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Abstract

A Sequential Importance Resampling filter is applied to assimilate data of the
Bermuda Atlantic Time-series Study for the period December 1988 to January
1994 into a 9-compartments ecosystem model. The filter provides an opportunity
to combine state and parameter estimations. We detected notable seasonality of
some model parameters. A filtered solution is in close agreement with the data
and is superior to that obtained with fixed model parameters. The seasonal de-
pendence of the initial slope of the P-I curve agrees with other known estimates.
The seasonality of the phytoplankton specific mortality rate obtained can point out
that either the phytoplankton mortality parameterization has to be improved or
the Chl:C ratio varies in time. Being of the same computational cost as the En-
semble Kalman filter, the data assimilation approach used can be implemented for

on-line tuning and operational prediction the ecosystem dynamics with a coupled
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hydrodynamical-ecosystem model.
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1 Introduction

The skill of the prediction of the marine ecosystem dynamics depends crucially on reliability
of model parameterizations of biological processes. They involve a number of parameters
which are a priori poorly known. Estimating them from indirect observations has been
attracted much attention (Fasham and Evens, 1995; Matear,1995; Harmon and Challenor,
1996; Prunet et al., 1996; Hurtt and Armstrong, 1996; Spitz et al., 1996; Fennel et al.,
2001; Schartau et al., 2001). Because of computational burden, it is not feasible to perform
parameter optimization in the frame of a coupled hydrodynamical-ecosystem model for a
sufficiently long period of integration. Instead the ecosystem was treated locally and the
advection of biological compartments was neglected. In addition, it is worth to keep in
mind that any model is an approximation to the real world and this is especially true
for the ecosystem models which are not always derived from first principles of the nature.
Consequently, the applicability of strong constraint data assimilation employed in all these

studies becomes open to questions.

Kagan et al. (1997) and Natvik et al. (2001) attempted to account for model errors in eco-
logical data assimilation. In both studies, model equations were imposed as weak constraints
and a cost function was optimized by the conjugate gradient descent. These studies were
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concentrated on estimating the state of the ecosystem that is of our primary interest rather
than the model parameters that play the role of auxiliary variables that were kept fixed. How-
ever, as it was demonstrated in Kagan et al. (1997) this procedure might fail when wrong
parameter values were specified. Losa et al. (2002) proposed an extension of the method to
tune the model parameters with accounting for model errors. They demonstrated that the
ecosystem model parameters posses notable spatial variations. As such, it is difficult if not
impossible to find a unique model parameter set which would be estimated locally and then
used succesfully in large-scale applications. The other conclusion was that the model errors
make notable contribution to the solution and cannot be neglected. Thus, we need to seek
for a data assimilation method for the ecosystem models that would account for the model

erros, be applicable in the 3D context and be capable to optimise the model parameters.

Among approaches utilized in oceanographic data assimilation, sequential filtering methods
meet the first two requirements. Until now, they have been successfuly used for state es-
timation in ocean circulation models. Application of sequential data assimilation has been
recently extended to the 1-D ecosystem model (Eknes and Evensen, 2001) and to coupled
hydrodynamical-biogeochemical models (Natvik and Evensen, 2001; Carmillet et al., 2001).
However, these studies were still concentrated on the state estimation and kept the model
parameters fixed. Neglecting uncertainties in specification of the model parameters may re-
sult in overestimating the forecast skill and thus in underestimating the data contribution

to the analysis.

Another point of trouble can be using the Kalman filtering or, in other words, the least
square technique that can be extremely inefficient when dealing with ”highly intermittent

processes, such as fronts and blooms, having probability distributions not well characterized



by means and variances” (Bennett, 1992). The particle filters are free from these drawbacks.
In a recent paper Kivman (2001) demonstrated that they make it also possible to optimize
the model parameters sequentialy and seemingly offer a data assimilation scheme that would
serve all our needs. In that study, an extension of the Sequential Importance Resampling
filter (SIR) was applied to optimizion of some parameters of the stochastic Lorenz system

and showed its high skills, at least, in deriving most crucial model parameters.

We employ here a modification of this approach to a more sophisticated 9-compartment
ecosystem model and investigate its performance with the real-life BATS data. Our goal
is twofold. At first, we show that one can benefit from simultaneous parameter and state
estimation and obtain better fit to the data compared to that obtained with a fixed set of
the model parameters. At second, the sequential technique used allowed us to study tem-
poral variability of some model parameters,the issue that has not been examined yet in the
ecosystem data assimilation. They may depend as on physical conditions (the temperature
and light level) as chemical or biological characteristics (such as nutrient availability, optical
properties of phytoplankton, phytoplankton species composition etc.). For exapmle, it is well
known that the slope of the P-I curve exhibits significant seasonal variations (Platt et al.,
1988). In all previous studies devoted to optimizing the ecosystem model parameters the cost
function measuring the misfit between the system state and the data was defined globally
over the whole assimilation period and the model parameters were assumed to be constants
in time. However, it may turn out that a particular value of some model parameter is a good
choice for one subperiod and is bad for another. With the sequential statistical methods, the
cost function is defined locally for time steps when the observations are made. Hence, they

seemingly offer a tool to let the data choose which set of the model parameters is the best



for each specific time step. Then looking at the history of the best estimates for the model

parameters we can infer about parameter variability.

The paper is organized as follows. A description of a version of the filter used in the study
is presented in the next section. In Sect. 3 we describe the design of a data assimilation
experiment. Sect. 4 is devoted to numerical results of the experiment and Sect. 5 contains a

discussion Conclusions are presented in Sect. 6.

2 Sequential Importance Resampling filter for a parameter estimation problem

Predicting the evolution of a natural phenomenon with a dynamical model

dx _
dt

M (p,x,t)+F(t), (1)
we have to keep in mind that neither prediction can be made with certainty. Generally, we
are uncertain about all model inputs such as the initial condition x (0), true value of the
internal model parameters p and external forcing F', let alone the fact that each model is
only an approximation (sometimes, a very crude one) to the truth. As such, the most general
way to express the forecast is to output a probability density function (PDF) defined over a

set of probable predictions.

This PDF p,(x (t), p ) being defined on a joint space X; x P of the model variables x (t) € X}

and the admissible model parameters p € P can be expressed as

pl(x (1),p) = Cp’ (x (1)]x (0),P ) pp(P ) po(x (0)) , (2)



where C is a normalization constant, and pp, py describes uncertainties in specification of the
internal model parameters and in the initial condition. The conditional PDF p(x (¢)|x (0),p)
evolves in time according to the Fokker-Plank-Kolmogorov (FPK) equation corresponding

to the stochastic dynamical system

dx

EzM(p,x,t)+F(t)—|—6, (3)

where ¢ is a stochastic process with the statistics describing the model errors. If for simplicity
we consider a discrete analogue of the continious system (3), then we can define a PDF

globally over the space P x X, where X = II;X; is the space of the model trajectories,

p(x,p) = Cpy(p ) po(x (0))TLL, " (x (kAL x ((k — 1)At), p) (4)

where M is the number of time steps of the length At.

Availability of intermedient observations, which are also not perfect and contain some errors,
makes it possible to reduce uncertainties in the forecast with use of the Bayes theorem. The
detailed discussion of the Bayessian view on data assimilation can be found in van Leeuwen
and Evensen (1996). In principle, Bayesian inference can be made globally over the space
X x P. However, it requires manipulations in the space of the dimension of M dim/(X;)dim(P)
that makes the procedure impractical. Two simplifications are possible. In the most part
of the studies dealing with data assimilation for ecosystem models, the dimension of the
hypothesis space is reduced by neglecting the system noise ¢ that decreases the dimension

of the problem to dim(X;)dimP). This is the so-called strong constraint data assimilation.

Here we adopt another strategy and apply the Bayes theorem sequentialy. That is, starting

from t = 0 we evolve the PDF p; until ¢ = t; where the data d ; become available. At ¢t = ¢,



we use p; as the prior PDF and apply the Bayes theorem to get the analysis PDF

pt(Va(t),pld1) = Cpa(dafx (1))pl (x (t1), ), (5)

describing updated knowledge about the system state and the model parameters. As one
can see, while still accounting for uncertainties in the model equations the sequential data
assimilation requires calculations in the space of the dimension of the same dimension as in

the strong constraint case.

Being straighforward in the theory, the sequential data assimilation encounters a fundamental
problem of evolving the forecast error statistics p{ . To solve this problem one needs to make a
partitioning of the space X; X P and thus to solve the FKP for a domain of a large dimension
even if dim(X; x P) is of a moderate value. This problem can be easily overcome for the
Gaussian statistics. In this case, instead solving the FKP to evolve the whole PDF one can
evolve the corresponding covariance matrix that is much less costly. Though such a scheme
referred to as the Kalman filter has been successufuly used in oceanography for years (Ghil
and Mallanotte-Rizzoli, 1991), strictly speaking, it works only for linear systems preserving
the Gaussian shape of the intial PDF. In application to non-linear systems, one has to use
a linearized FKP equation to propagate the error covariance matrix (the so-called Extended

Kalman filter) and this linearization lead to several severe problems (see Evensen, 1994).

Monte Carlo methods offer a promising means to overcome them. The idea behind the
methods of this type is approximating the continuos PDF with an ensemble of §-functions
(particles) each of which evolves according to the stochastic dynamical model (3) and thus
no linearization is involved. Any statistical moment of the forecast errors can be derived from

this cloud of particles at any moment of time just by sampling. The strength of the Monte



Carlo methods is that their convergence rate does not depend on the space dimension.
For example, the error in approximating an M-dimensional integral by with N regularly
distributed nodes by the trapezium formula is O(N~2™) while that for the Monte Carlo
calculation is O(N~%/2). The failure of the former method for high values of M is caused
by the poor projection of the set of the nodes onto lower-dimensional subspaces while N

randomly distributed nodes sample each dimension with exactly N species.

Monte Carlo methods enter the oceanographic data assimilation after Evensen (1994) who
put forward the so-called Ensemble Kalman filter (EnKF). The EnKF uses the Monte Carlo
technique for integrating the FPK equation to propagate the forecast error statistics. How-
ever, the analysis step (5) is still performed in the same way as in the Kalman filter, that is,
using only the covariance matrix of the forecast error statistics. Kivman (2002) showed that
this scheme could be extremely inefficient in application to stongly non-Gaussian distribu-

tions that is the case for the model parameters which are of constant sign.

In this study, we have utilized the Sequential Importance Resampling filter (SIR) introduced
by Rubin (1988) and proposed for filtering dynamical systems in Gordon et al. (1993). In its

simplest version, the SIR involves the following basic steps:

1. An initial ensemble x,,n =1,..., N is drawn from a prior distribution py(x (0));

2. Each ensemble member x, evolves according to the dynamical equations (3) with the
noise € produced by a random number generator according to the given statistics;

3. At t = ¢, when the data dj become available, weights w,,(tx) expressing ”fitness” of

ensemble members to the data are computed

Wn(tk) = pa(d g|xn(tr))



and normalized so that
N
Z wn(tk) =1.
n=1

4. The ensemble of x ,,(t) is resampled with replacement with probabilities for each ensemble
member to be drawn equal to normalized weights w;, ().

5. The analysis error statistics is approximated as

pi(x (tx) = N 215(X (tr) = xo(tk)) , (6)

where the superscript r» denotes the resampled states.

T

6. The resampled ensemble x 7,

evolves till the next analysis step and the prediction is cal-

culated as the ensemble mean

In principle, the 4-th step is not necessary and is done to improve the filter skill. One can

update the weights recursively:
Wy (tk) = pa(d g |X n(te))wn(ts—1)

and renormalize after each analysis step. Then the approximation to the analysis PDF instead

of (6) is given by

pi(x () = ;wn(tkﬁ(x (k) = % n(tk)) (7)

The scheme called the Direct Ensemble Method was tested in van Leeuwen and Evensen
(1996). The authors reported a severe problem with the filter caused by effectively vanishing
all but few weights w,, that resulted in a huge ensemble necessary to be used for obtaining
a stable solution. The resampling step makes it possible to get rid of ensemble members

deviating much from the data. Then, the system noise splits trajectories of those particles



resampled several times and allows one to achieve better coverage of the state space in the

vicinity of the data values.

Similar to the EnKF, the SIR uses Monte Carlo integration to propagate the forecast error
statistics. Contrary to the EnKF updating the ensemble states in the analysis step, the SIR
updates probabilities of the ensemble members. This modifications results in a fundamental
difference between the filters. The SIR produces a discrete approximation of the analysis
error statistics which tends to the true posterior probability density function with increasing
the ensemble size (Smith and Gelfand, 1992). Thus, it is a truly variance minimizing scheme
for any probability density function (PDF). This is just opposite to any Kalman filtering
scheme applied to a non-linear dynamical system. At first, the Kalman filter employes only
the Gaussian part of the forecast error statistics in the analysis step and thus is sub-optimal.
At second, it has difficulties in propogating the error statistics in time. Even the EnKF that
solves the FPK equation more accurately than the Extended Kalman filter is subject to this
problem since it initializes the FPK equation with an ensemble drawn not from the analysis

error statistics but from its Gaussian part.

In addition, there are some more benefits of using the SIR. At first, the analysis step is much
simpler in the SIR than in the EnKF since no matrix inversion is involved. At second, since
the SIR does not change the current state of the ensemble member and consequently no
dynamical imbalance is introduced in the system at the analysis step. Finally, the filter can

easily incorporate the data which are non-linearly related to the model variables.

An extension of the SIR for the parameter estimation problem is trivial. The ensemble should

be drawn from the joint system state X model parameter space. Then the set of the model
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parameters remains fixed in time for each ensemble member while the dynamical components
evolve according to the model equations with the correspondig model parameters until the
analysis step. Here the ensemble member (and thus the corresponding set of the model
parameters) may die if it deviates far from the data. Kivman (2002) demonstrated that the

SIR was superior to the EnKF in estimating the parameters of the stochastic Lorenz system.

A potential problem with the SIR applied to the parameter estimation is that all but one
parameter set die at the analysis step due to undersampling the parameter space or non-
adequate representation of either the data or the model error statistics that are, in fact,
not well known. If this is the case, the solution becomes very unstable and another initial
ensemble will produce quite different results. A possibility to avoid the ensemble collapse
is to add a noise to the resampled model parameters in order to split an ensemble member
drawn several times onto several new particles. However, this procedure artificially extends
the ensemble spread. Instead, after the resampling step we calculated the mean values of the
model parameters and their variances and redrew the ensemble in the parameter space from
a homogeneous distribution with the same first two moments. Of course, this is an ad hoc
procedure which is difficult to be justified. However, we may consider the scheme adopted
as a regularization of the problem of interest and refer to the inverse problem theory which
is much older than data assimilation and where the suitable regularization still remains an

active area of research.
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3 Experiment design

The ecosystem model (see Fig. 1 for a schematic representation and Appendix for details)
proposed by Drange (1996) was adopted in this study. Mainly, the model is built on the
seven-compartment nitrogen-based model of Fasham et al (1990) (FDM-model). In order to
simulate the carbon cycling within the upper mixed layer, dissolved and particulate organic
carbon are added to the FDM-model. Thus, detritus and dissolved organic matter (DOM) are
presented by carbon as well as nitrogen pools. Table 1 contains the list of 15 parameters to be
optimized and while other model parameters kept fixed are listed in Table 2. The governing
equations (8 - 15) were integrated in time with an explicit first order time-stepping scheme

using the time step of 12 hours.

The model was constrained by the data of the Bermuda Atlantic Time-series Study (Michael
and Knap, 1996), particularly, by measurements of nitrate, chlorophyll, particulate organic
nitrogen (PON) and carbon (POC) concentrations for the period December 1988 to January
1994. For the data error variances we adopted the following values: 0.05 mmolN/m™3 for
chlorophyll, 0.1 mmolN/m™3 for nitrate, 0.1 mmolN/m™3 for PON, 1. mmolN/m™=3 for
POC. All the data were averaged over the upper mixed layer (UML). The UML thickness was
estimated by analyzing BATS temperature profiles. The UML depth wass determined as the
depth where the temperature is reduced by 0.5°C in comparison with the surface temperature
(Fig.7). Nitrate concentrations at the upper boundary of the seasonal pycnocline were also
estimated from the BATS data. To convert the phytoplankton biomass to the chlorophyll

concentration we used the constant Chl:N ratio of 1.2 mg Chl(mmol N)™'.

Before starting the filter, one has to generate an initial ensemble of particles with the spread

12



reflecting uncertainties in knowledge of the intial state and the model parameters. The point
is that usually we are provided with some first guess model parameter values obtained by
trials-and-errors. Consequently, it is quite difficult, if ever possible, to establish a confidence
interval for them. In this situation, it is obvious that overestimating the initial ensemble
spread is less dangerous for performance of the SIR than underestimating. That was the
reason for using the exponential distribution to generate the initial ensemble. This distribu-
tion maximizes the entropy and thus has the maximum uncertainty among all distribution
localized at the non-negative semi-axis and having the same mean. That is, it is assumed
that we know the initial system state and the model parameters with the relative standard
error of 100%. In the parameter space, we take the first guess parameter values (Table 1)
as the corresponding means. The mean initial system state was determined as the steady
state solution to the model equations under the mean forcing averaged over the assimilation
period. When generating randomly an initial ensemble, we assume that there is no correla-
tions beween initial values of the model compartments and the model parameters. To achieve

stable results, we used a an ensemble of 1000 members.

We adopted a standard hypothesis that the model errors are described by a stationary
Gaussian random process with zero mean and no correlations in time and between different
noise components. The crutial factor affecting the filter performance is the variance of the
system noise that is unknown a priori. If the noise is either too low, the trajectories of the
particles resampled several times stay close to each other while, if it is too high, the ensemble
spread will be too wide and the ensemble will tend to collapse due to large deviations
of the vast majority of the ensemble members from the data. As a result, the solution

will become unstable and will significantly change with changing the initialization of the
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filter. The estimation of the model noise in the variational data assimilation is an area
of active research and several recipies such as maximum likelihood (Cramer, 1954), the
generalized cross-validation (Wahba, 1990), the L-curve method (Hansen, 1992) and the
entropy maximization (Kivman et al., 2001) have been put forward. Unfortunately, they
cannot be applied directly in the frame of the staitstical methods of data assimilation. Thus,
we were forced to estimate the proper noise level that resulted in a stable solution simply
by trial-and-errors. The variances adopted for the different components the model noise are
approximately of about 20% of the characteristic value of the flux in the corresponding model

equation.

4 Results

Fig.3 depicts the temporal evolution of the parameter estimates. We can reach stable es-
timates of g and u, after few analysis steps. Seemingly, these parameters are amongst the
most crucial model inputs and thus can be determined from the data with highest accuracy.
After 3 years of the negative trend, the estimate for us also stabilizes. Another group of
parameters (up and kg) exhibits fluctuations around the first guess. The behavior can be
explained by either high quality of the first guess value or by tolerance of the solution to
changes of these parameters. Analogous behavior is demonstrated by k3 with oscillations
around a doubled first guess value. We can conclude that this parameter is recovered but
the accuracy is rather low. Some parameters (¢ and w) were notably disturbed initially and

then they slowly relax to their optimal values.

The estimate for &k, remains rather stable until January 1993 when it dramatically increases
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and then falls off in January 1994. It is worth noting that the estimates for £y and kg also
exhibit the jump in January 1993 that is caused by a very high nitrate concentration observed
while a very high value of the chlorophyll concentration measured in October 1994 yields the
sharp drop in the estimates for k4 and us. The situation occured in the autumn 1994 will be

discussed below.

Final estimates for the model parameters mentioned above are presented in Table 3. Keeping
in mind that the prior variance was equal to the first guess value, we can conclude that we
achived notable uncerrtainty reduction in specification of these model parameters (except
ks for which the initial error even grew). We could not obtain a stable estimate for Vj. A
negative trend in the estimates depicted in Fig.3 is pronounced and possibly a stable estimate

can be reached with enlarging the assimilation period.

The most intersting point is the notable seasonal variability of «, 1 and k5. After removing
the negative trend in the estimates for £; and ko, one can also see also the seasonality with
the highest values in the autumn and the lowest ones during the spring bloom. It is well
known that some of the parameters, for example, the initial slope of the P-I curve (), have
a seasonal variability ( Platt et al, 1988). Our estimates of the o parameter (Fig. 4) are
in a good qualitative agreement with those of Sathyendranath et al. (1995): in winter and
spring values of the initial slop of P-I curve are higher than in other seasons. For 1992 a good
quantitative agreement with the estimates of Sathyendranath et al. (1995) is achieved for the
optimized parameter. During other years the estimates of a are underestimated compared
with Sathyendranath et al. (1995) but the seasonal variability of the parameter exhibits the
same features. It is worth noting that Kyewalyanga et al. (1998) found positive correlations

between nitrate (+nitrite) and « that is also easily seen from comparison of Fig. 2 and Fig. 3.
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On the other hand, we know nothing about seasonal variations of the other parameters (ju1,

ki, ko, ks). We leave this issue till the next section.

Though it is difficult to conclude about optimal values of some model parameters, the corre-
sponding solution that is the quantity of our primary interst fits closely almost all available
data (Fig. 5). This is not the case for the solution produced by the SIR with the first guess
model parameters (Fig.6). It notably underestimates paticulate organic carbon and particu-
late organic nitrogen and overestimates the summer chlorophyll concentrations. The lack of
PON and POC constraints the detrital breakdown rate u4 very well and that is the reason

for obtaining this value with the very high accuracy after few analysis steps.

Advantages of simultaneous parameter and state estimation is especially pronounced if we
compare the solutions with the bacteria data. These data were not assimilated in the model
and were left for the verification. Adjusting the model parameters made the fit to the bacteria
data much better than that for the fixed parameter set. As can be seen from Fig.5, in spite
of discrepancies between the data and simulated bacteria at separate moments, the solution
reproduces the observed positive trend of the bacteria concentrations since january 1989 till
the autumn 1991 quite well. This was achieved due to decreasing the bacterial excretion rate

during this period.

It is rather difficult to verify other model components against observations. There are no
data on dissolved organic metter and only few ammonium and zooplankton observations
from ZOOSWAT cruises are available for periods 5-17 August of 1989 and from 23 March
to 9 April of 1990 (Malone et al., 1993, Caron et al., 1995). Mean ammonium concentration

was 0.09 mmol N /m ™2 for the first period and 0.11 mmol N/m=3 for the second, that is an
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agreement with our ammonium estimates. Zooplankton biomass observed during the cruises
was smaller than 0.1 mmol N/m™3 (Caron et al., 1995). The filtered solution fits the data
(see Fig. 5) everywhere except for an unprecendent increase of zooplankton biomass up to
0.4 mmol N/m=3 in November 1994 preceded by a jump observed in the phytoplankton

biomass and POC.

The situation taken place in the autumn of 1994 is quite unusual for the assimilation period.
Indeed, 1994 was the only year when the UML deepens in the autumn when the nitrate level
is low. The filter immediately responds to the data by decreasing k; and k, to increase the
primary production that resulted also rising DON and DOC. More weight is also given to
a trajectory with much higher PON since POC and PON evolve almost coherently. As a
result, the zooplankton gets much more food and exhibits a very sharp rise. An intersting
point is that the SIR simalteneously decreases k4 and thus produces a much higher concen-
tration of bacteria that perfectly fits the data (let us remind that the bacteria data were not

assimilated).

5 Discussion

It is rather difficult to distinguish whether the notable seasonality in the best estimates
obtained for uq, k1, ko, k5 is fact or artifact. It might be a consequence of using the constant
carbon to chlorophyll ratio for phytoplankton to convert the phytoplankton biomass to the
chlorophyll concentration. The ratio is known to depend on numerous factors (Geider et
al., 1996; Hurt and Armstrong, 1996). Our previous experience (Losa et al., 2002) in using

an expression for the Chl : C ratio and accounting for the dependence of the ratio on
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temperature, irradiance and nitrate concentration (Cloern et al., 1995) showed that the
Chl : C ratio possesed seasonal variability with lower summer values. The excessive value
of the C'hl : C ratio for phytoplankton in the summer yields overestimating the simulated
chlorophyll concentration and causes some artificial increase of the phytoplankton maximum
specific mortality rate and decrease of the primary production to reduce the phytoplankton

concentration in order to fit the data.

On the other side, if using the constant C'hl : C ratio we calculate the phytoplankton
concentrations from the chlorophyll data in the right manner, then we have to admit that the
model overestimate the phytoplankton between the blooms (see Fig.6) and thus it needs less
production or/and more sinking. The seasonality in i1, k1, k2, ks employes both options and
pushes the solution just in the direction of decreasing the phytoplankton. This may give clues
to errors in the parameterization of the phytoplankton mortality and the primary production.
The temporal variations of 11; and k5 try to compensate deficiencies of the parameterization of
the phytoplankton mortality and suggest that the parameterization adopted underestimates
the phytoplankton mortality for low phytopankton concentrations and overestimates the

mortality rate when they are high.

As in other studies (Spitz et al., 1998; Schartau et al., 2001), we have problems in reproducing
the measured primary production (see Fig. 7). However, our fit to the data being of the
same quality was attained without assimilating the primary production data while these
data constrained the solutions obtained in the studies. One can notice from Fig. 7 that the
SIR does a much better job for the second half of the assimilation period (1992-1994) than
that for the first half (1989-1991). Atfer the initial three years the seasonal variations of

k1 and ko become more pronounced. As a consequence, with the combined parameter-state
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estimation we were able to produce significantly higher values of the primary production
which fit the observation made during the spring blumes much better compared to the state
estimation with the fixed model parameters. Thus, we can also conclude that the seasonality

of k1 and ks tries to compesate errors in the parameterization of the primary production.

6 Conclusions

We presented an approach to sequential model parameter estimation. It is based on the
Sequentail Importance Resampling filter and incorporates the information about the model
and data errors together with uncertainties in the model parameters specification in a unique
solution that approximately fits the dynamical model and the data. Due to its sequential
nature, the method permits detecting temporal evolution of the model parameters. For the
Bermuda station, it is shown that the annual variability of some model parameters can be
remarkable. Seasonality of the initial slope of the P-I curve obtained is in quantitative agree-
ment with other estimates while that of the uy k1, ko and k5 can be an artifact caused by
either wrong interpretation of the chlorophyll data or by the inadequate parameterization of
the phytoplankton mortality and the primary production. In the later case, permitting tem-
poral variability of the model parameters we were able to compensate the lack of the primary
production in the spring and the phytoplankton mortality in the rest of the year and thus
to improve notably the fit to the data in comparison with the solution with the fixed model
parameters. The superiority of the combined state-parameter estimation in comparison with
the state estimation is especially pronounced if the solutions are verified against the bacteria

data not assimilated into the model.
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It is not a surpise that we were not able to obtain stable estimates for all model parameters.
The fact that there are significant correlations between the model parameters and not all of
them can be derived from the data with high accuracy was emphasized in previous studies
(see, for example, Fennel et al., 2001). Either longer time series or denser and/or more
accurate data sets are needed to improve the quality of the estimates. This means that the
model solution is not very sensitive to the choise of these parameters. Thus, the forecast
skill slightly depends on this kind of uncertainties and is mainly limited by uncertainties in
the parameters having the most impact on the system trajectory. Kivman (2002) showed
that the SIR was able to recover those parameters within low errors with an ensemble of a
few hundred members and performed much better than the Ensemble Kalman filter without

increasing the computational cost.

Comparison of the solution with the primary production data shows that, though adjusting
the model parameters together with estimating the system state allows us to achieve much
better fit to the data, there is still much room for improving the results. Assimilating these
data could be of help. It is worth to remember that the primary production is non-linearly
related to the model variables. Assimilating data of this kind is a severe problem for any
scheme of the Kalman filtering while it is quite straightforward for the SIR and will be a

subject of future research.

The seasonality of the model parameters together with their spatial variability and impor-
tance of accounting for the model errors what was demonstrated in Losa et al. (2002) drasti-
cally complicates tuning the ecosystem models. The approach presented provides a feasible
and more flexible alternative to traditional Kalman filtering schemes for implementation of

sequential assimilation of the data into coupled hydrodynamical-ecosystem models.
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An issue that is important as from the theoretical viewpoint as for practical applications
of the SIR is elaboration of a procedure of choosing the system noise that would be more
rigorous than the trial-and-error method. In principle, nobody prevents us from including
the system noise variance in the list of estimated parameters. This problem will be examined

in a future study.
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7 Appendix: Model Equations

The model includes, as dependent variables, phytoplankton (P), zooplankton (Z), bacteria(B),
nitrate(Nn), ammonium(Nr), ditritus as particulate organic nitrogen (PON) and carbon(POC),
dissolved organic nitrogen (DON) and carbon (DOC'). The model equations describing the
processes of entrainment-detrainment at the lower upper mixed layer (UML) boundary, sink-

ing of detritus with velocity w,, and inner biological sources and sinks S; can be written as

de;
h d_(jf + C]Z-hio + 5Z‘6,7’U)g66,7 — hSZ = 0, (8)
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where h is the UML thickness, ¢; = P, ¢co = Z, ¢c3 = B, ¢4 = Nn, ¢s = Nr, ¢¢ = PON,
c¢; = POC, cg = DON, ¢g = DOC, ¢;(i = 1, ...,9) are the turbulent fluxes at the lower UML

boundary, ;67 is the Kroneker symbol, t is time.

The fluxes g; are parameterized in terms of the entrainment velocity (w, = Z—Z) in the common
way, i.e.
we(c; —¢f), if we >0,
h—0
4 = (9)

0, if w, <0

where ¢; are the concentrations of the components at the upper boundary of the seasonal

pycnocline. All ¢; except ¢4 were taken as 0 while ¢4 was estimated from the BATS data.

Biological sources and sinks S; are expressed as

((1—~)PP — Gy — Deg ifi =1,
p1G1 + BoGs + P3G — Fy — Deo if i = 2,
Us + Uy — G5 — Des if 1 = 3,
—JO,P if =4,
Si =< —JQoP — Uy + Des + eDey ifi =75, (10)
(1= B1)G1 + (1 — 5)Gs — P3G — Deg + Dey if i =6,
(1= $1)G1 + (1 — $>)GsRy — B3Gr — Des + DesRp if i =T,
YPP + §Dey + Deg — Ug + Fy if 1 =8,
\ YPPRp + dDes Ry + De; — Uy + Fy if1 =09,

where PP = JQP is the average daily phytoplankton growth rate, J is the light-limited
growth rate, () is a non-dimensional limiting factor, G|, G3, G, G; are grazing rates of
the zooplankton on the phytoplankton, bacteria and detritus (nitrogen and carbon pools)

respectively, 31, B2 and (3 are equivalent assimilation efficiencies, De; is the rate of phyto-
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plankton natural mortality, De, is the rate of zooplankton losses due to excretion, natural
mortality and grazing by predators, Des is the bacterial excretion rate, Deg, De; are the
rates of breakdown of detritus to the both pools of DOM, € and § are fractions of the total
zooplankton losses transformed into ammonium and DOM respectively (the remaining part
1 — e — ¢ of zooplankton losses transforms into detritus which is considered to be instantly
exported to the seasonal pycnocline), Uy, Ug and Uy are the ammonium uptake and the
uptake of DON and DOC by the bacteria, Fg3 and Fy are flows of the nitrigen and carbon to
the desolved organic pools due to excesses of the nitrogen or carbon in the zooplankton food,
Rp, Rz, Rp are the carbon to nitrogen ratios (C' : N) of the phytoplankton, zooplankton
and bacteria respectively. Following Fasham (1993), functions J, @, De;, Deg, Des, Deg and

De; are given as

T h
2 Vyad
=2 F P
=5 / / l(vg +a2I2)1/2] dadt,
0

0
Nnexp(—yYNr) Nr

Q=G+ = ki + Nn ko + N7’
P2 7Z?
De; = ;f;lp’ De, = k’:2+ -+ Des=mB,  Degs = usPOM, (11)

where V, = ‘/;)*1.066Tw is the maximum phytoplankton growth rate, « is the initial slope of
the P-I curve, I is the photosynthetically active radiation (PAR) ), ¢ is measured in days
and is 0 at sunrise and 7 at noon, T, is the water temperature, z is the vertical coordinate,
ki, ks, ke, w1, to, p13, V,© are model parameters. Zooplankton grazing rates G, G3, G and
G'7 are described by the expression:

griaZc;

G; = . i=1,3,6,7, 12
ks (rP + r9B + rsPOM) + 1 P2 + 1,B2 + s POM?" " (12)
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which is a multi-pray generalization of the Holling type III function. Here I(1) = 1,1(3) =
2,1(6) = 1(7) = 3, 11, 7o and 73 are the weighted preferences for phytoplankton, bacteria and
particulate organic matter, g and k3 are the maximum specific rate and the half-saturation

constant for grazing. The flows Fy and Fy equal the following:

Fz = max(0, Rz, fooa — Rz) fz,N, Fy =maz(0, Rz, food — Rz)%—’N, (13)
A

where

R _ fzc _ B1G1Rp + BoG3sRp + [B5G7
#ofeod fzn B1G1+ BoGs + B3Gs

Functions Uy, Ug and Uy are presented as

Uy, = min(Nr/At, max(0,n)U),
Us = U + min(0,n)U, (15)

Uy = URpon + min(0, Nr/At — mazx(0,n7)U)Rp,
here U = V,BDON/(k4s+ DON +min(Nr,nDON)) is the Michaelis-Menten formulation of
the bacterial uptake (FDM), n = R;’z% — 1, V, is the maximum bacterial uptake rate, k, -
the half-saturation coefficient for uptake, IX—; is the ammount of ammonium that is available
to support the growth of bacteria over the time step At. The Redfield rations for DOM as

well as for POM are calculated with the given carbon and nitrogen fluxes, as discribed by

the model equations.
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Figure captions

Fig. 1. The schematic diagram of the ecosystem model.

Fig. 2. The UML thickness at the Bermuda station.

Fig. 3. The evolution of the estimates for the model parameters. Values are normalized with

respect to the model parameter initial values.

Fig. 4. Seasonality of the initial slope of the P — I curve at the Bermuda station from
January 1992 till January 1993. The curve is the result of the parameter estimation, the solid
horizontal lines are estimates of Sathyendranath et al. (1995) with the standard deviation

(dashes lines).

Fig. 5. The evolution of the ecosystem components at the Bermuda station obtained by the
sequential weak constrained parameter estimation. Circles are the BATS data for nitrate,
chlorophyll, bacteria, particulate organic nitrogen and carbon. The data for ammonium

(circles) are from Malone et al. (1993).

Fig. 6. The same as Fig. 5 with the initial model parameters.

Fig. 7. The primary production for the combined parameter-state estimation (black curve)
and for the state estimation with the fixed model parameters (gray curve). Circles represent

the data.
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Table 1

Adjusted model parameters

Symbol | Parameter First guess Unit
41 phytoplankton maximum specific mortality rate 0.05 d-!

k1, ko | half-saturation constants for nutient and ammonium uptake 0.5 mmol N m™3
ks phytoplankton mortality half-saturation constant 0.2 mmol N m™3
P nitrate uptake ammonium inhibition parameter 1.5 m> mmolN~!
«a initial slope of the P — I curve 0.025 m2W td~!
g zooplankton maximum ingestion 1 d-!
149 zooplankton maximum loss rate 0.3 d-!
ks zooplankton ingestion half-saturation constant 1 mmol N m =3
ke zooplankton loss rate half-saturation constant 0.2 mmol N m™3
U3 the bacterial excretion rate 0.05 d-!
Vi bacterial maximum uptake rate 2 d-!
ks bacterial half-saturation const. for uptake 0.5 mmol N m™3
jm detrital breakdown rate 0.05 d-!
w detrital sinking rate 5.000 m d~!
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Table 2

Fixed model parameters

Symbol | Parameter Value Unit
kw attenuation coefficient of downwelling irradiance 0.04 m~!
ke light attenuation due to phytoplankton 0.03 | m? mmol ™!

081, B2, B3 | zooplankton assimilation efficiency 0.75
1 zooplankton feeding preferency 0.5

T9,T3 zooplankton feeding preferency 0.25
1) fraction of zooplankton losses going to DON 0.2

€ fraction of zooplankton losses going to ammonium | 0.7

7 ammonium:DON uptake ratio 0.6
Rp carbon to nitrogen ratio for phytoplankton 7
Ry carbon to nitrogen ratio for zooplankton 5.5
Rp carbon to nitrogen ratio for bacteria 5
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Table 3

Stable estimates for model parameters

Symbol | First Optimized | Error Unit
guess value variance

g 1.0 0.40 0.15 d!
U3 5-1072 | 9-1073 4.5-1073 d-!
I 5-1072 | 1.1-1072 | 1.4-1073 d~1
U2 0.3 0.24 0.13 d-!
ke 0.2 0.20 0.08 mmol N m~3
k3 1.0 2.62 1.4 mmol N m™3
1 1.5 0.99 0.33 m> mmolN~!
w 5.0 4.25 2.17 md!
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