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231p3 and %3°Th in the Arctic Ocean 1991-2015:
Changes in the Eurasian and Makarov Basins

Introduction S
Both particle fluxes and deep water circulation may respond to climate change in the Arctic Ocean. This study discusses temporal o mmm
changes in dissolved 23°Th and 23'Pa concentrations in the context of climate change. We compare results from 1983 [1], 1991 [2] and

2007 and 2015. We present results of dissolved %31Pa and 23°Th collected in the Nansen-, Amundsen- and Makarov Basins of the

Arctic Ocean. Our aim is to determine, which factors change 23°Th and %31Pa concentrations and distribution in the central Arctic
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Ocean over time. We use dissolved CFC-11 and dissolved Fe data from the 2015 GEOTRACES cruise to underpin our hypotheses. w
Material and Methods
Samples were taken during RV Polarstern cruises PS70 (2007) and PS94 (2015). Seawater samples of the 2015 cruise were analyzed at
AWI following GEOTRACES methods [3]. The samples from 2007 were collected in the same way and analyzed at University of
Minnesota following Shen et al. (2003) [4].
Results and Discussion: Changes over time
oTh, [falka] Nansen Basin 1pa, [fglke] oTh, [falkg] Amundsen Basin 1pa, fgka] 22Th, [ghka] Makarov Basin 1pa, [fglkal]
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