Skip to main content
Log in

Comparison of two local discontinuous Galerkin formulations for the subjective surfaces problem

  • Original Article
  • Published:
Computing and Visualization in Science

Abstract

Based on the local discontinuous Galerkin method, two substantially different mixed formulations for the subjective surfaces problem are compared using a number of numerical tests of various types. The work also performs the energy stability analysis for both schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aizinger, V.: A geometry independent slope limiter for the discontinuous Galerkin method. In: Krause, E., Shokin, Y., Resch, M., Kröner, D., Shokina, N. (eds.) Computational Science and High Performance Computing IV, Volume 115 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 207–217. Springer, Berlin (2011)

    Google Scholar 

  2. Aizinger, V., Dawson, C.: The local discontinuous Galerkin method for three-dimensional shallow water flow. Comput. Methods Appl. Mech. Eng. 196(4), 734746 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Aizinger, V., Kosik, A., Kuzmin, D., Reuter, B.: Anisotropic slope limiting for discontinuous Galerkin methods. Int. J. Numer. Methods Fluids 84(9), 543565 (2017)

    Article  MathSciNet  Google Scholar 

  4. Aizinger, V., Rupp, A., Schütz, J., Knabner, P.: Analysis of a mixed discontinuous Galerkin method for instationary Darcy flow. Comput. Geosci. 22(1), 179–194 (2018)

    Article  MathSciNet  Google Scholar 

  5. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baswaraj, D., Govardhan, A., Premchand, P.: Active contours and image segmentation: the current state of the art. Glob. J. Comput. Sci. Technol. 12(11-F) (2012). https://computerresearch.org/index.php/computer/article/view/568

  7. Belhachmi, Z., Bernardi, C., Deparis, S.: Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem. Numer. Math. 105(2), 217–247 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bungert, L., Aizinger, V., Fried, M.: A discontinuous Galerkin method for the subjective surfaces problem. J. Math. Imaging Vis. 58(1), 147–161 (2017)

    Article  Google Scholar 

  9. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  10. Chan, T.F., Moelich, M., Sandberg, B.: Some recent developments in variational image segmentation. In: Tai, X.-C., Lie, K.-A., Chan, T.F., Osher, S. (eds.) Image Processing Based on Partial Differential Equations, pp. 175–210. Springer, New York (2007)

    Chapter  Google Scholar 

  11. Chan, T.F., Sandberg, B., Vese, L.A.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11(2), 130–141 (2000)

    Article  Google Scholar 

  12. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  13. Cockburn, B., Dawson, C.: Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions. In: Whiteman, J. (eds.) Proceedings of the 10th Conference on the Mathematics of Finite Elements and Applications, pp. 225–238. Elsevier, Amsterdam (2000)

  14. Cockburn, B., Shu, C.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Corsaro, S., Mikula, K., Sarti, A., Sgallari, F.: Semi-implicit covolume method in 3D image segmentation. SIAM J. Sci. Comput. 28, 2248–2265 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feng, X., Li, Y.: Analysis of symmetric interior penalty discontinuous Galerkin methods for the Allen–Cahn equation and the mean curvature flow. IMA J. Numer. Anal. 35, 1622–1651 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frank, F., Reuter, B., Aizinger, V.: FESTUNG—The Finite Element Simulation Toolbox for UNstructured Grids. http://www.math.fau.de/FESTUNG. Accessed 15 Feb 2018

  18. Frank, F., Reuter, B., Aizinger, V., Knabner, P.: FESTUNG: a MATLAB/GNU Octave toolbox for the discontinuous Galerkin method, part I—diffusion operator. Comput. Math. Appl. 70(1), 11–46 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fried, M.: Berechnung des Krmmungsflusses von Niveauflächen (in German). Master’s thesis, University of Freiburg (1993)

  20. Fried, M.: Multichannel image segmentation using adaptive finite elements. Comput. Vis. Sci. 12(3), 125–135 (2009)

    Article  MathSciNet  Google Scholar 

  21. Fried, M., Mikula, K.: Efficient subjective surfaces segmentation by adaptive finite elements. In: Lecture Presented at the IMI International Workshop on Computational Photography and Aesthetics, 12 (2009)

  22. Frolkovič, P., Mikula, K.: Flux-based level set method: a finite volume method for evolving interfaces (2003). https://doi.org/10.1016/j.apnum.2006.06.002

  23. Frolkovič, P., Mikula, K.: High-resolution flux-based level set method. SIAM J. Sci. Comput. 29(2), 579–597 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jaust, A., Reuter, B., Aizinger, V., Schütz, J., Knabner, P.: FESTUNG: a MATLAB/GNU Octave toolbox for the discontinuous Galerkin method, part III—hybridized discontinuous Galerkin (HDG) formulation. Submitted to Computers & Mathematics with Applications (2018)

  25. Kanizsa, G.: Subjective contours. Sci. Am. 234(4), 48–52 (1976)

    Article  Google Scholar 

  26. Karasözen, B., Filibelioğlu, A.S., Uzunca, M.: Energy stable discontinuous Galerkin finite element method for the Allen–Cahn equation. arXiv preprint arXiv:1409.3997 (2014)

  27. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  28. Kuzmin, D.: A vertex-based hierarchical slope limiter for adaptive discontinuous Galerkin methods. J. Comput. Appl. Math. 233(12), 3077–3085 (2010). Finite Element Methods in Engineering and Science (FEMTEC 2009)

  29. Mikula, K., Peyriéras, N., Remešíková, M., Sarti, A.: 3D embryogenesis image segmentation by the generalized subjective surface method using the finite volume technique. In: Eymard, R., Hérard, J.-M. (eds.) Finite Volumes for Complex Applications V, pp. 585–592. Wiley, New York (2008)

    Google Scholar 

  30. Mikula, K., Sarti, A.: Parallel co-volume subjective surface method for 3D medical image segmentation. In: Suri, J.S., Farag, A.A. (eds.) Deformable Models, Topics in Biomedical Engineering. International Book Series, pp. 123–160. Springer, New York (2007)

  31. Mikula, K., Sarti, A., Sgallari, F.: Co-volume level set method in subjective surface based medical image segmentation. In: Suri, J.S., Wilson, D.L., Laxminarayan, S. (eds.) Handbook of Biomedical Image Analysis, pp. 583–626. Springer, New York (2005)

    Chapter  Google Scholar 

  32. Mirabito, C., Dawson, C., Aizinger, V.: An a priori error estimate for the local discontinuous Galerkin method applied to two-dimensional shallow water and morphodynamic flow. Numer. Methods Partial Differ. Equ. 31(2), 397–421 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces (Applied Mathematical Sciences), 2003 Edition. Springer, New York (2002)

    Google Scholar 

  35. Reed, H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, NM (1973)

  36. Reuter, B., Aizinger, V., Wieland, M., Frank, F., Knabner, P.: FESTUNG: a MATLAB/GNU Octave toolbox for the discontinuous Galerkin method, part II—advection operator and slope limiting. Comput. Math. Appl. 72(7), 1896–1925 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis, 1st edn. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  38. Sarti, A., Citti, G.: Subjective surfaces and riemannian mean curvature flow graphs. Acta Math. Univ. Comen. 70, 85–104 (2001)

    MathSciNet  MATH  Google Scholar 

  39. Sarti, A., Malladi, R., Sethian, J.A.: Subjective surfaces: a method for completing missing boundaries. Proc. Natl. Acad. Sci. 97(12), 6258–6263 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sarti, A., Malladi, R., Sethian, J.A.: Subjective surfaces: a geometric model for boundary completition. Int. J. Comput. Vis. 46(3), 201–221 (2002)

    Article  MATH  Google Scholar 

  41. Sethian, J.A.: Numerical algorithms for propagating interfaces: Hamilton–Jacobi equations and conservation laws. J. Differ. Geom. 31(1), 131–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, 2nd edn. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  43. Xia, Y., Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for the Cahn–Hilliard type equations. J. Comput. Phys. 227(1), 472–491 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xia, Y., Xu, Y., Shu, C.-W.: Application of the local discontinuous Galerkin method for the Allen–Cahn/Cahn–Hilliard system. Commun. Comput. Phys 5, 821–835 (2009)

    MathSciNet  MATH  Google Scholar 

  45. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin method for surface diffusion and Willmore flow of graphs. J. Sci. Comput. 40(1–3), 375–390 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadym Aizinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aizinger, V., Bungert, L. & Fried, M. Comparison of two local discontinuous Galerkin formulations for the subjective surfaces problem. Comput. Visual Sci. 18, 193–202 (2018). https://doi.org/10.1007/s00791-018-0291-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-018-0291-4

Keywords

Navigation