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Abstract Polar amplification and paleoclimate sensitivity (S) have been the subject of many
paleoclimate studies. While earlier studies inferred them as single constant parameters of the climate
system, there are now indications that both are conditioned by the type of forcing. Moreover, they might
be affected by fast feedback mechanisms that have different strengths depending on the background
climate. Here we use the intermediate complexity climate model CLIMBER-2 to study the influence of land
ice and CO2 on polar amplification and S. We perform transient 5-Myr simulations, forced by different
combinations of insolation, land ice, and CO2. Our results provide evidence that land ice and CO2 changes
have different effects on temperature, both on the global mean and the meridional distribution. Land
ice changes are mainly manifested in the high latitudes of the Northern Hemisphere. They lead to higher
northern polar amplification, lower southern polar amplification, and lower S than more homogeneously
distributed CO2 forcing in CLIMBER-2. Furthermore, toward colder climates northern polar amplification
increases and consequently southern polar amplification decreases, due to the albedo-temperature
feedback. As an effect, a global average temperature change calculated from high-latitude temperatures
by using a constant polar amplification would lead to substantial errors in our model setup. We conclude
that to constrain feedback strengths and climate sensitivity by paleoclimate data, the underlying forcing
mechanisms and background climate states have to be taken into consideration.

1. Introduction

Equilibrium climate sensitivity (ECS) is a metric used to compare the different global temperature
responses to a CO2 doubling with respect to the preindustrial (PI) global reference temperature, thus
ECS = Tglob(2 × CO2) − Tglob(PI). It incorporates the total strength of the Planck response, as well as the fast
feedbacks, for example, through snow, sea ice, lapse rate, clouds, and water vapor changes. The range in ECS
shown by modern climate models in the CMIP5 project is 1.9 to 4.4 K per CO2 doubling (Vial et al., 2013).
Paleoclimate data can potentially be used to constrain this parameter (e.g., Covey et al., 1996; Edwards et al.,
2007). However, real world paleotemperatures are affected by processes other than CO2 changes, such as land
ice, vegetation, and dust changes. To compensate for their effect, the induced global mean radiative forcing
(ΔR) from all processes can be added up and used as a normalization for the temperature response (ΔT). This
leads to the definition of S = ΔT∕ΔR, also called paleoclimate sensitivity (PALAEOSENS Project Members,
2012). One obtains ECS out of S by multiplying S by 3.7 W/m2, the radiative forcing related to a CO2 doubling
(Myhre et al., 1998). Using this approach, a data-based compilation showed a range in S of 0.6 to 1.3 K ⋅W−1 m2,
which is equivalent to an ECS of 2.2 to 4.8 K (PALAEOSENS Project Members, 2012). However, this result
relies on the assumption that radiative forcing caused by different processes leads to the same temperature
response. Multiple studies have indicated that this is not the case, as different processes lead to different dis-
tributions of radiative forcing in the atmosphere (e.g., Bintanja et al., 1997; Hansen et al., 2005; Stuber et al.,
2005; Yoshimori et al., 2011). For instance, radiative forcing caused by changes in long-lived greenhouse gases
(GHGs) is fairly equally distributed over the globe, while land ice-induced albedo changes are mainly man-
ifested in high latitudes. Therefore, the resulting meridional distribution of temperature perturbations will
be different. Indeed, a study using a set of snapshot simulations over the last glacial cycle showed a depen-
dency of polar amplification on the forcing processes (Singarayer & Valdes, 2010). In addition, the strength
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of the Planck response and fast responses (or feedbacks) may vary between regions, leading to different tem-
perature responses to the same global radiative forcing. As a result, the spatial pattern of the radiative forcing
affects not only the meridional distribution but also the global mean of the temperature response (Bates,
2012; Armour et al., 2013). Moreover, when using either modeled or geological data from different time slices
(e.g., Crucifix, 2006; Hargreaves et al., 2012; Schneider von Deimling et al., 2006; Schmittner et al., 2011), the
possibility that S changes over time depending on the background climate is ignored, as indicated by, for
example, Kutzbach et al. (2013), Meraner et al. (2013), Von der Heydt et al. (2014), Martínez-Botí et al. (2015),
Köhler et al. (2015), and Friedrich et al. (2016). More information is required on how S and polar amplification
depend on the forcing processes, and how they evolve over time. One way to progress is to study long-term
transient climate simulations capturing long-term changes in forcing, and distinguishing between the effects
of radiative forcing caused by the different processes involved. Unfortunately, long (∼105 to 106 years) integra-
tions of state-of-the-art climate models, such as general circulation models (GCMs) and Earth system models,
are currently not feasible due to limited computer power. This gap can be filled by using models of reduced
complexity (Claussen et al., 2002; Stap et al., 2017).

In this study, we perform transient 5-Myr simulations of CLIMBER-2, a climate model of intermediate complex-
ity (EMIC; Petoukhov et al., 2000). Different combinations of land ice, CO2, and insolation changes are used as
input for the model. We disentangle the results to obtain the pure contributions of CO2 and land ice changes,
as well as their synergy, to polar amplification and S. For conceptual understanding, we compare these
CLIMBER-2 results to those of a separate simple linearized climate model based on the top-of-atmosphere
energy budget (based on Bates, 2012). Finally, we discuss our results and their implications for the interpre-
tation of high-latitude proxy data and the use of paleoclimate data to constrain climate models. A list of used
variables, parameters, and abbreviations is contained in section S1 in the supporting information.

2. Models and Methods
2.1. CLIMBER-2
We use the EMIC CLIMBER-2 in the setup described by Petoukhov et al. (2000) and Ganopolski et al. (2001).
CLIMBER-2 contains atmospheric, ocean, and terrestrial components. The atmosphere is represented by a
2.5-dimensional statistical-dynamical model with a 10∘ latitudinal, a ∼51∘ longitudinal resolution (seven
boxes in zonal direction), and a single-day time step. The prescribed vertical structure has 10 vertical levels
for the calculation of circulation, temperature, and humidity, and 16 levels for long-wave radiative fluxes. The
terrestrial model used in CLIMBER-2 is VECODE (Brovkin et al., 1997). This component determines the poten-
tial vegetation of every grid cell based on the temperature and precipitation, using a time step of 1 year.
CLIMBER-2 further entails a three-basin ocean model based on Stocker et al. (1992). It describes the zonally
averaged flow of water, as well as the evolution of temperature and salinity in the Atlantic, Indian, and Pacific
basins, which are connected through the Southern Ocean. The time step is 5 days and the latitudinal resolution
is 2.5∘. The ocean contains 20 unevenly distributed vertical levels. Sea ice thickness and extent are calculated
using a thermodynamic scheme. CLIMBER-2 compares favorably to GCMs in simulating present-day climate
(Ganopolski et al., 2001; Petoukhov et al., 2000). Its low computational cost makes it well suited for paleo-
climate research on long time scales. In earlier research, it has, for instance, been deployed to simulate the
Pleistocene (Ganopolski & Calov, 2011), the Pliocene (Willeit et al., 2015), and the last glacial cycle (Robinson
et al., 2011). Recently, the model has been used to design a critical insolation-CO2 relation for diagnosing the
inception of Northern Hemispheric glaciation (Ganopolski et al., 2016).

Here we force the climate model by data on insolation, land ice distribution, and CO2 concentrations. To cal-
culate insolation, we use the orbital solution of Laskar et al. (2004). The land ice forcing is taken from a 5-Myr
run using the 3-D ice sheet model ANICE. In this run, land ice was forced by Northern Hemispheric tempera-
tures obtained from benthic !18O (Lisiecki & Raymo, 2005) using the inverse technique described in De Boer
et al. (2013; Figure 1a). This yields geographically specific land ice extent and thickness of the ice sheets in the
Northern Hemisphere and the Antarctic ice sheet. Here we use an earlier realization of the land ice simula-
tion from De Boer et al. (2014), with slightly different settings for the ice flow enhancement and mass balance
parameters (see De Boer et al., 2013). The published results could not be used, since the CLIMBER-2 runs were
started before finalization of that study. A comparison between the radiative forcing used in this study and
the one derived in Köhler et al. (2015) from the final result of De Boer et al. (2014) is shown in Figure S1a. In our
setup, ice volume variability influences the land albedo as well as the surface height, but not the ocean salinity.
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Figure 1. Overview of the radiative forcing perturbations with respect to
preindustrial in the CLIMBER-2 runs (a, b) and of the resulting global
temperature perturbations (c, d). (a) Radiative forcing perturbations by land
ice changes, obtained from an ANICE simulation. (b) Radiative forcing
perturbations by CO2 changes, obtained from the approach by Van de Wal
et al. (2011). (c) Global temperature perturbations in the OIC run
(ΔTglob OIC). (d) Contributions from orbital (O; red), land ice (OI-O; blue),
CO2 (OC-O; green) changes and the synergy of the latter two (OIC-OI-OC+O;
gray) to the global temperature perturbations in the OIC run.

We use CO2 concentrations from an updated version of the proxy data
composition of Van de Wal et al., 2011 (2011; Figure 1b). This composition
was originally constructed by inferring an instantaneous log-linear relation
between the polar temperatures derived by De Boer et al. (2010) and an
assemblage of CO2 proxy data. The updated record is obtained using the
same approach, but now based on the temperature simulation belonging
to the ice sheet simulation used in CLIMBER-2 (Figure S1b). We use this
CO2 record, because it is continuous and mutually consistent with the ice
sheet configuration, since both are based on the same temperature sim-
ulation. Proxy-based CO2 input could in principal also be used, but this
will not affect the qualitative behavior of the model, which is studied here.
Non-CO2 GHGs are not taken into account.

2.2. Forcing and Analysis
We perform four transient climate runs over the past 5 Myr (Table 1). In
one run, we only vary insolation (O). We further vary either land ice (OI) or
the CO2 concentration (OC) in two more runs. In a fourth run, we vary all
the input variables (OIC). The input that is not varied is kept constant at
PI levels. Following Stein and Alpert (1993), we assess the effect of land ice
from the difference between the OI and O runs (OI-O) and that of CO2 con-
centrations from OC-O. The synergy of, or interaction among, ice volume
and CO2 changes is obtained from OIC-OI-OC+O. Because this synergy
term in our results is very small (see section 3.2), the difference between
the approach to disentangle contributions we adopt here (Stein & Alpert,
1993) and the approach more recently proposed by Lunt et al. (2012) is
negligible. Throughout this paper, we analyze the output of CLIMBER-2
after averaging to 1,000-year temporal resolution.

To measure polar amplification, we use the relation between temper-
ature differences from preindustrial values of the high-latitude regions
(30–90∘N and 30–90∘S), and the global average. This is a widely adopted
way to express polar amplification (cf. Masson-Delmotte et al., 2006; Sin-
garayer & Valdes, 2010). By calculating the slope of a least squares linear
fit (ΔTNH/SH = c + fNH/SH × ΔTglob) between these time series, we quan-
tify the average polar amplification fNH/SH, such that unity of fNH/SH means
polar temperatures vary equally strong as global temperatures. Here c rep-
resents a very minor offset. We study specific paleoclimate sensitivity (S)
by analyzing the relation between radiative forcing perturbations (ΔR),
and global temperature differences (ΔTglob) from preindustrial values (e.g.,
Friedrich et al., 2016; Köhler et al., 2015, 2017; Martínez-Botí et al., 2015;
PALAEOSENS Project Members, 2012; Von der Heydt et al., 2014, 2016).
Likewise as for the polar amplification, a least squares linear fit provides the

average S. To be consistent with earlier studies (e.g., Köhler et al., 2010, 2015, 2017), we calculate the radiative
forcing by CO2 and land ice albedo changes by applying the energy balance scheme of Köhler et al. (2010).
The radiative forcing by CO2 (ΔRCO2) follows from Myhre et al. (1998):

ΔRCO2 = 5.35 W m2 × ln(CO2∕CO2,REF), (1)

Table 1
Description of the CLIMBER-2 Runs Performed Over the Past 5 Myr

Run Orbital forcing Ice volume forcing CO2 forcing

O Laskar et al. (2004) PI configuration 280 ppm

OI Laskar et al. (2004) ANICE simulation 280 ppm

OC Laskar et al. (2004) PI configuration approach by Van de Wal et al. (2011)

OIC Laskar et al. (2004) ANICE simulation approach by Van de Wal et al. (2011)
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where CO2, REF is the preindustrial value of 278 ppm. The radiative forcing by land ice changes (ΔRLI) is
calculated per 10∘ latitudinal band i, and thereafter summed over all 18 bands:

ΔRLI =
18∑

i=1

−IS(i) × ΔALI(i) × Δ"
AEarth

, (2)

whereΔALI is the land ice area perturbation from preindustrial, AEarth the total area of the Earth, andΔ" = 0.55
is the difference in albedo between ice (sheets or shelves) and bare ground or open ocean. The annual mean
insolation at the top of the atmosphere (ITOA) is reduced by absorption (a = 0.2) and reflection ("A = 0.212)
within the atmosphere, to calculate local surface insolation IS(i):

IS(i) = ITOA(i) × (1 − ("A + a)). (3)

Although regionally of importance, global radiative forcing changes caused by insolation are an order of
magnitude smaller than the forcing changes caused by land ice and CO2 (Köhler et al., 2010), and therefore
neglected in this study. Total radiative forcing (ΔRCO2,LI) is obtained by adding the contributions of land ice and
CO2 changes, so that our calculated SCO2,LI =

ΔTglob

ΔRCO2,LI
, similar to the definition in PALAEOSENS nomenclature.

However, a direct comparison with SCO2,LI from data-based approaches is hindered by the fact that we neglect
various processes that are known to be important for global temperature change, such as non-CO2 GHGs and
dust changes. This also means we are not in the position to provide a new estimate for S. Instead, our aim
here is to disentangle the influence of land ice and CO2 on this quantity, and to explain any background state
dependence that occurs in our model.

2.3. Linearized Energy Balance Climate Model
To gain conceptual insight, we perform some independent experiments using a conceptual linearized box
model based on the top-of-atmosphere energy budget. Basically, it is a numerical implementation of Model
B from Bates (2012), generalized to three boxes. These three boxes represent the high-latitude regions and
the tropical region, each being assumed to cover one third of the area of the globe; thus, the dividing latitude
# between the boxes is such that sin(#) = ±1∕3. This setup differs from the boundaries we use to analyze
polar amplification in CLIMBER-2, where # is chosen such that sin(#) = ±1∕2. All regions are characterized by
a unit area radiative response coefficient (bNH, bSH, and btrop in W ⋅ m−2 ⋅ K−1), which dictates how strong the
temperature in that region reacts to radiative perturbations. These coefficients capture the Planck response,
as well as the fast feedbacks through snow, sea ice, lapse rate, clouds, and water vapor changes. The stronger
these feedbacks, the smaller the response coefficient, and the larger the temperature change becomes. The
atmospheric heat transport between the boxes is determined by the temperature differences between them
multiplied by coefficients for exchange between the tropics and northern high-latitude region (dNH in W ⋅m−2

⋅ K−1), and between the tropics and southern high-latitude region (dSH). In more sophisticated models, these
coefficients can vary between different background climate states (Caballero & Langen, 2005). However, for
simplicity we keep them constant here and compare runs using different values to analyze the effect that
strength variations may cause. In the model, radiative forcing perturbations in each box (ΔRNH, ΔRSH, and
ΔRtrop) yield temperature responses in the same box (ΔTNH, ΔTSH, and ΔTtrop) and heat transport between the
different boxes:

ΔRNH = bNHΔTNH − dNH(ΔTtrop − ΔTNH), (4)

ΔRSH = bSHΔTSH − dSH(ΔTtrop − ΔTSH), (5)

ΔRtrop = btropΔTtrop + dNH(ΔTtrop − ΔTNH) + dSH(ΔTtrop − ΔTSH). (6)

The model solves these equations linearized in ΔT , which provides the steady state response of temperature
to radiative perturbations in the different regions:

ΔTNH = 1
Γ

(
dNH

$
× ΔRtrop +

( (dNH)2

$2
+ Γ

$

)
∗ ΔRNH +

dNH × dSH

$ × %
× ΔRSH

)
(7)

ΔTSH = 1
Γ

(
dSH

%
× ΔRtrop +

dNH × dSH

$ × %
× ΔRNH +

( (dSH)2

%2
+ Γ

%

)
× ΔRSH

)
(8)

ΔTtrop = 1
Γ

(
ΔRtrop +

dNH

$
× ΔRNH +

dSH

%
× ΔRSH

)
(9)
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Table 2
Results of the Conceptual Model Runs: Paleoclimate Sensitivity (S) and Polar Amplification for the Northern
(fNH) and Southern (fSH) Hemispheric High-Latitude Regions

bNH = 1.5 bNH = 1.0 bNH = 0.5
bSH = 1.5 bSH = 1.0 bSH = 1.0

btrop = 1.5 btrop = 1.5 btrop = 1.5

Homogeneous S (K ⋅ W−1 ⋅ m2) 0.66 0.86 1.02

fNH 1.00 1.01 1.07

fSH 1.00 1.01 0.97

Inhomogeneous S (K ⋅ W−1 ⋅ m2) 0.66 0.87 1.09

fNH 1.46 1.40 1.40

fSH 0.65 0.71 0.71

Note. The columns give settings for the radiative response coefficients (bNH,SH,trop in W ⋅ m−2 ⋅ K−1), the
rows distinguish between homogeneous (ΔRNH = ΔRSH = ΔRtrop = 4.0 W/m−2) and inhomogeneous
(ΔRNH = 12.0 W/m−2, ΔRSH = ΔRtrop = 0 W/m−2) forcing. All runs are executed using the same atmo-
spheric heat transport coefficients (dNH,SH = 4.0 W ⋅m−2 ⋅ K−1). The results in blue are the same as those
in Table 3.

where " = btrop + dNH + dSH, $ = bNH + dNH, % = bSH + dSH, and Γ = " − (dNH)2

$
− (dSH)2

%
. We determine

polar amplification (fNH, fSH) as the ratios between high-latitude and global (ΔT = (ΔTNH + ΔTSH + ΔTtrop)∕3)
temperature response. S is obtained by dividing the global temperature response by the global radiative
perturbation (ΔR = (ΔRNH + ΔRSH + ΔRtrop)∕3). In the runs with homogeneous radiative perturbations, we
set ΔRNH = ΔRSH = ΔRtrop = 4.0 W/m−2. In the runs with inhomogeneous forcing, the radiative perturba-
tion is confined to the northern polar region: ΔRNH = 12.0 W/m−2, ΔRSH = ΔRtrop = 0 W/m−2. Parameter
settings for identical and differing radiative responses in the different regions (Table 2), as well as zero
(d = 0 W ⋅ m−2 ⋅ K−1) to infinite (d = ∞ W ⋅ m−2 ⋅ K−1) atmospheric heat transport (Table 3), are used. These
settings are chosen to yield realistic results for S. The simulations will be used for conceptual understanding
of the CLIMBER-2 results, based on simple energy balance considerations.

3. Results
3.1. Global Temperature
Solely taking insolation variability into account in CLIMBER-2 (Figure 1d; scenario O), the mean global tem-
perature varies only by 0.5 K during the whole simulated period. In the other scenarios where more input
variables are varied, changes in global temperatures are larger (Figures 1c and 1d). During the Pliocene period
(5 to 2.7 Myr ago), land ice variations are weak. Consequently, CO2 is the dominant factor controlling global
surface air temperature (Figure 1d; OC-O). Global mean temperature in the OIC run is up to 1.2 K warmer

Table 3
As Table 2

dNH = 0 dNH = 4.0 dNH = 8.0 dNH = ∞
dSH = 0 dSH = 4.0 dSH = 4.0 dSH = ∞

Homogeneous S (K ⋅ W−1 ⋅ m2) 1.22 1.02 1.01 1.00

fNH 1.64 1.07 1.04 1.00

fSH 0.82 0.97 0.99 1.00

Inhomogeneous S (K ⋅ W−1 ⋅ m2) 2.00 1.09 1.05 1.00

fNH 3.00 1.40 1.25 1.00

fSH 0.00 0.71 0.78 1.00

Note. The columns give settings for the atmospheric heat transport coefficients (dNH,SH in W ⋅m−2 ⋅K−1),
the rows distinguish between homogeneous (ΔRNH = ΔRSH = ΔRtrop = 4.0 W/m−2) and inhomoge-
neous (ΔRNH = 12.0 W/m−2, ΔRSH = ΔRtrop = 0 W/m−2) forcing. All runs are executed using the same
radiative response coefficients (bNH = 0.5, bSH = 1.0, btrop = 1.5 W ⋅ m−2 ⋅ K−1). The results in blue are
the same as those in Table 2.
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Figure 2. (a) The relation between radiative forcing by CO2 changes (ΔRCO2) and temperature differences (ΔT) between
CLIMBER-2 runs OC and O and (b) radiative forcing by land ice changes (ΔRLI) and temperature differences (ΔT)
between OI and O. For the temperature differences, shown are the whole globe (red), the northern (30–90∘N; blue) and
the southern high-latitude region (30–90∘S; green). The blue dots are partly overlain by the red and green dots. Note
the differing axis scales.

during the Pliocene than at the last time step, which represents PI climate (Figure 1c). Because the Pliocene
CO2 levels used here are lower than the 405 ppm used in PlioMIP (Figure 1b), this temperature increase is
smaller than the 1.84 to 3.60 K range calculated by that GCM ensemble (Experiment 2 in Haywood et al., 2013).
Recent model studies show that the CO2 level could have been even higher than 405 ppm during the Pliocene
(Stap et al., 2016; Willeit et al., 2015), but the exact concentration remains under debate as some proxy data
indicate a lower concentration (Badger et al., 2013; Martínez-Botí et al., 2015). Rather than making an accurate
reconstruction of climate, we focus on the qualitative behavior of the model. At around 2.8 Myr ago, glacial
inception in the Northern Hemisphere causes ice volume variations to become much larger (Figure 1d; OI-O).
From then on they exert a larger control on surface air temperature than CO2. Global temperature decreases
to about 4 K below PI during the last four glacial cycles.

3.2. Polar Amplification
Radiative forcing caused by CO2 changes is approximately spatially homogeneous. It leads to a weak polar
amplification in CLIMBER-2, as the temperature perturbations are slightly larger in the high-latitude regions
than in the tropics (Figure 2a; OC-O). This can be understood conceptually from the energy balance model,
by the high-latitude regions having a smaller radiative response coefficient than the low latitudes (Table 2),
which is most probably a result of snow and sea ice changes. For the same reason, the temperature response
is stronger in the southern than in the northern high latitudes.

Land ice changes predominantly affect the Northern Hemispheric high-latitude region. From energy balance
considerations, this should lead to increased polar amplification in the Northern Hemisphere in the physically
realistic case of finite atmospheric heat transport (Tables 2 and 3). Indeed, also in CLIMBER-2 the temperature
response is much stronger in the Northern Hemisphere than elsewhere (Figure 2b; OI-O). Besides chang-
ing albedo, there is also a contribution of the changing orography due to the ice sheets dynamics to the
polar amplification in the northern high latitudes (e.g., Romanova et al., 2006). The northern high-latitude
region contributes more to the global response, which diminishes the relative contribution of the south-
ern high-latitude region, and hence southern polar amplification. The effect of the Northern Hemisphere on
southern polar amplification is hence in part caused by the definition of polar amplification as the ratio of
high-latitude temperatures over the global average. However, increased cooling in the Northern Hemisphere
is partly compensated for by increased heat transport from the low-latitude area, which cools the tropics.
Therefore, the same interrelation is found when polar amplification is expressed as the ratio of high-latitude
temperature change over tropical temperature change, albeit less pronounced. Comparing the polar ampli-
fication in the different CLIMBER-2 runs, we see that northern polar amplification is indeed stronger in the OI
run than in the OC run (slopes of the blue and green dots in Figure 3a). For southern polar amplification, it is
the other way around (slopes in Figure 3b). Polar amplification is on average 2.2 and 0.8 in the OI run for the
Northern and Southern Hemispheres, respectively, and in the OC run 1.3 for both hemispheres. The synergy
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Figure 3. The relation between global (ΔTglob) and high-latitude temperature anomalies for the (a) Northern
Hemisphere (ΔTNH) and (b) Southern Hemisphere (ΔTSH), in the OI (blue), OC (green), and OIC (red) CLIMBER-2 runs.
Note the differing y axis scales.

of ice volume and CO2 changes on temperature is only very small (Figure 1d; OIC-OI-OC+O). Therefore, the
polar amplification factor in the OIC scenario is in-between the factors of the OI and OC scenarios: 1.8 for the
Northern and 1.0 for the Southern Hemisphere.

3.3. Climate Sensitivity
The difference between the spatial distributions of the radiative forcing by ice volume and CO2 changes also
affects S (Figure 4a). In the more inhomogeneous case (OI), radiative forcing is confined to the high northern
latitudes where the temperature response is larger (Figure 5). In this case, the energy balance model pre-
dicts increased S (Table 3). However, CLIMBER-2 simulates 42% smaller average S(= SLI) in the OI run
(0.47 K ⋅ W−1 ⋅ m2) than S(= SCO2) in the OC run (0.81 K ⋅ W−1 ⋅ m2), the S(= SCO2,LI) of the OIC run being in
the middle (0.62 K ⋅ W−1 ⋅ m2). This is due to albedo changes by snow being smaller on an ice sheet than on
vegetation or bare ground, hence reducing their amplifying effect on temperature perturbations.

3.4. Nonlinearity
TheΔRCO2,LI versusΔT scatterplot of the CLIMBER-2 results contains a nonlinear relationship (Figure 4a), which
is an indicator for state dependency in S (e.g., Köhler et al., 2015). For all scenarios, a second-order fit has
a significantly larger coefficient of determination (r2) than a linear fit. We use F tests based on the residual
sum of squares to identify if the second-order polynomial is a better fit to the results than the linear one. The
nonlinearity originates from the Northern Hemisphere, as there the temperature response increases toward
colder climates (Figure 2a). Therefore, northern polar amplification grows, and consequently southern polar
amplification declines (Figure 3). This behavior is not caused by increased inhomogeneity of the radiative

Figure 4. (a) The relation between radiative forcing (ΔRCO2,LI) and global temperature anomalies (ΔTglob), in the OI (blue), OC (green), and OIC (red) CLIMBER-2
runs. (b) Same as (a), but only for the OI (blue), and OC (green) runs. (c) Same as (b) but using ΔRALB (equation (10)) instead of ΔRLI (equation (4)) to calculate the
radiative forcing (ΔRCO2,ALB). Note the differing y axis scales.
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Figure 5. The relation between global and regional radiative forcing by land
ice changes (ΔRLI), for the northern (30–90∘N) and southern (30–90∘S)
high-latitude regions and the tropical region (30∘N–30∘S) in CLIMBER-2.

forcing (Figure 5). Therefore, it is an effect of a increasing global tem-
perature response to radiative forcing in the Northern Hemisphere. This
response might be amplified by larger variations in albedo caused by veg-
etation, snow, and sea ice changes. As a check, we compensate S for this,
by adding the total albedo change caused by all processes as a forcing in
the calculation (ΔRALB):

ΔRALB =
18∑

i=1

−IS(i) × Ai × Δ"TOT

AEarth
, (10)

where Ai is the area of the latitudinal band and Δ"TOT the total surface
albedo change determined from the CLIMBER-2 results. This term replaces
ΔRLI in the calculation of total radiative forcing (now ΔRCO2,ALB) and S.
Calculated in this way, the relationship between ΔRCO2,ALB and ΔTglob is
more linear. This implies that the nonlinearity of albedo changes in the
Northern Hemisphere at lower temperatures is indeed the most important
contributor to the state dependency in S (Figures 3, 4b, and 4c). The resid-
ual nonlinearity can, for instance, be caused by emissivity changes that are
not accounted for by this albedo correction.

4. Discussion
4.1. Model Performance
Comparing our simulated temperature record to data-based approaches
is hampered by the fact that we only take into account CO2 changes. Our

used GHG forcing is therefore smaller than in reality. Furthermore, we neglect other processes, such as dust
changes, which could have an inhomogeneous effect on radiative forcing (e.g., Kohfeld & Harrison, 2001;
Mahowald et al., 2006). Our results are therefore not intended to closely capture the evolution of climate over
the past 5 Myr. Instead, we focus on the relative influences of land ice and CO2 on polar amplification and S.

The global mean temperature difference between the Last Glacial Maximum (LGM; 20 kyr ago) and PI is−4.1 K
in our fully coupled OIC run. Even with the lack of the processes mentioned above, this is in agreement with the
−4.0± 0.8 K from a recent data reconstruction (Annan & Hargreaves, 2013). This agreement could either imply
that the neglected processes only have a small impact or that their effects compensate each other. In addi-
tion, the latitudinal distribution of the LGM-PI difference is within the error margins, which represent zonally

Figure 6. (a) Modeled difference in zonally averaged surface air temperature between Last Glacial Maximum and
preindustrial (PI) for the OIC CLIMBER-2 run (red line), compared to the data reconstruction by Annan and Hargreaves
(2013) (AH13; blue line with error margin). (b) Modeled difference in zonally averaged surface air temperature
between 4524 kyr ago, a time with a 313 ppm CO2 level and orbital settings comparable to present day, and PI for the
OIC run (red line), compared to the Pliocene to PI difference calculated by the PlioMIP ensemble, Experiment 2
(Haywood et al., 2013) (H13; blue line with error margin). Both are normalized through a division by the mean global
temperature perturbation.
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Figure 7. The relation between global mean temperature perturbations from preindustrial in the OIC CLIMBER-2 run
calculated by the model [ΔTglob (model)], and the difference between these and those inferred from dividing the
high-latitude temperatures on the (a) Northern Hemisphere (blue) and the Southern Hemisphere (red), by the polar
amplification factor obtained from the Last Glacial Maximum-preindustrial temperature difference (NH = 1.85,
SH = 0.96), over the past 5 Myr. (b) The relation between proxy global mean temperature perturbations obtained from
an sea surface temperature stack (Martínez-Botí et al., 2015), and the Dome C Antarctic temperature record (Jouzel et al.,
2007), over the past 784 kyr. The black line is a second-order fit. Note the differing axis scales.

averaged uncertainty, coherent to Annan & Hargreaves (2013; Figure 6a). However, we somewhat underesti-
mate cooling in the Southern Hemisphere, while we overestimate it in the tropics.

PlioMIP Experiment 2 calculates Pliocene temperature anomalies from PI using a GCM ensemble, with
405 ppm CO2 and present-day insolation (Haywood et al., 2013). For a comparison, we use the difference
between PI and 4,524 kyr ago, a time when orbital settings were comparable to present day and the CO2 level
was high at 313 ppm. However, because of the difference in CO2, the temperature anomalies simulated here
are smaller than those in PlioMIP. To compare the spatial pattern, we therefore normalize the results through
a division by the global mean temperature change. The latitudinal distribution of the temperature difference
looks similar to the LGM-PI difference, with underestimated Southern Hemispheric warming and overesti-
mated tropical warming (Figure 6b). In this case, it is probably largely due to the use of different settings for the
Antarctic ice sheet in our simulation. The Antarctic ice sheet simulated by ANICE has a larger area and higher
surface elevation than the PRISM3 boundary conditions used in PlioMIP (Dowsett et al., 2010). Nonetheless, it
is possible that the change of atmospheric heat transport toward the South is underestimated by CLIMBER-2.

4.2. Polar Amplification
The nonconstant polar amplification simulated by CLIMBER-2 affects the interpretation of high-latitude tem-
perature perturbations in terms of global change. This becomes evident when we use the polar amplification
factors obtained from the LGM-PI differences (1.85 for the Northern Hemisphere and 0.96 for the Southern
Hemisphere) to estimate global temperature changes over the whole simulated period (Figures 7a and S2).
The difference between these estimates and the actual modeled global temperature anomalies is determined
by the product of the temperature anomaly and the error in polar amplification. The temperature anomaly is
the lowest during glacial times comparable to PI. The error in polar amplification, however, is by construction
the lowest at glacial times comparable to LGM and grows toward interglacial climates (Figure 3). Therefore, the
maximum of the difference between inferred and actual modeled global temperature is obtained in-between
interglacial and full glacial conditions. This approach of inferring global temperature changes overestimates
them by up to 0.4 K maximally using Northern Hemispheric temperatures, while it underestimates them by
up to 0.6 K using Southern Hemispheric temperatures. The spread in the obtained error as a function of the
modeled global temperature anomaly is, however, substantial (Figure 7a). In addition, the exact values for the
maximum differences depend on the chosen boundaries for the high-latitudes (30–90∘). They will increase if
the polar area is more confined to regions where the temperature variability is larger (see Figure 6).

Observing nonlinear polar amplification in geological data is difficult, since continuous records are scarce.
Furthermore, proxies are influenced by the aforementioned processes we omit. Generally, they record temper-
ature change at one specific location, which is possibly poorly represented by models due to the resolution.
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Recently, a spatially weighted proxy reconstruction of global temperature from a multiproxy database of sea
surface temperature (SST) point reconstructions was presented (Snyder, 2016). It was compared to a recon-
struction of Antarctic temperature based on the deuterium isotope record of the EPICA Dome C ice core
(Jouzel et al., 2007). This record has been suggested to be a proxy for global temperature anomalies when
divided by a constant factor (Masson-Delmotte et al., 2006). Indeed, no sign of nonlinearity in the relation
between global and polar temperature was found, although the errors are large (Figure 2a in Snyder, 2016).
However, the relationship between the Antarctic proxy record and another global temperature proxy, which
was obtained by stacking SST records (Martínez-Botí et al., 2015), gives a hint of nonlinearity (Figure 7b).
A second-order fit through these data is significantly better (larger r2) than a linear fit.

Most modeling studies focusing on long-term polar amplification using more sophisticated climate models
are based on timeslice experiments (e.g., Goldner et al., 2014; Haywood et al., 2013; Holland & Bitz, 2003).
Temporal variability in polar amplification cannot be extracted from this information. Performing snapshot
simulations using a GCM, one earlier study evaluated polar amplification over the last glacial cycle (Singarayer
& Valdes, 2010). They did not find a general relation between polar amplification on the Northern and South-
ern Hemispheres. From a conceptual perspective, a changing atmospheric heat transport coefficient could
offset the variability in polar amplification (Table 3). Therefore, the CLIMBER-2 results are contingent on the
parameterization of heat transport, and hence possibly model specific. More comprehensive model intercom-
parisons of transient simulations, such as the planned PMIP4 deglaciation experiments (Ivanovic et al., 2016),
are needed to draw firm conclusions.

4.3. Climate Sensitivity
The global mean temperature difference between the LGM and PI is−2.2 K in the OI, and −1.9 K in the OC run.
Since orbital variations have a negligible influence, this means that 54% of the cooling is due to ice sheets,
and 46% due to CO2 changes. This is within the broad range of previous model estimates (Figure 1 in Shakun,
2017). It is most comparable to Singarayer and Valdes (2010), but they also varied the GHG CH4 and N2O.

As our most important finding, we show a dependency of S on the type of forcing in CLIMBER-2; it is different
in the OI than in the OC run. Conceptually, such a difference between the effects of spatially homogeneous
and inhomogeneous forcings can be explained by regions having separate temperature responses to the
same radiative forcing (Bates, 2012). The same behavior is also shown by many other studies using models of
varying complexity (e.g., Bintanja et al., 1997; Stuber et al., 2005; Yoshimori et al., 2011), which sometimes have
ozone as their spatially inhomogeneous forcing agent. It implies that it is difficult to derive a global average
temperature change from a global average radiative forcing.

In addition, S is background state dependent in CLIMBER-2, as a result of changing strength of the
albedo-temperature feedback in the Northern Hemisphere. This result is coherent with the findings of Pfister
and Stocker (2017), who showed that in most EMICs S decreases when CO2 concentrations are increased from
PI to 4 × PI values. However, note that the evidence from GCMs is currently ambiguous, as some show increas-
ing S with increasing forcing. State dependency of S is also found, but not explained, by a study using a hybrid
model data approach (Friedrich et al., 2016). They calculated S over the past 784 kyr from a combination of a
reconstructed SST record and results of the EMIC LOVECLIM. In their study, S decreases toward colder climates,
which is opposite to our result. Their pure model results, however, show a linear relation between global
atmospheric temperature anomalies and radiative forcing by land ice and GHG changes (ΔRGHG,LI; Figure 8a).
Therefore, we deduce that the nonlinearity in the study of Friedrich et al. (2016) mainly stems from the recon-
structed, rather than the modeled, global temperatures. Dust changes are not used to force the CLIMBER-2
and LOVECLIM simulation. However, in Figure 8b, we have added dust changes from the Dome C ice core
(Köhler et al., 2010; Lambert et al., 2008) to the calculation of radiative forcing (ΔRGHG,LI,AE). This means that
in this figure the global average temperature changed derived from the simulations are not in mutual agree-
ment with the calculated forcing. Only after this somewhat artificial correction both LOVECLIM and CLIMBER-2
show decreasing S toward colder climates.

A recent paleo data analysis (Köhler et al., 2015) also found decreasing S toward colder climates. The differ-
ence between their result and ours is mainly generated by the global temperature records that are used,
as can be deduced from the nonlinear relation between them. They determined global temperatures from
the Northern Hemispheric temperature record of De Boer et al. (2014) by using a polar amplification factor
that increased toward colder climates based on analysis of PMIP3 (ΔTg1 in Köhler et al., 2015, plotted against
our ΔTglob in Figure 8c). In Figure 8d, we show the relation between the original polar temperature records
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Figure 8. (a) The relation between radiative forcing by greenhouse gases and land ice changes (ΔRGHG,LI) and global
temperature anomalies (ΔTglob) over the past 784 kyr from the CLIMBER-2 OIC run (red) and from simulations with the
climate model LOVECLIM (Friedrich et al., 2016) (blue). (b) Same as (a) but adding radiative forcing from dust changes to
the total radiative forcing anomalies (ΔRGHG,LI,AE). (c) The relation between the global temperature anomalies in
CLIMBER-2 run OIC and the global temperature anomaly record (ΔTg1) derived in Köhler et al. (2015), over the past 5
Myr. The latter is obtained by dividing the temperature record of De Boer et al. (2014) by a polar amplification factor that
linearly increases going from warm to cold conditions. (d) The relation between the northern (green) and southern (red)
high-latitude temperature anomalies in CLIMBER-2 run OIC and the polar temperature anomaly records for the Northern
and Southern Hemispheres from De Boer et al. (2014). Note the differing axis scales.

for the Northern and Southern Hemispheres of De Boer et al. (2014) and the high-latitude temperatures from
CLIMBER-2. For the Southern Hemispheric temperatures (blue dots), this relation is more linear than for the
Northern Hemispheric temperatures (green dots). Using the southern polar temperatures from De Boer et al.
(2014), in combination with an appropriate polar amplification factor that decreases toward colder climates,
could therefore lead to a different S result that is more similar to ours.

In short, S is strongly depending on the used global average temperature record. A way forward from here is
to use more proxy-based temperature records in the analysis of S. Therefore, a more comprehensive temporal
and spatial coverage of paleotemperature data is needed. Any mismatch between CLIMBER-2 results and data
could be caused by omitted processes, such as dust changes, non-CO2 GHGs or interactive coupling with an ice
sheet model. In future modeling work, more processes should be included to obtain more reliable agreement
with geological data.

5. Conclusions

Earlier work tried to constrain climate sensitivity from both modeled and observed paleoclimate data
(e.g., Friedrich et al., 2016; Köhler et al., 2015; Martínez-Botí et al., 2015; Von der Heydt et al., 2014). To compen-
sate for slow feedbacks like ice sheet changes, they added the induced radiative forcing by these processes
to the radiative forcing by CO2 changes. This result relies on the assumption that radiative forcing caused
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by different processes leads to the same temperature response. However, analysis with a simple linearized
energy balance climate model suggests that this does not hold when the spatial distribution of the radiative
forcing differs (Bates, 2012). Therefore, the effects of land ice and CO2 on both regional and global average
temperature might be different in cases where their radiative forcings defined as global averages are the same.

Here we use 5-Myr transient runs of the EMIC CLIMBER-2 to analyze the separate and combined influences of
land ice and CO2 changes on polar amplification and paleoclimate sensitivity (S). Since our results are based
on a single climate model and therefore model dependent, the quantitative conclusions should only be used
to compare to results of other studies. In a qualitative sense, however, they are more likely to be robust.
In CLIMBER-2, the tropics and the northern and southern high-latitude regions react with different strength
to radiative forcing. This causes differing responses to spatially homogeneous and inhomogeneous radia-
tive forcing, both of the global mean temperature and the meridional distribution. Therefore, the strength of
polar amplification and S depends on the type of forcing. Ice volume changes lead on average to 77% higher
northern polar amplification and 38% lower southern polar amplification than CO2 changes. S is 42% lower in
the case of ice volume changes, because albedo changes by snow and sea ice are less effective on ice sheets
than on vegetation, sea, or bare ground. We conclude that a good distinction between different forcings is
imperative when using paleoclimate data to constrain climate models. Since polar amplification and S are inti-
mately linked, comprehensive temporal and spatial coverage of paleotemperature data could prove crucial
to validate model results.

Furthermore, in CLIMBER-2 the strength of the albedo-temperature feedback, which is caused by all processes
other than land ice changes, is not constant in time. This leads to increased S and northern polar amplification
toward glacial climates, while southern polar amplification decreases. This would hamper inferring global
means from high-latitude proxy temperature data. The CLIMBER-2 results suggest that a correction of up to
0.6 K has to be made when southern high-latitude records, such as ice cores, are used to estimate global mean
temperatures. However, this result is highly dependent on how the boundaries for the high-latitude regions
are chosen. Support from data and more sophisticated climate models for this nonlinear behavior is very
scarce. More transient simulations of these models are therefore needed to analyze whether our findings can
be corroborated, or else why this is not the case.
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1. List of abbreviations, variables and parameters

List of variables and parameters:

Variable/parameter Unit Description

↵ (-) albedo

↵A (-) reflection within the atmosphere

�R Wm�2 radiative forcing perturbations from pre-industrial values

�T K global temperature di↵erences from pre-industrial values

A m2 area

a (-) absorption within the atmosphere

b Wm�2K�1 unit-area radiative response coe�cient

d Wm�2K�1 coe�cients for interregional exchange

f (-) polar amplification factor

IS Wm�2 local surface insolation

ITOA Wm�2 annual mean insolation at the top of the atmosphere

r2 (-) coe�cient of determination

S K W�1 m2 Paleoclimate sensitivity / climate sensitivity parameter
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List of abbreviations:

• ECS Equilibrium climate sensitivity

• EMIC climate model of intermediate complexity

• ESM Earth system model

• GCM general circulation model

• GHG greenhouse gas

• LGM Last Glacial Maximum

• LI land ice

• NH Northern Hemisphere

• PI pre-industrial

• SH Southern Hemisphere

• trop tropical region
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Figure S1. Comparison between a) the radiative forcing used in this study and the one derived

in Köhler et al. [2015] from the final results of the land ice simulation from De Boer et al. [2014],

and b) the CO2 record used in this study and the record published in Van de Wal et al. [2011].
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Figure S2. The di↵erence between global mean temperature perturbations from PI in the

OIC CLIMBER-2 run calculated by the model (�Tglob(model)), and those inferred from dividing

the high-latitude temperatures on the Northern Hemisphere (blue) and the Southern Hemi-

sphere (red) by the polar amplification factor obtained from the LGM-PI temperature di↵erence

(NH=1.85, SH=0.96) a) over the past 5 Myr, and b) over the past 0.15 Myr (150 kyr).
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