ca. 20 hPa. The cyclone size (radius) is determined as the average distance from the geometric center 
to the outermost closed isobar. 

Trends have been calculated based on linear least-squares regression. As an indicator of the 
robustness of any trend, we calculate their statistical significance using a Student’s t-test at the 90% 
confidence level (P < 0.1). 

3. Results 
Figure 1 displays the climatology of intense cyclone frequency for winter and summer from multi-
reanalyses and the multi-model means for the period 1981-2010. The multi-model ensemble mean 
realistically reproduces the spatial pattern of intense cyclone frequency in the Arctic as compared to 
multi-reanalyses data for both seasons. In winter, maxima of intense cyclone frequency occur over the 
Arctic North Atlantic and Barents Sea. Compared to winter, the intense cyclone frequency in summer 
is much lower and the maximum is shifted to the central Arctic Ocean. These seasonal characteristics 
have been discussed in previous studies [10,21-23]. 
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Table 1. Reanalyses and Arctic CORDEX models, and their corresponding information where U – 
zonal wind, V – meridional wind, T – temperature, Q - humidity. w/o – without nudging. 

Type Institution/Country Data/ 
Model name 

Original 
Resolution 

Vertical, horizontal 

Nudging Sea ice 
thickness 

Reference

ECMWF/UK ERA-Interim 
L60, 0.750 
(~ 75 km)  

 [24] 

NASA/USA MERRA2 
L72, 0.50x0. 6250 

(~50 km)  

 [25] 

NCEP/USA CFSR 
L64, 0.50 
(~50 km)  

 [26] 

R
eanalyses 

JMA/JAPAN JRA55 
L60, 0.50 
(~ 50 km)  

 [27,28] 

CCLM/Germany CCLM 
L60, 0.1250 
(~15 km) 

w/o 

 

PIOMAS 
climatology 

[29] 

CCCma/Canada CanRCM4 
L32, 0.440 
(~45 km) 

Spectral 
(U, V, above 850 hPa) 

Spatially 
varying 
monthly 

climatology 

 [30] 

GERICS/Germany REMO 
L40, 0.50 
(~50 km) 

 

w/o 
 

2 m 
 

[31] 

AWI/Germany HIRHAM5-awi 
L40, 0.50 
(~50 km) 

Grid point  
(T, U, V, Q) 

2 m 
 

[32-34] 

DMI/Denmark HIRHAM5-dmi 
L31, 0.440 
(~45 km) 

w/o 

 

2 m 
 

[32,35,36]

RCA4 
w/o 

 
SMHI/Sweden 

RCASN 

L40, 0.440, 
(~45 km) 

spectral  
(U, V, T, above 850 hPa) 

 
1 m 

[37,38] 

LU/Sweden RCA-GUESS 
L40, 0.440, 
(~45 km) w/o 

1 m 
[39,40] 

MGO/Russia RRCM 
L25, 50 km 

(~0.50) w/o 

1.5 m 
 

[41] 

ULg/Belgium MAR3.6 
L23, 50 km 

(~0.50) 

spectral 
(U, V, T for lower 

stratosphere) 

0.5 m 
 

[42] 

UNI/Norway WRF3.3.1 
L51, 0.440, 
(~45 km) w/o 

3 m 
[43] 

CRCM5 w/o  

R
egional clim

ate m
odels (R

C
M

s) 

UQAM/Canada 
CRCMSN 

L55, 0.440, 
(~45 km) spectral  

(U, V, above 850 hPa) 

0.001-2.5 m 
 

[44-46] 
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Figure 1. Spatial distribution of intense cyclone frequency in winter (c, d) and summer (c, d) from 

multi-reanalyses and multi-model ensemble, 1981-2010. 
 

The analysis of the 30-yr (1981-2010) linear trends of intense cyclone frequency shows that almost 
half of the RCMs (7 out of 13 in winter, and 7 out of 12 in summer) simulate a decrease for winter and 
summer, but these trends are not statistically significant (fig. 2a). The other half show the reverse trend 
sign. At the meantime, the reanalyses show a consistent increase in winter and decrease in summer. 
Importantly, an increase of intense cyclone frequency in winter is observed for 2 out of 5 models with 
spectral nudging [47]. In summer, even 4 out of 5 models with spectral nudging demonstrate the same 
behaviour of the decreasing trend as in reanalyses. This finding supports that a nudging procedure is 
useful to represent the cyclone activity in models more realistically [10].  

All reanalyses show consistent trends for the mean depth of intense cyclones (fig. 2b), with an 
increase in winter and a decrease in summer. Adequately, most models (9 out of 14) show an increase 
in winter. However, in summer, half of the models show an increase, the other half an decrease of 
cyclone depth. But, again, nudged model runs show a higher skill. 4 out of 5 nudged models show the 
same trend as the reanalyses for both seasons. Most unnudged models show different trend signs. The 
same trend  
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Figure 2. 30-year trends (1981-2010) of intense cyclone frequency (a), depth (b) and size (c) from 

reanalyses and models in winter (blue) and summer (red), averaged over the Arctic (north of 65˚N). An 
asterisk indicates a significant trend at the 90%-level. The names of the different datasets on the x-axis 

are highlighted by color (black – reanalyses, red – nudged models, blue – non-nudged models). 
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Figure 3. Number of datasets showing positive or negative trend of intense cyclone frequency (1981-

2010) in winter (a-d) and summer (e-h). The color scale represents the number of reanalyses and 
models with a positive (red colors) and negative (blue colors) trends. 4 reanalyses and 13 models have 

been used.  
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behaviours are shown for intense cyclone size (fig. 2c). As shown previously [14], mostly deep 
(intense) cyclones are associated with a large size. It should be also noted that most trends are 
statistically non-significant. 

Figure 3 shows the large agreement among the reanalyses, among the models and between the 
reanalyses and models in the spatial trend patterns of intense cyclone frequency in both seasons. In 
winter, they show an increase over the Beaufort Sea, Chukchi Sea, Greenland Sea, and East-Siberian 
Sea, and a decrease over the Arctic Ocean, Barents- and Kara Seas, Baffin Bay and continents. In 
summer, they agree on an increase over the Barents Sea, Kara Sea and part of Laptev Sea and over 
most of the continents, and a decrease over the most parts of Arctic Seas. 
 

4. Summary and Conclusion 
The ability of the regional climate models participating in the Arctic-CORDEX to simulate the intense 
cyclone activity in the Arctic region have been assessed in comparison with reanalyses data. The 
regional models accurately reproduce the spatial distribution of intense cyclone frequency as well as of 
the characteristics (cyclone depth and size), when compared to reanalysis data.  

The reanalyses show consistent trends for the intense cyclone frequency and mean depth and size 
of intense cyclones, with an increase in winter and a decrease in summer. Models with spectral 
nudging can reproduce the same trend as in reanalyses for both seasons, while models which do not 
apply any nudging show often deviating trend signs compared to the reanalyses. However, the model 
ensemble largely agree with the reanalyses on the key regional trend patterns.  
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