INAUGURAL - DISSERTATION

zur

Erlangung der Doktorwürde

der

Naturwissenschaftlich-Mathematischen Gesamtfakultät der

> Ruprecht - Karls - Universität Heidelberg

> > SE

vorgelegt von

Dipl. Phys.Christopher Strobl

aus Öhringen

1998

Tag der mündlichen Prüfung: 22.04. 1998

Datierung von Sedimentkernen und Rekonstruktion der

Transportwege der Radionuklide

¹⁰Be, ²³⁰Th und ²³¹Pa

in hohen nördlichen Breiten

Gutachter:

Prof. Dr. Augusto Mangini

Prof. Dr. Till Kirsten

Inhaltsverzeichnis

1	Einle	itung				
	1.1 1.2 1.3	Arkti Einflu Vorge	sforschung 18 des Nordpolarmeeres auf das Erdklima ehensweise	1 2 3		
	-					
2	Grun	diagen	and in Nordpolarment in the first state of the destruction of the state of the			
	2.1	Natür	liche Radionuklide	5		
		2.1.1 2.1.2 2.1.3 2.1.4	 ²¹⁰Blei ²³⁰Thorium ²³²Thorium ²³⁴Thorium 	6 10 13 13		
		2.1.5	²³¹ Protaktinium	13		
	2.2	Kosm	ogenes Radionuklid	14		
		2.2.1	¹⁰ Beryllium	14		
	2.3	Anthr	opogenes Radionuklid	17		
		2.3.1	¹³⁷ Cäsium	17		
	2.4	Datie	rung von Sedimentkernen	18		
		2.4.1	Radiokarbon Methode (¹⁴ C)	18		
		2.4.2	δ ¹⁸ O Stratigraphie	19		
		2.4.3	Alterseinteilung anhand der Radionuklide ¹⁰ Be, ²³⁰ Th _{ex} , ²³¹ Pa _{ex}	20		
		2.4.4	¹⁰ Be Stratigraphie	24		
		2.4.5	Elektronen-Resonanz Methode (ESR)	24		
	2.5	Arktis	scher Ozean und Europäisches Nordmeer	27		
		2.5.1 2.5.2	Bathymetrie des Arktischen Ozeans Wassermassenzirkulation und Eisbedeckung im Arktischen Ozean	27		
		2.5.3	und im Europäischen Nordmeer Laptev See	28 30		
3	Atmo	osphär	ischer ¹⁰ Be Eintrag in Grönland und in der Antarktis	34		
	3.1	1 Rezenter atmosphärischer ¹⁰ Be Eintrag in Grönland				
	3.2	Paläoaufzeichnungen des atmosphärischen ¹⁰ Be Eintrags in den Eis- bohrkernen von SUMMIT (Grönland) und VOSTOK (Antarktis)				

4 R	adio	nuklid	untersuchungen im Schelfgebiet der Lapte	v See	37		
3	4.1	Datier	ung von Sedimentkernen aus dem Schelfgebie	et der Laptev See	37		
		4.1.1	Datierung der Sedimentkerne anhand expone Standing Crop Modell	ntieller Fitgeraden	38 42		
		4.1.3	Datierung der Sedimentkerne anhand des "Co	onstant Flux" Modells			
			und Vergleich mit ¹³⁷ Cs Datierungen	Ec.4.101	43		
		4.1.4	Vergleich der Standing Crops	Ariticfored and	45		
		4.1.5 4.1.6	Vergleich der ermittelten Sedimentationsrate ¹³⁷ Cs und ²¹⁰ Pb Depositionsflußdichten im Se	n gorold esb fantadi chelfgebiet der Laptev See	46 47		
	42	Datie	rung von Sedimentkernen aufgrund des Aktivi	tätsunoleichgewichts			
		zwiscl	hen den Radionukliden ²³⁰ Th und ²²⁶ Ra		49		
	4.3	¹⁰ Be I	Depositionsflußdichten im Schelfgebiet der La	ptev See	58		
5 D	atie	rung v	on Sedimentkernen aus hohen Breiten		60		
	5.1	Datie	rungsmethoden in hohen Breiten		60		
		5.1.1	¹⁴ C Alter		60		
		5.1.2	Magnetostratigraphie		60		
		5.1.3 5.1.4	²³⁰ Thorium, ¹⁰ Beryllium		61 62		
	5.2	Datie	rung von Sedimentkernen aus der Norwegen-	und Grönland See	63		
		5.2.1	Datierung des Sedimentkernes 23059-2/3	A TANK AND A	63		
		5.2.2	Datierung des Sedimentkernes 23235-3	Talenar on Seden	70		
	5.3	Datie Baren	Datierung von Sedimentkernen aus dem Kontinentalhangbereich der Barents- und Laptev See und dem Yermak Plateau				
		531	Datierung des Sedimentkernes PS1533-3	the state the	73		
		5.3.2	Datierung des Sedimentkernes PS2138-1	angianti etc. s	77		
		5.3.3	Datierung des Sedimentkernes PS2456-2/3	t indext (c) (t)	79		
		5.3.4	Datierung des Sedimentkernes PS2474-3		82		
		5.3.5	Datierung des Sedimentkernes PS2471-4		82		
		5.3.6	Datierung des Sedimentkernes PS2757-8	and the second second	85		
	5.4	Datierung von Sedimentkernen aus dem Nordpolarmeer					
		5.4.1	Datierung des Sedimentkernes PS1521-15	Water + also	89		
		5.4.2	Datierung des Sedimentkernes PS1524-2		91		
		5.4.3	Datierung der Sedimentkerne PS2185-3/6, P	S2200-5 und PS2178-5	92		
	5.5	5 Datierung von Sedimentkernen aus der Antarktis					
		5.5.1	Datierung des Sedimentkernes PS1388-3	2.2. Paleonofordonum	117		
		5.5.2	Datierung des Sedimentkernes ANTA91-8	BORR Backster	118		
		5.5.3	Datierung des Sedimentkernes ANTA91-4	ANTTAOL 10	120		
		5.5.4	"Be Depositionsflußdichten des Sedimentke	rnes ANIA91-19	121		

6	Besti	mmung der ¹⁰ Be und ²³⁰ Th _{ex} Depositionsflußdichten	122
	6.1	Vertikale Depositionsflußdichten	122
		6.1.1 Vertikale ¹⁰ Be Flußdichten der Sedimentkerne 23059-3	
		und PS1533-3	122
		6.1.2 Vergleich der vertikalen ¹⁰ Be Depositionsflußdichten mit dem	
		Inklinationsprofil des PS1533-3	123
		6.1.3 Komponenten der vertikalen "Be Depositionstlußdichten	124
	6.2	¹⁰ Be und ²³⁰ Th _{ex} Depositionsflußdichten im Europäischen Nordmeer und im Nordpolarmeer	126
		6.2.1 ¹⁰ Be und ²³⁰ Th _{ex} Depositionsflußdichten im Europäischen Nordmeer	
		und im Nordpolarmeer in den jeweiligen Isotopenstadien	128
		6.2.2 Vergleich der rezenten ¹⁰ Be Depositionsflußdichten in hohen	
		nördlichen Breiten	134
7	¹⁰ Be	Konzentrationen in Wasserproben	135
	7.1	Europäisches Nordmeer	135
		and a second	
	7.2	Zentraler Arktischer Ozean	136
	7.3	Laptev See	137
	7.4	Vergleich der ¹⁰ Be Konzentrationen mit dem Mündungsgebiet des Kongos	141
	7.5	Bestimmung der Verweilzeiten von ¹⁰ Be in den Untersuchungsgebieten	141
8	Rek	onstruktion der paläoklimatischen Bedingungen in hohen nördlichen Breiter	
Ē			143
	8.1	Modellierung der Transportwege der Radionuklide ¹⁰ Be, ²³⁰ Thex, ²³¹ Paex	
		in hohen nördlichen Breiten	143
		8.1.1 Boxmodell	144
		8.1.2 Vergleich der Modellergebnisse mit den gemessenen ¹⁰ Be Datensätzen	147
		8.1.3 Modellierung der ²³⁰ Th _{ex} und ²³¹ Pa _{ex} Transportwege	149
	8.2	Rekonstruktion der paläoklimatischen Bedingungen im Arktischen Ozean	158
		8.2.1 Isotopenstadium 2	159
		8.2.2 Isotopenstadium 3 und 5	160
		8.2.3 Isotopenstadium 4	161
		8.2.4 Isotopenstadium 6	162
		8.2.5 Isotopenstadium 7	162
	83	Vergleich der Verhältnisse im Kontinentalhangbereich der Laptev See und	
		Barents See	165
		Interplozial Glazial	
	8.4	Zeitabhängige Modellberechnungen	166

	8.5	Lusammenhang ²³² Th Flußdichten mit den ²³⁰ Th Verweilzeiten b gnummingen 16	7
	8.6	⁰ Be/ ²³² Th Verhältnisse in Sedimentkernen aus hohen nördlichen Breiten 16	7
	8.7	Ausblick C-202129 bru 16	9
9	Liter	turverzeichnis 17	1

1.3 Komentempa E.f.

אול נידי ביידן אואריי קייין איז אינער

Anhang

A

A.1 Geographische Lokationen der Sediment- und Wasserproben

A.2 Lage von Sedimentkernen in der Meeresbodenprofilansicht

B

- B.1 ¹⁰Be Messungen
- B.2 Uran/Thorium Messungen
- B.3 Gammaspektroskopie
- B.4 Atom-Absorptions-Spektrometrie

C

- C.1 ¹⁰Be und ²³⁰Th_{ex} Depositionsflußdichten im Europäischen Nordmeer und im Nordpolarmeer
- C.2 ¹⁰Be und ²³⁰Thex Depositionsflußdichten aus dem Nordatlantik

D

Meßergebnisse

Akkumulation im Arktischen Ozean

Interglazial

Glazial

Kurzfassung

Ziel dieser Arbeit ist es, das Radioisotop ¹⁰Be für die Datierung von Sedimentkernen aus hohen Breiten zu etablieren, da dies dort mit der konventionellen δ^{18} O Stratigraphie oftmals nicht möglich ist. Hierbei hat sich ¹⁰Be als wichtiges Datierungswerkzeug für den Zeitraum der letzten 6 Millionen Jahre erwiesen, wodurch diese Sedimentkerne aus hohen Breiten erstmals mit der sogenannten "¹⁰Be Stratigraphie" zeitlich eingeordnet werden konnten. Um anhand der ermittelten ¹⁰Be Profile an Sedimentkernen Altersdatierungen vornehmen zu

Um anhand der ermittelten ¹⁰Be Profile an Sedimentkernen Altersdatierungen vornehmen zu können, müssen die Quellen und Senken dieses Radionukilds im Untersuchungsgebbiet bekannt sein. ¹⁰Be wird in der Atmosphäre produziert und gelangt durch Niederschlag auf die Erdoberfläche. Im Arktischen Ozean wird der ¹⁰Be Eintrag neben der direkten atmosphärischen Komponente zusätzlich durch den Eintrag von auf dem Kontinent abgelagerten "kontinentalem" ¹⁰Be", durch die Flußsysteme bestimmt. Die Senke für ¹⁰Be stellt die Deposition in den Sedimenten dar.

Im Rahmen dieser Arbeit wurden ¹⁰Be Depositionsflußdichten im Schelfgebiet der Laptev See, das sich durch einen hohen Eintrag an Flußwasser auszeichnet, den Kontinentalhanggebieten, dem zentralen Arktischen Ozean und dem Europäischen Nordmeer untersucht. Vergleicht man die Depositionsflußdichten mit dem atmosphärischen ¹⁰Be Eintrag von (0,2 -0,5) $\cdot 10^6$ at a⁻¹ cm⁻², so läßt sich im Schelfgebiet der Laptev See mit (20 ± 5) $\cdot 10^6$ at a⁻¹ cm⁻² eine deutliche Beeinflussung durch kontinentales ¹⁰Be ausmachen, während die Deposition im zentralen Arktischen Ozean die atmosphärischen Flußdichte widerspiegelt.

Diese Untersuchungen und die Ermittlung der ¹⁰Be Konzentrationen in Wasserproben bilden weiterhin die Grundlage für ein mathematisches Modell, mit dessen Hilfe die rezenten Transportwege von ¹⁰Be reproduziert und die Transportwege in den letzten 130 ka in hohen nördlichen Breiten modelliert werden konnten.

Abstract

In this thesis it is shown that the cosmogenic radionuclide ¹⁰Be proved to be a sensitive stratigraphic tool for sediment cores from the Arctic Ocean with low or negligible content of biogenic carbonate, impeding a reliable δ^{18} O stratigraphy. ¹⁰Be enables a stratigraphy of Arctic sediments comparable to the δ^{18} O stratigraphy Imbrie et al. [1984] in that high concentration of ¹⁰Be are related to interglacial stages in contrast to lower values during glacial periods. To use the ¹⁰Be profile as dating tool it is necessary to investigate the sources and sinks as well as the pathways of this radiotracer. ¹⁰Be is produced in the upper atmosphere and transfered to the earth's surface by dry and wet deposition. Besides the atmospheric component there is an important input of ¹⁰Be with the rivers to the Arctic Ocean. I determined depositional ¹⁰Be fluxes in the shelf area of the Laptev Sea, which is characterized by a huge input of river water, the continental slope of the Laptev Sea, the central Arctic Ocean and the Norwegian- and Greenland Sea. The depositional ¹⁰Be fluxes of (20 ± 5) $\cdot 10^6$ at cm⁻² a⁻¹ in the shelf area of the Laptev Sea are by two orders of magnitude higher than the recent atmospheric input (0.2 - 0.5) $\cdot 10^6$ at cm⁻² a⁻¹ in Greenland, while the fluxes in the central Arctic Ocean are in the same range.

Further I developed a model to reconstruct the pathways of radionuclides ²³⁰Th, ²³¹Pa and ¹⁰Be in high northern latitudes. The modelling results were compared with the measured concentrations in the water column and the recent depositional fluxes. These results show that the recent pathways of these nuclides can be rebuild by this model. Thus we can apply this model to earlier oxygen isotope stages to find out which predominate conditions lead to the determined depositional fluxes.

Motivation

1.1 Arktisforschung

Seit Jahrzehnten stellt die Arktis einen Ort der Herausforderung sowohl abenteuerlicher als auch wissenschaftlicher Art dar. Die Ziele der ersten Expeditionen in die Arktis waren die Suche einer Schifffahrtsroute nach China. Systematische wissenschaftliche Untersuchungen der nördlichen Regionen wurden von dem norwegischen Forscher Fridtjof Nansen begründet. Bei seiner Expedition 1884 wollte er herausfinden, warum Wrackteile der Jeannette, die 1880 im Norden von Neu Sibirien von den Eismassen zerdrückt worden war, an der Südspitze Grönlands gefunden wurden. Diese Wrackteile schienen mit der Driftbewegung des Eises vom sibirischen Meer nach Nordwesten transportiert und dabei auch in die Nähe des Nordpols geraten zu sein. Nansen erreichte mit seinem Schiff, der Fram, zwar nicht den Nordpol (ein erklärtes Ziel dieser Expedition), konnte aber die Existenz der "Transpolardrift" nachweisen. In Abbildung 1 ist die Fahrt- und Driftroute der Fram und die Fahrtroute der Jeannette dargestellt.

Abb. 1: Route der Fram durch das Nördliche Polarmeer (aus Lingen [1980])

1.2 Einfluß des Nordpolarmeeres auf das Erdklima

Das wissenschaftliche Interesse am Arktischen Ozean ist in der heutigen Zeit mit der Frage verbunden, welche Auswirkungen Veränderungen der klimatischen Bedingungen in polaren Gebieten, auf das Erdklima haben könnten. Berechnungen zeigen, daß z.B. ein völliges Abschmelzen des Antarktischen Eisschildes zu einer Erhöhung des heutigen Meeresspiegels um 60 bis 70 m führen würde. Es ist allerdings noch nicht geklärt, welche Faktoren die Eisvorstösse bzw. -rückzüge der Vergangenheit verursacht haben oder ein vollkommenes Abschmelzen der Polkappen bewirken könnten. Milankovich beschäftigte sich 1930 mit diesem Problem und erkannte, daß die Sonneneinstrahlung durch die Änderung dreier Erdbahnparameter (Neigung der Erdachse, Erdumlaufbahn, Präzession der Erdachse) deutlichen Variationen unterliegt. Unter Berücksichtigung dieser Faktoren berechnete er eine maximale Variation der sommerlichen solaren Einstrahlung in nördlichen Breiten (65°) von etwa 20%. Jedoch ist es nicht möglich die natürlichen Klimaänderungen, die seit 2,5 Millionen Jahren [Turekian, 1985] regelmäßig auftreten, allein durch Schwankungen der solaren Einstrahlung zu erklären. In den letzten Jahren hat sich gezeigt, daß die Konzentrationen an Treibhausgasen (CO2, CH4), zusammen mit der solaren Einstrahlung, für das Klima der Erde von großer Bedeutung sind. Beispielsweise zeigen Untersuchungen der chemischen Zusammensetzung der Lufteinschlüsse im grönländischen Eisbohrkern GRIP, daß in der letzten Eiszeit (24 ka - 12 ka) die Konzentrationen an atmosphärischem Kohlendioxid (\approx 190 ppm) und Methan (\approx 400 ppb) von deutlich geringerem Gehalt als im Holozän (\approx 280 ppm CO₂; ≈ 700 ppb CH₄) waren [Graedel und Crutzen, 1994]. Die Konzentration von Kohlendioxid und Methan in der Atmosphäre spielt für den Strahlungshaushalt unseres Planeten eine wesentliche Rolle. Einfallende Sonnenstrahlung wird von der Erdoberfläche je nach Oberflächen-beschaffenheit zu einem gewissen Teil reflektiert und zu einem weiteren Teil absorbiert und in einem anderen Wellenlängenbereich reemittiert. Insbesondere der infrarote Anteil der Rückstrahlung wechselwirkt mit den Treibhausgasen (z.B. CO2, CH4) und bleibt als sogenannte "Gegenstrahlung" teilweise dem System Erde erhalten. Demzufolge bewirkt eine Erhöhung der CO₂ bzw. CH₄ Konzentrationen in der Atmosphäre eine Erwärmung. Eine entscheidende Größe für den Anteil an atmosphärischen CO2 Konzentrationen stellen die geochemischen Abläufe in den Ozeanen dar, da die Weltmeere über die Temperatur und den Gasaustausch mit der Atmosphäre gekoppelt sind. Allein durch ihre Größe (etwa 70% der Erdoberfläche) dienen sie als Speicher für Wärme und für das Treibhausgas CO₂. Bei der Photosynthese in den obersten Wasserschichten wird das gelöste CO₂, das mit dem atmosphärischen CO₂ Gehalt in Verbindung steht, mit H₂O in organisches Material umgewandelt. Dieses kann durch marine Lebewesen aufgenommen und nach ihrem Absterben in tiefere Meereschichten transportiert werden. In der Tiefsee wird das gelöste Kohlendioxid teilweise freigesetzt oder als CaCO3 in den Sedimenten deponiert. Dieser Prozeß ist infolge von Klimaänderungen Schwankungen unterworfen, wobei man davon ausgeht, daß die biologische Pumpe während glazialer Stadien aktiver war als im Holozān. Broecker und Denton [1990] schließen dies aus den atmosphärischen CO₂ Konzentrationen in Eisbohrkernen.

Im Nordpolarmeer und im Europäischen Nordmeer wird CO₂ und O₂ besonders effektiv aus der Atmosphäre aufgenommen und durch die Tiefenwasserneubildung in hohen nördlichen Breiten in tiefere Meereschichten transportiert. Die kalten und salzreichen Wassermassen schichten sich dabei unter die relativ warmen und demzufolge leichteren Tiefenwasser der übrigen Ozeane. Das kalte nordatlantische Tiefenwasser gelangt über den Südatlantik in den Pazifischen Ozean und kehrt von dort als warmes Oberflächenwasser wieder in den Atlanischen Ozean zurück. Dabei trägt diese thermohaline Strömung zu einer globalen Umverteilung von Wärme bei. Unterbindet man die hauptsächlich in der Grönlandsee stattfindende Tiefenwasserbildung, z.B. durch die Erhöhung des Süßwassereintrags, welches

zu einer Schichtungsstabilität in der Wassersäule führt, hat dies gravierende Auswirkungen auf den Wärmetransport. Ein Beispiel hierfür wäre eine Reduzierung des Golfstromes, der für das heutige moderate Klima in Nordeuropa verantwortlich ist, was zu kühleren Bedingungen in dieser Region führen würde. Eine weitere Besonderheit der polaren Gebiete stellt die Eisbedeckung dar, die aufgrund des hohen Rückstrahlvermögens (Albedo) nur einen geringen Teil der einfallenden Sonnenstrahlung absorbieren kann. Die Albedo bei Schnee (80% - 90%) und bei Eis (35%) liegt wesentlich höher als bei Meerwasser (bei senkrechten Einfall 4%) [Roedel, 1992]. So kann sich eine offene Wasserfläche durch den Sonneneinfall erwärmen, während eine eisbedeckte Meeresoberfläche kaum Wärme aus der Atmosphäre aufnimmt. Mit Hilfe von mathematischen Modellen soll es möglich werden, zukünftige Klimabedingungen vorherzusagen. Um diese Modelle auf ihre Glaubwürdigkeit zu testen, ist es notwendig zunächst die paläoklimatischen Bedingungen, die in Eisbohrkernen, Sedimentkernen und terrestrischen Bohrkernen archiviert sind, zu rekonstruieren, um anschließend die modellhafte Beschreibung anpassen zu können. Hierzu müssen die Wechselwirkungen zwischen Ozean, Eis und Atmosphäre miteinander gekoppelt werden. Ein solch gekoppeltes Atmosphäre-Ozean Modell ist von Stocker [1998] erstellt worden, womit die Verhältnisse im letzten Glazial reproduziert werden konnten. Das Ziel dieser Arbeit ist die Rekonstruktion der klimatischen Bedingungen in hohen nördlichen Breiten während der letzten 5 Isotopenstadien (0 - 128 ka). Hierbei liegt das Hauptaugenmerk auf Änderungen in der Eisbedeckung und im Flußeintrag im Arktischen Ozean.

1.3 Vorgehensweise

In dieser Arbeit wurden die paläoklimatischen Bedingungen im Europäischen Nordmeer und im Norpolarmeer anhand von Klimaaufzeichnungen in Sedimentkernen rekonstruiert. Um dies zu tun war es zunächst notwendig, die Datierung der in dieser Arbeit untersuchten Sedimentkerne auf eine sichere Basis zu stellen, da dies im Arktischen und Antarktischen Ozean, im Vergleich zu den anderen Weltmeeren, große Schwierigkeiten bereitet. In den hohen Breiten ist eine Bestimmung der Isotopenstadien anhand einer S¹⁸O Stratigraphie aufgrund des fehlenden biogenen Karbonats in den Sedimentkernen oder einer Verfälschung des δ¹⁸O Signals durch Schmelzwassereinflüsse [Köhler und Spielhagen, 1990] oft nicht möglich. Daher war es erforderlich, andere Datierungsmethoden anzuwenden. Insbesondere eignen sich radioaktive Isotope, um die fast nur aus Ton bestehenden Sedimente zeitlich einzuordnen. Im Rahmen dieser Arbeit wurden hierbei die Radionuklide ²¹⁰Pb, ¹³⁷Cs, ²³⁰Th, ¹⁰Be näher betrachtet, die aufgrund ihrer Halbwertszeiten die Altersbereiche der letzten 150 Jahre bis zu 6 Millionen Jahren abdecken. Sedimentkerne aus Regionen mit hohen Akkumulationsraten (beispielsweise aus dem Schelfgebiet der Laptev See) wurden mit Hilfe der Radionuklide ²¹⁰Pb und ¹³⁷Cs zeitlich (bis zu 150 a vor heute) eingeordnet, während die Datierung der letzten 350 - 6000 ka der Sedimentkerne von den Kontientalhanggebieten, den Tiefseeebenen und Rückensystemen anhand des Verlaufs der 230 They Aktivitäten bzw. der ¹⁰Be Stratigraphie erfolgte. Basierend auf diesen Datierungen wurden die ¹⁰Be Depositionsflußdichten (Kapitel 6) in den verschiedenen Regionen im Europäischen Nordmeer bzw. im Nordpolarmeer und in den jeweiligen Isotopenstadien bestimmt. Aufgrund dieser ermittelten Flußdichten war es möglich die Transportwege des kosmogenen Radioisotops ¹⁰Be in hohen nördlichen Breiten zu rekonstruieren.

Der Eintrag von kontinentalem ¹⁰Be mit den Flußsystemen, die in den Arktischen Ozean münden, wurde detailliert im Schelfgebiet der Laptev See untersucht (Kapitel 4). Hierzu wurden die ermittelten rezenten ¹⁰Be Depositionsflußdichten der Schelfsedimente mit den rezenten atmosphärischen ¹⁰Be Flußdichten in Grönland (Kapitel 3) in Beziehung gesetzt. Zusätzlich wurden die ¹⁰Be Konzentrationen in den Wasserproben aus dem Schelfgebiet der

Motivation

Laptev See (Kapitel 7) mit den ermittelten Konzentrationen im zentralen Arktischen Ozean und in der Norwegen- und Grönland See verglichen. Aus diesen Untersuchungen sollte der Anteil an kontinentalem ¹⁰Be im Schelfgebiet der Laptev See evaluiert werden. Die ¹⁰Be Depositionsflußdichten und die ¹⁰Be Wasserkonzentrationen bildeten weiterhin den Input für ein mathematisches Modell (Kapitel 8), daß konzipiert wurde, um die rezenten Transportwege von ¹⁰Be in hohen nördlichen Breiten zu reproduzieren. Neben der Modellierung der rezenten Prozesse wurde versucht anhand der ermittelten ¹⁰Be Depositionsflußdichten die Transportwege in den jeweiligen Isotopenstadien mit Hilfe dieses Modells zu rekonstruieren. Zusätzlich wurden auch die Transportwege der Radionuklide ²³⁰Th_{ex} und ²³¹Pa_{ex} bestimmt. Diese zusätzlichen Informationen ermöglichten eine bessere Abbildung der klimatischen Bedingungen in den jeweiligen Isotopenstadien.

4

Pair Halling As

2.1 Natürliche Radionuklide

In der Natur kommen heute noch drei primordiale radioaktive Familien vor, deren Mutternuklide die Radionuklide ²³⁸U, ²³⁵U und ²³²Th sind. Sie existieren seit der Entstehung der Erde (4 - 5 Ma) und zerfallen durch α - und β -Strahlung in stabile Endzustände. Besonderes Augenmerk wird in dieser Arbeit auf die Tochternuklide ²³⁰Th, ²³⁴U, ²³¹Pa, ²¹⁴Bi und ²¹⁰Pb gelegt. Aufgrund ihrer Transport- und Zerfallseigenschaften werden sie im Rahmen von Nichtgleichgewichtsdatierungen untersucht [z.B. Ivanovich and Harmon, 1992] oder dienen als Monitore für Scavenging-, Focusing- oder Winnowing- Prozesse [Lao, 1992 a, c]. Die Aktivitäten der in den Zerfallsreihen dunkel schraffierten Radionuklide (Tabelle 1 und 2) wurden im Rahmen dieser Arbeit am bearbeiteten Sedimentmaterial mittels γ - oder α -Spektroskopie bestimmt. Einige werden in den nächsten Abschnitten detaillierter behandelt.

Element	U-238 - Zerfallsreihe						
Uran	U-238 4,47 • 10 ⁹ a		U-234 2,48 • 10 ⁵ a		- I - man-	7	
Protaktinium	\downarrow	Pa-234 1,18 min	\downarrow	T Para de	1 pander		
Thorium	Th-234 24,1 d	r	Th-230 7,52 • 10 ⁴ a	um Zorfall	1997 H 1 1	In Robert	and the second
Actinium	manifelige d	r Verhilw	\downarrow	in der Atm	ophies becin		brahiet.
Radium			Ra-226 1,62 • 10 ³ a) tota	2.5
Francium	X-mailes	Test and	\downarrow	Pb (hGL	Depuisson	anning R	2.1.1
Radon	1393.4	191 5 5	Rn-222 3,82 d	schenote	v.S. cross/desig-	ntev f. osvier adde davier	au A http://www.com
Astat		1.00 J. 197 S	+	a production			Ball
Polonium	100000	Padares Electric de	Po-218 3,05 min		Po-214 1,64 • 10 ⁻⁴ sec	adan Bada Ang Bada	Po-210 138 d
Wismut	U. Ordenser	iden neth	↓	Bi-214 19,7 min	+	Bi-210 5,01 d	
Blei	Tab grano		Pb-214 26,8 min	×	Pb-210 22,3 a	K	Pb-206 stabil

Tab. 1: 238 Uran Zerfallsreihe aus Ivanovich und Harmon [1992]

Element	Gen genittell Gebole 1 See	en Kotarii evergiiche bebaet des	Th-232 - Z	erfallsrei	he
Thorium	Th-232 1,40 • 10 ¹⁰ a	leri sono bi dati	Th-228 1,91 a		
Actinium	\downarrow	Ac-228 6,13 h	↓		
Radium	Ra-228 5,75 a	×	Ra-224 3,66 d	n lymnau	
Francium		19 Jonate	\downarrow		and and the
Radon	to reactorization Strangoverna		Rn-220 55,6 sec	mint est.	
Astat	affiertitt RAS	lidze fashini	+	to S mb n	
Polonium	andold A cel	den alle's	Po-216 0,15 sec	₹ (63,8%)	Po-212 3,0 • 10 ⁻⁷ sec
Wismut	Tertallure	875.51	\downarrow 7	Bi-212 60,6 min	+
Blei			Pb-212 10,6 h	↓ (36,2%)	Pb-208 stabil
Thallium		+ 101 + 3	2	T1-208 3,05 min	14

Tab. 2: ²³²Thorium Zerfallsreihe aus Ivanovich und Harmon [1992]

2.1.1 ²¹⁰Blei (²¹⁰Pb)

2.1.1.1 Atmosphärischer Eintrag an ²¹⁰Pb

Das terrigene Radionuklid ²¹⁰Pb ($t_{1/2} = 22,3$ a) ist ein Bestandteil der ²³⁸Uran - Zerfallsreihe. Ausgehend von den Uranisotopen ²³⁸U und ²³⁴U, die in Böden und Gesteinen enthalten sind, bildet sich über mehrere Zwischenprodukte ²²⁶Ra ($t_{1/2} = 1.600$ a), welches wiederum in das Edelgas ²²²Rn ($t_{1/2} = 3.8$ d) zerfällt. Aufgrund von Diffusionsprozessen kann ²²²Rn in die Atmosphäre gelangen und wird dort über mehrere Zwischenstufen in ²¹⁰Pb überführt. Die Radonemission aus den Böden ist von der Beschaffenheit und von den vorherrschenden äußeren Bedingungen abhängig. Eis, Permafrost und feuchte Böden vermindern die Emission von ²²²Rn oder verhindern sie vollständig [Gold, 1964; Moses et al., 1963]. Nach Dörr [1984] nimmt die Emissionsrate bei einer 15 cm dicken Schneedecke um 30 - 40% ab und wird sogar bei gefrorenem Boden gänzlich unterdrückt. In den Polargebieten ist demzufolge die Quellstärke aufgrund von Permafrostböden und Vergletscherungen nahezu Null. Die Transpiration von Pflanzen führt hingegen zu deutlichen Erhöhungen der Emissionsraten, die im Vergleich zu kahlen Böden bis zu sechsfach höhere Werte aufweisen können [Martell, 1985]. Aufgrund der geringen Konzentrationen an 226Ra in der Wassersäule spielen die Ozeangebiete bei der Emission von 222 Rn für die gesamte atmosphärische 222 Rn Masse kaum eine Rolle [Peng et al., 1979]. Das aus dem ²²²Rn entstehende ²¹⁰Pb wird hauptsächlich in der Troposphäre gebildet [Liu et al., 1984] und stellt einen "troposphärischen Tracer" für atmosphärische Zirkulationsmodelle [Rehfeld, 1994] dar. Nach der Produktion in der Atmosphäre lagert sich ²¹⁰Pb (Abb. 2) rasch an Aerosole der Nukleations- $(0,005 - 0,05 \ \mu m)$ und Akkumulationsmode $(0,05 - 1,00 \ \mu m)$ an [Young und Silker, 1974; Turekian et al., 1989]. Die ²¹⁰Pb Aerosole werden sowohl trocken (Sedimentation) als auch naß (Niederschlag) mit einer Aufenthaltsdauer von ca 5 bis 20 Tagen auf der Erdoberfläche deponiert [Graustein und Turekian, 1986; Balkanski et al., 1993].

Abb. 2: Transportprozesse von 210 Pb in der Atmosphäre

Angesichts des regionalen Charakters der Prozesse, welche die Emission von Radon aus den Böden und demzufolge der Verteilung von ²¹⁰Pb in der Atmosphäre beeinflussen, beobachtet man weltweit deutliche Unterschiede im atmosphärischen ²¹⁰Pb Depositionsfluß (Tab. 3).

Atmosphärischer ²¹⁸ Pb Eintrag [dpm cm ⁻² a ⁻¹]	Lokation	Autoren
0,80	Nordamerika	[Graustein and Turekian, 1986]
0,87	Indien	[Gopalakrishnan et al.,1973]
0,69 ± 0,06	Moskau	[Baranov and Vilenskii, 1965]
$0,30 \pm 0,07$	Auckland	[Turekian et al., 1977]
$0,14 \pm 0,01$	Christchurch	[Turekian et al., 1977]
0,025 - 0,050	Grönland	[Stanzick, 1996]

2.1.1.2 ²¹⁰Pb in der Wassersäule

In der Wassersäule wird die Konzentration von ²¹⁰Pb in einem betrachteten Volumen durch mehrere Faktoren bestimmt (Abb. 3):

Abb. 3: Quellen und Senken von 210 Pb in der Wassersäule

Quellen:

Quellen für ²¹⁰Pb in der dargestellten Box sind der atmosphärische Eintrag, die in situ Produktion aus dem radioaktiven Zerfall von gelöstem ²²⁶Ra in der Wassersäule und der Import dar. Beim Import handelt es sich dabei einerseits um partikuläres ²¹⁰Pb, das aufgrund von Sedimentumlagerungeren aus anderen Gebieten antransportiert wird, und anderseits um gelöstes ²¹⁰Pb in der Wassersäule, das diffusiv von den umliegenden Gebieten zugeführt wird.

Senken:

Aus der Box entfernt wird ²¹⁰Pb durch den radioaktiven Zerfall, die Deposition in die Sedimente und den Export. Der Export spiegelt die zum Import gegenläufigen Prozesse wieder.

2.1.1.3 Wissenschaftliche Anwendung

Eine Anwendung findet das Radioisotop ²¹⁰Pb in der Datierung von See- und Schelfsedimenten [Dominik et al., 1981; Dörr et al., 1991; von Gunten et al., 1993; Bollhöfer et al., 1994] sowie von Eisbohrkernen [Gäggeler et al., 1983; Sanak und Lambert, 1977]. Aufgrund seiner Halbwertszeit von $t_{1/2} = 22,3$ a kann der Tiefenbereich in Sediment- und Eisbohrkernen in dem die letzten 150 Jahre archiviert sind bestimmt werden. Sedimentationsbzw. Akkumulationsraten des zu untersuchenden Materials werden dabei anhand des radioaktiven Zerfalls von ²¹⁰Pb_{ex} ermittelt.

2.1.1.4 Bestimmung der ²¹⁰Pbes Aktivitäten

Unter der Annahme, daß der atmosphärische Eintrag von ²¹⁰Pb (²¹⁰Pb_{ex}) über die letzten 150 Jahre als konstant betrachtet werden kann [Dominik et al., 1981; Dörr et al., 1991; von Gunten et al., 1993; Bollhöfer et al., 1994], ist es möglich, Sedimentkerne anhand des radioaktiven Zerfalls der ²¹⁰Pb_{ex} Aktivitäten mit der Kerntiefe zu datieren. Zu diesem Zweck ist es notwendig, die ²¹⁰Pb_{ex} Aktivitätsprofile der bearbeiteten Sedimentkerne zu bestimmen.

Hierbei setzt sich die von uns in den jeweiligen Sedimentabschnitten gammaspektroskopisch gemessene Aktivität von ²¹⁰Pb aus drei Komponenten zusammen (Abb. 4),

dem atmosphärischen Anteil an ²¹⁰Pb (²¹⁰Pb_{ex}), dem Anteil an ²¹⁰Pb, der mit dem Gesteinsmaterial in den Ozean eingetragen wird (²¹⁰Pb_{terr}) und dem Anteil, der in der Wassersäule aus dem Zerfall von gelöstem ²²⁶Ra (²¹⁰Pb_{in-situ}) entsteht.

Abb. 4: Darstellung der Transportwege der ²¹⁰Pb Komponenten in die Sedimente

Dem oben dargestellten Sachverhalt wird durch Gleichung 1 Rechnung getragen:

$$^{10}Pb_{gesamt} = {}^{210}Pb_{ex} + {}^{210}Pb_{terr} + {}^{210}Pb_{in-situ}$$
 (1)

Da jedoch zur Datierung der Sedimentkerne nur der atmosphärische Anteil an ²¹⁰Pb herangezogen werden kann, müssen die terrigene und die in-situ Komponente berechnet werden.

A) Terrigene ²¹⁰Pb Komponente

Der terrigene Anteil läßt sich mit Hilfe des Radionuklids ²¹⁴Bi, daß sich im Aktivitätsgleichgewicht mit dem terrigenen ²¹⁰Pb Anteil (²¹⁰Pb_{terr}) befindet, bestimmen.

$${}^{210}Pb_{ex} = {}^{210}Pb_{gesamt} - {}^{214}Bi + {}^{210}Pb_{in-situ}$$
(2)

B) In-Situ²¹⁰Pb Komponente

Die Flußdichte von ²¹⁰Pb in die Sedimente, die aus dem radioaktiven Zerfall von gelöstem ²²⁶Ra in der Wassersäule entsteht, kann durch die Gleichung 3 ermittelt werden.

$$F(^{210}Pb_{in-sinu}) = ^{226}Ra \cdot WT \cdot \lambda (^{210}Pb)$$

(3)

mit F 226Po	= Flußdichte [dpm cm ⁻² a ⁻¹] = Altivität von 226 Pa in der Wassersäule [dpm 1 ⁻¹]
λ	= Zerfallskonstante von 210 Pb [0.031 a ⁻¹]
WT	= Wassertiefe[m]

Im zentralen Arktischen Ozean wurden von Rutgers van der Loeff et al. [1995] ²²⁶Ra Aktivitäten in der Wassersäule von etwa 100 dpm m⁻³ gemessen. Hieraus berechnet sich bei einer Wassertiefe von 100 m eine Flußdichte von 0,031 dpm cm⁻² a⁻¹. Diese Flußdichte ist um eine Größenordnung kleiner als der rezente atmosphärische ²¹⁰Pb Eintrag im Einflußbereich der Kontinente, der in Tabelle 3 dargestellt ist. Aus diesem Grund kann die ²¹⁰Pb in-situ Produktion in der Wassersäule in Gebieten mit geringeren Wassertiefen als 100 m vernachlässigt werden.

2.1.2 ²³⁰Thorium (²³⁰Th)

2.1.2.1 Produktion von ²³⁰Th in der Wassersäule

Das Radioisotop ²³⁰Th ist Bestandteil der ²³⁸Uran-Zerfallsreihe und wird durch den α -Zerfall von ²³⁴Uran gebildet [z.B. Ivanovich and Harmon, 1992]. ²³⁰Th ist ebenfalls ein α -Strahler und zerfällt mit einer Halbwertszeit von 75.400 a zu ²²⁶Ra. Für unsere Untersuchungen ist besonders der Anteil an ²³⁰Th, der in der Wassersäule aus dem Zerfall von ²³⁴U entstanden ist, von Bedeutung. Das Mutternuklid ²³⁴U weist im Ozean eine mittlere Verweilzeit von ca. 400.000 a auf [Mangini et al., 1979]. Aufgrund der Durchmischungszeit der Ozeane von etwa 1.000 a führt dies zu einer homogenen Verteilung des Urans in der Wassersäule (konservativer Tracer) [Broecker und Peng, 1982]. Die Konzentration von gelöstem Uran im Meerwasser wurde bereits mehrfach bestimmt (Tab. 4):

Uran Konzentration	Lokation	Autoren
3,30 µg l ⁻¹	en 150 Jahos anderstert and besch	[Rona et al., 1956] [Wilson et al., 1960]
$3,16 \pm 0,15 \ \mu g \ l^{-1}$	Nordatlantik	[Turekian und Chan, 1971]
$3,30 \pm 0,20 \ \mu g \ l^{-1}$	Antarktis, Arktis, Atlantik, Pazifik	[Ku et al., 1979]

Tab. 4: Gemessene Uran Konzentrationen in den Ozeanen

Das Aktivitätsverhältnis 234 U/ 238 U (AU) im Ozean ist nach Chen et al. [1986] mit 1,144 ± 0,004 gerinfügig höher als der erwartete Gleichgewichtswert von 1. Diese Tatsache wird darauf zurückgeführt, daß 234 Uran weniger stark im Gestein gebunden ist und deshalb bei der

10

Verwitterung leichter freigesetzt und in die Weltmeere transportiert wird. Anhand der Halbwertszeit von 234 U (t_{1/2} = 2,48 10⁵ a), dem AU-Verhältnis (1,144), der Konzentration von ²³⁴Uran in der Wassersäule und der Annahme, daß die Konzentration von ²³⁴U über mehrere Halbwertszeiten des 230 Thoriumisotops als konstant betrachtet werden kann, läßt sich die Produktionsrate von ²³⁰Th [P(²³⁰Th)] im Meerwasser berechnen [z.B. Ivanovich and Harmon, 19921.

$$P(^{230}Th) = 2,63 \text{ dpm cm}^{-2} \text{ ka}^{-1} 1000 \text{ m}^{-1} \text{ Wassersäule}$$
 (4)

²³⁰Th ist sehr partikelreaktiv und wird, nachdem es in der Wassersäule gebildet wurde, schnell an Partikel adsorbiert. Als Adsorbermaterial kommen dabei vor allem Mangan- und Eisenoxihydroxide [Bacon und Anderson, 1982], terrigenes Material wie Aluminosilikate, sowie Partikel biogener Herkunft in Frage [Anderson et al., 1983 a]. Karbonatischer Detritus enthält hingegen im Vergleich zu karbonatfreiem Material einen deutlich geringeren Anteil an ²³⁰Th [Paetsch, 1991]. Verglichen mit seiner Halbwertszeit sinkt das an Partikeln adsorbierte 230 Th schnell zum Meeresboden und wird dort in die Sedimente eingelagert. Die Verweilzeit von ²³⁰Th liegt im offenen Ozean zwischen 10 und 60 Jahren. Im Arktischen Ozean wurden von Scholten et al. [1995] ²³⁰Th Verweilzeiten bestimmt, die in Tabelle 5 aufgelistet sind.

Lokation	Verweilzeiten [a]	Autoren	
Nansen- und Amundsen Becken	20 - 25	Scholten et al. [1995]	
Makarov Becken	55	Scholten et al. [1995]	
Antarktische Polarfront	29	Rutgers van de Loeff [1993]	
Atlantik (Bermuda)	16 - 28	Anderson et al. [1983 b]	
Pazifik	10 - 41	Anderson et al. [1983 a]	

Tab. 5: 230 Th Verweilzeiten in der Wassersäule

2.1.2.2 Wissenschaftliche Anwendung Im Sediment vorliegender Überschuß an ²³⁰Th (²³⁰Th_{ex}), der nicht im Aktivitätsgleichgewicht mit seinem Mutternuklid ²³⁴U steht, zerfällt nach dem radioaktiven Zerfallsgesetz mit der Halbwertszeit von ²³⁰Th (t_{1/2}= 75.400 a). Basierend auf diesem radioaktiven Zerfall können Sedimentkerne in einem Zeitraum bis zu 350.000 a datiert werden.

2.1.2.3 Bestimmung der ²³⁰Thex Aktivitäten

Die gemessene ²³⁰Th Aktivität in dem bearbeiteten Sedimentmaterial setzt sich, aufgrund des chemischen Vollaufschlusses [Anhang B.4.1], aus mehreren Komponenten zusammen (Gleichung 5), die im folgenden näher aufgeführt werden:

30
Th_{gesamt} = 230 Th_{ex} + 230 Th_{terr} + 230 Th_{authigen}

(5)

A) Terrigene²³⁰Th Komponente

Das Adsorbermaterial für das in der Wassersäule gebildete ²³⁰Th, der sogenannte Sedimentdetritus, enthält einen Anteil an ²³⁰Th (²³⁰Th_{terr}), welcher mit ²³⁴U im Aktivitätsgleichgewicht steht. Dieser Anteil kann demzufolge anhand der Bestimmung der ²³⁴U Aktivitäten ermittelt werden.

$$^{30}\text{Th}_{\text{terr}} = ^{234}\text{U}$$
 (6)

Eine Voraussetzung für die Anwendbarkeit von Gleichung 6 stellt die Bedingung dar, daß nur der Sedimentdetritus Uran enthält und kein zusätzliches Uran (U_{authigen}) aus der Wassersäule in die Sedimente eingebaut wurde. Eine weitere Möglichkeit den terrigenen ²³⁰Th Anteil zu bestimmen, kann anhand des Radioisotops ²³²Th erfolgen. Das Aktivitätsverhältnis von ²³⁸U/²³²Th im Sedimentdetritus ist zwar von der Sedimentzusammensetzung abhängig, läßt sich aber zu 0,75 ± 0,20 [Wedepohl, 1995] abschätzen. Dies führt zum folgenden Zusammenhang:

30
Th_{terr} = 238 U • AU = 234 U_{terr} = 0.75 • AU • 232 Th (7)

B) Authigene 230 Th Komponente

Wurde authigenes Uran in die Sedimente eingebaut so muß der daraus entstandene Anteil an ²³⁰Th (²³⁰Th_{authigen}) bestimmt werden. Unter welchen Bedingungen authigenes Uran in die Sedimente gelangt, wird im folgenden näher betrachtet.

Uauthigen

Wie bereits in Abschnitt 2.1.2.1 erwähnt, weist gelöstes ²³⁴U im Meerwasser eine sehr lange Verweilzeit auf und gelangt nur zu einem äußerst geringen Prozentsatz in die Sedimente. Im Ozean liegt es vor allem in gelöster Form als Uranoxid vor. Ein erhöhter Einbau von Uran aus der Wassersäule ins Sediment wird jedoch unter speziellen Bedingungen ermöglicht. Dies ist der Fall, wenn im Sediment oder in der über dem Sediment liegenden Wassersäule der Sauerstoff abgereichert ist, d.h. suboxische bzw. anoxische Verhältnisse vorliegen. Anaerobe Mikroorganismen können unter diesen Bedingungen Uranoxid aus dem Porenwasser reduzieren [Barnes and Cochran, 1990]. Dieser Effekt beruht auf der Überführung von 6wertigem Uran bei der Reduktion von organischem Material zu 4-wertigem Uran. Auf diese Weise wird sogenanntes "authigenes Uran" (Uauthigen) ins Sediment eingebaut. Das dadurch im Sediment abgelagerte Uran kann jedoch bei einsetzender Zufuhr von Sauerstoff wieder in die mobile Phase übergeführt werden und gelangt durch die Porenwasserkanäle diffusiv entweder in den überlagernden Tiefenwasserkörper oder in tiefere Kernabschnitte. Betrachtet man Gleichung 6 und 7 so erhält man nur dann die gleichen 230 Thex Aktivitäten, wenn kein authigenes Uran ins Sediment eingebaut wurde. Unterscheiden sich jedoch die berechneten ²³⁰Thex Aktivitäten, so läßt sich der Anteil an authigenem Uran nach Gleichung 8 bestimmen:

$$^{234}U_{authigen} = {}^{234}U_{gesamt} - 0.75 \cdot {}^{232}Th$$
 (8)

230 Thauthigen

Die Berechnung der authigenen ²³⁰Th Aktivität die im Laufe der Zeit aus dem in den Sedimenten eingelagerten ²³⁴U_{authigen} entstanden ist, kann näherungsweise mit Gleichung 9 erfolgen.

²³⁰Th_{authigen} \approx ²³⁴U_{authigen} (1 - exp(- λ (²³⁰Th) • t)

(9)

2.1.3 ²³²Thorium (²³²Th)

Während ²³⁰Th hauptsächlich im Ozean produziert wird, ist das ²³²Th in der Wassersäule terrigenen Ursprungs. Sein Anteil im Sediment spiegelt den kontinentalen Eintrag wider. Die Quellen von ²³²Th im Ozean sind der fluviale Eintrag, sowie der atmosphärische Eintrag. Die Halbwertszeit von ²³²Th beträgt 1,40 • 10¹⁰ a.

2.1.4 ²³⁴Thorium (²³⁴Th)

²³⁴Th ist das kurzlebigste Thoriumisotop mit einer Halbwertszeit von 24,1 d. Es entsteht aus dem α-Zerfall des Mutternuklids ²³⁸U. Aufgrund der kurzen Halbwertszeit von ²³⁴Th stellt sich ein dauerndes Aktivitätsgleichgewicht mit ²³⁸U ein.

2.1.5 ²³¹Protaktinium (²³¹Pa)

2.1.5.1 Produktion von ²³¹Pa in der Wassersäule

²³¹Pa entsteht aus dem Zerfall von ²³⁵U und hat eine Halbwertszeit von 32.400 a. Der Anteil an natürlichem ²³⁵U am Gesamturangehalt des Meerwassers liegt bei 0,72% (Aktivitätsverhältnis ²³⁸U/²³⁵U = 21,7). Die Quelle von ²³¹Pa in der Wassersäule stellt das gelöste ²³⁵U dar, welches homogen verteilt ist. Demzufolge kann die Produktionsrate von ²³¹Pa in der Wassersäuleanalog zu ²³⁰Th berechnet werden:

$$P(^{231}Pa) = 0,24 \text{ dpm cm}^2 \text{ ka}^{-1} \text{ pro } 1000 \text{ m Wassersäule}$$
 (10)

Die Produktionsrate von ²³¹Pa in der Wassersäule ist demzufolge etwa zehnfach kleiner als die von ²³⁰Th. Ein weiterer wesentlicher Unterschied zwischen den Radioisotopen ²³⁰Th und ²³¹Pa ist die Verweilzeit der Nuklide in der Wassersäule. Mit etwa 125 a hat ²³¹Pa eine etwa 2 - 6 mal längere Verweilzeit in der Wassersäule als ²³⁰Th. Messungen von gelöstem und partikulärem ²³¹Pa im Arktischen Ozean von Scholten et al. [1995] ergaben Verweilzeiten von 110 - 160 a im Nansen- und Amundsen Becken und von etwa 250 a im Makarov Becken. In Tabelle 6 sind zusätzlich die Verweilzeiten von ²³¹Pa für die Antarktische Polarfront, den Atlantik und den Pazifik aufgelistet.

Lokation	Verweilzeiten [a]	Autoren
Nansen- und Amundsen Becken	115 - 158	Scholten et al. [1995]
Makarov Becken	250	Scholten et al. [1995]
Antarktische Polarfront	120	Rutgers Van de Loeff [1993]
Atlantik (Bermuda)	34 - 70	Anderson et al. [1983b]
Pazifik	20 - 130	Anderson et al. [1983a]

Tab. 6: ²³¹Pa Verweilzeiten in der Wassersäule

Aufgrund der konstanten Produktion aus ²³⁴U bzw. ²³⁵U errechnet sich in der Wassersäule ein ²³⁰Th/²³¹Pa Aktivitätsverhältnis von 10,8 [Mangini, 1984; Anderson et al., 1990]. Jedoch führt die geringere Partikelreaktivität von ²³¹Pa verglichen mit ²³⁰Th zu tatsächlich beobachteten

Verhältnissen von 3 - 5 [Anderson, 1981]. Dementsprechend sind in diesen Gebieten die ²³⁰Th/²³¹Pa Aktivitätsverhältnisse in den Sedimentkernen auf Werte von 20 - 30 erhöht [Yang et al., 1986]. Nach der Deposition in den Sedimenten kann die Mobilität von ²³¹Pa innerhalb der Sedimentschichten wie bei ²³⁰Th vernachlässigt werden.

2.1.5.2 Wissenschaftliche Anwendung

Aus der Bestimmung des ²³⁰Th/²³¹Pa Verhältnisses im Sediment können Rückschlüsse auf Scavenging Prozesse innerhalb der Wassersäule gezogen werden. Aufgrund der Verweilzeit von ²³¹Pa können einerseits durch Scavenging Prozesse die Hochproduktivitätsgebiete und anderseites durch boundary Scavenging die Randgebiete der Ozeane eine Senke für ²³¹Pa darstellen. Weiterhin ist es unter bestimmten Voraussetzungen möglich (konstanter Eintrag von ²³¹Pa aus der Wassersäule über mehrere ²³¹Pa Halbwertszeiten), Sedimentkerne zu datieren. Dabei kann ein Zeitraum von bis zu 200.000 a erfasst werden.

2.2 Kosmogenes Radionuklid

2.2.1 ¹⁰Beryllium (¹⁰Be)

In der Erdatmosphäre kommt es zu Spallationsreaktionen zwischen der kosmischen Strahlung und den in der Atmosphäre vorhandenen Atomen (z.B. O, N, Ar). Bei diesen Reaktionen entstehen unter anderem die für Untersuchungen von rezenten und palaeoklimatischen Prozessen interessanten Isotope ³H, ⁷Be, ¹⁰Be, ¹⁴C, ²⁶Al, ³⁶Cl. Im dieser Arbeit liegt das Hauptaugenmerk auf dem Radioisotop ¹⁰Be. ¹⁰Be hat eine Halbwertszeit von 1,52 •10⁶ a [Hofmann et al., 1987] und wird durch β -Zerfall in ¹⁰Bor übergeführt.

2.2.1.1 Produktion von ¹⁰Be

Die primäre kosmische Strahlung setzt sich vorwiegend aus Protonen (91,5 %), α -Teilchen (7,8 %) und schweren Kernen (0,7 %) zusammen. Beim Zusammenstoß der Primärstrahlung mit Sauerstoff- bzw. Stickstoffatomen kommt es zu Nukleon/Nukleon Reaktionen wobei einzelne Protonen und Neutronen aus den Kernen herausgeschossen werden. Es entsteht die sogenannte "Sekundärstrahlung", die sowohl Protonen als auch Neutronen enthält und im Energiebereich von einigen 100 MeV angesiedelt sind. Die gebildeten Neutronen sind hauptsächlich für die Isotopenproduktion verantwortlich. Am effektivsten für die Bildung von ¹⁰Be-Atomen sind die folgenden Prozesse:

 $^{14}N + n \rightarrow {}^{10}Be + 3p + 2n$ $^{16}O + n \rightarrow {}^{10}Be + 4p + 3n$

Die Produktionsrate von ¹⁰Be ist abhängig von der Stärke der kosmischen Höhenstrahlung, der Sonnenaktivität und der Intensität des Erdmagnetfeldes [Lal und Peters, 1967; Lal et al., 1987; Mazaud et al., 1994]. Aufgrund der Form des Erdmagnetfeldes ist die Produktion vor ¹⁰Be breitengradabhängig, mit Maxima in den Polgebieten (Abb. 5). Etwa 70% von ¹⁰Be wirk in der Stratosphäre und 30% in der Troposphäre gebildet, während die in-situ Produktion auf der Erdoberfläche vernachlässigbar gering ist [Lal und Peters, 1967]. Modellierte ¹⁰B Produktionsraten liegen in einem Bereich von 0,35 • 10⁶ at cm⁻² a⁻¹ bis 1,89 • 10⁶ at cm⁻² a⁻¹ [Monaghan et al., 1985/86, O'Brian, 1979, O'Brian et al., 1991].

Abb. 5: Nord-Süd Schnitt durch die Atmosphäre; Die Linien zeigen Flächen konstanter ⁷Be Produktion [at min⁻¹ m⁻³ Luft] (aus Lal und Peters [1967]); Produktionsverhältnis ¹⁰Be/⁷Be = 0,55 [Lal und Peters, 1967]

Zeitliche Variationen in der Produktionsrate können dabei durch Schwankungen der solaren Aktivität oder durch Veränderungen des Geomagnetfeldes der Erde verursacht werden. Bei erhöhter Sonnenaktivität kann ein gewisser Teil der kosmischen Strahlung und im speziellen die niederenergetische Komponente durch die Magnetfelder des Sonnenwindes (Plasmaeruption der Sonne) vor dem Eindringen in unser Sonnensystem abgehalten werden. Dies hat eine Reduktion der Isotopenproduktion in der Erdatmosphäre [Lal und Peters, 1967] zur Folge. Die Zeiten erhöhter Sonnenaktivität unterliegen dabei z.B. einem 11-jährigen Zyklus, dem sogenannten Schwabezyklus. In Abbildung 6 ist der Zusammenhang zwischen der Anzahl der Sonnenflecken und der ¹⁰Be-Konzentration eines Dye 3 Eisbohrkerns dargestellt. Hierbei zeigt sich, daß hohe ¹⁰Be Konzentrationen mit geringeren Sonnenfleckenzahlen korrelieren.

Abb. 6: Vergleich der ¹⁰Be Konzentrationen im Eisbohrkern von Dye 3 (Grönland) [Beer et al., 1990] mit dem Sonnenfleckenzyklus (aus Baumgartner [1995])

15

2.2.1.2 Atmosphärische Deposition von ¹⁰Be

In der Erdatmosphäre wird das entstandene ¹⁰Be schnell an Aerosole angelagert und naß oder trocken deponiert. Die mittlere Verweilzeit in der Stratosphäre beträgt etwa 1 Jahr [Turekian et al., 1983] und etwa einen Monat in der Troposphäre [Raisbeck et al., 1981]. Der Fluß von ¹⁰Be auf die Erdoberfläche ist wie auch die Produktion breitengradabhängig und weist ein Maximum in den mittleren Breiten bei 40° (Hadley Zellen) auf, während er am Äquator und an den Polen deutlich niedriger ist [Monaghan et al., 1985/86]. Die von mehreren Autoren in unterschiedlichen Gebieten ermittelten atmosphärischen ¹⁰Be-Flußdichten sind in Tabelle 7 aufgelistet.

Atmosphärische ¹⁰ Be Flußdichte [10 ⁶ at cm ⁻² a ⁻¹]	Lokation	Autoren
1,21 ± 0,26	Nordamerika Niederschlag	Monaghan, 1985/86
$1,50 \pm 0,50$	Pazifik Sedimente	Lao et al., 1992 b/c
~ 0,70	Nordatlantik Sedimente	Southon et al., 1987
~ 0,30	Arktis Sedimente	Finkel et al., 1977

Tab. 7: Atmosphärische ¹⁰Be-Flußdichten

2.2.1.3 Transport von ¹⁰Be in die Sedimente

Etwa 2/3 des global produzierten ¹⁰Be wird direkt in den Ozeanen deponiert [Wagner, 1995]. Der auf den Kontinenten abgelagerte Anteil kann entweder durch fluvialen Transport (gelöst oder an Sedimentfracht gebunden) oder äolisch an Staubpartikel gebunden dem Ozean zugeführt werden [Kusakabe et al., 1991; Brown et al., 1992]. Im Ozean ist ¹⁰Be wenig partikelreaktiv und wird bevorzugt an Aluminosilikate [Sharma et al., 1987] und biogenen Opal [Lao et al., 1992 b/c] adsorbtiv gebunden. Diese Partikel agglomerieren oder werden von Organismen aufgenommen ins Tiefenwasser transportiert [Lal, 1980]. Durch die dort stattfindenden Auflösungsprozesse können sich Nährstoffe und das Radioisotop ¹⁰Be im Tiefenwasser anreichern. Die Konzentrationen von ¹⁰Be liegen im Pazifik in den oberen 1.000 m bei etwa 1.000 at g⁻¹ und in größerer Wassertiefe bei etwa 2.000 at g⁻¹ [Kusakabe et al., 1987]. Im Atlantik findet man im Tiefenwasser Konzentrationen von 1.000 bis 1.500 at g⁻¹ [Segl et al., 1987]. Daraus ergibt sich eine mittlere Verweilzeit im Pazifik von mehr als 1.000 a [Ku et al., 1990] und im Atlantik von 500 a [Segl et al., 1987]. Die Ozeanränder und Upwelling Gebiete hingegen zeichnen sich durch Verweilzeiten aus, die deutlich geringer als 250 a sind [Lao et al., 1992 b,c]. Mangini et al. [1984] zeigten, daß die ¹⁰Be-Deposition in Regionen hoher Paläoproduktivität vor West-Afrika und im Südatlantik die atmosphärische Produktionsrate um das Zehnfache überschreiten kann.

2.2.1.4 Wissenschaftliche Anwendungen von ¹⁰Be

Das Radionuklid ¹⁰Be ist von großer Bedeutung für die Datierung von Meeressedimenten. Dies setzt allerdings voraus, daß die Transportwege von ¹⁰Be genauestens bekannt sind. 16

Weiterhin wird versucht anhand des Verlaufs der ¹⁰Be Konzentrationen in Eisbohr- und Sedimentkernen Rückschlüsse auf Änderungen in der Produktionsrate zu schliessen. Im Zeitraum von Umpolungsphasen der Erdmagnetfeldes erwartet man hierbei, da sich die Feldstärke des Erdmagnetfeldes veringern sollte, erhöhte atmosphärische ¹⁰Be Flußdichten. Dieser Effekt konnte allerdings bisher noch nicht nachgewiesen werden [Morris, 1991].

2.3 Anthropogenes Radionuklid

2.3.1 ¹³⁷Cäsium (¹³⁷Cs)

2.3.1.1 Produktion von ¹³⁷Cs

In den 50er und 60er Jahren wurden von der USA und der UdSSR zahlreiche oberirdische Atombombenversuche durchgeführt. Als Nebenprodukt dieser Versuche wurden zahlreiche künstliche radioaktive Nuklide, wie z.B. ⁹⁰Strontium und ¹³⁷Cäsium in die Atmosphäre emittiert, die je nach Stärke der Detonation sogar bis in die Stratosphäre gelangen konnten. In der Tabelle 8 sind die Detonationsstärken der oberirdischen Atombombentests dargestellt.

Land	Zeitperiode	Anzahl der Tests	Detonationstärken [Mt]
USA	1945 - 1962	193	138,6
UdSSR	1949 - 1962	142	357,5
UK	1952 - 1953	21	16,7
France	1960 - 1974	45	11,9
China	1964 - 1980	22	20,7
TOTAL	1945 - 1980	423	545,4

Tab. 8: Anzahl und Detonationsstärken [Mt] der oberirdischen Atombombentests (aus Carter und Moghissi [1977])

2.3.1.2 Atmosphärische Deposition von ¹³⁷Cs

¹³⁷Cs entsteht bei nuklearen Explosionen und wurde erstmals 1945 durch den Beginn der nuklearen Waffentests in die Atmosphäre emittiert. Der maximale Fallout ist mit dem Jahr 1963 in Verbindung zu bringen (Abb. 7).

Abb.7: Atmosphärische ¹³⁷Cs Flußdichten in relativen Einheiten (nach Robbins and Edington, 1976]

2.4 Datierung von Sedimentkernen

Mit Hilfe von stabilen Isotopen, Radionukliden und der ESR Methode ist es möglich, Sedimentkerne zu datieren. Die Altersbereiche, die anhand dieser Methodiken abgedeckt werden, sind in Tabelle 9 aufgelistet.

Methode	Datierungsintervall [ka]	
²¹⁰ Pb _{ex} (Abschnitt 2.4.3)	0,10 - 0,15	
²¹⁰ Pb _{terr} (Abschnitt 4.2)	3 - 4	
¹⁴ C (Abschnitt 2.4.1)	50	
²³¹ Paex (Abschnitt 2.4.3)	200	
²³⁰ Thex (Abschnitt 2.4.3)	350	
ESR (Abschnitt 2.4.5)	800	
¹⁸ O (Abschnitt 2.4.2)	900	
¹⁰ Be (Abschnitt 2.4.4)	5.000 - 6.000	

Tab. 9: Datierungszeiträume der angeführten Methodik	en
--	----

2.4.1 Radiokarbon Methode (¹⁴C)

Durch die Messung des Radioisotops ¹⁴C an organischem Material (z.B. Foraminiferen, Muscheln) können absolute Altersdatierungen durchgeführt werden. Der Anteil an ¹⁴C im Kohlenstoff ist im Vergleich zu den Isotopen ¹²C und ¹³C äußerst gering (Tab. 10).

Radioisotope	rel. Häufigkeit	Halbwertszeit
¹² C	98,98%	stabil
¹³ C	1,11%	stabil
¹⁴ C	< 0,01%	5.730 a

Tab. 10: Relative Häufigkeit und Halbwertszeiten der Kohlenstoffisotope

¹⁴C entsteht wie ¹⁰Be hauptsächlich bei der Wechselwirkung zwischen der kosmischen Strahlung und Stickstoffatomen (¹⁴N(n,p)¹⁴C) in der Stratosphäre. Das gebildete Kohlenstoffisotop reagiert mit Sauerstoffmolekülen zu ¹⁴CO₂ und diffundiert in die untere Atmosphäre. In den Ozeanen wird der vorhandene Kohlenstoff von lebenden Foraminiferen, mit dem in der Wassersäule vorliegenden ¹⁴C/¹²C Verhältnis, in ihr Kalkskelett eingebaut. Sobald Organismen absterben, können keine weiteren Stickstoffverbindungen mehr aufgenommen werden. Ab diesem Zeitpunkt zerfällt das im Kalkskelett eingebaute ¹⁴C, während das stabile ¹²C keinen Änderungen unterliegt. Die ¹⁴C Methode kann mit dem heutigen Stand der Meßtechnik einen Altersbereich von bis zu 50 ka zeitlich erfassen. Durch moderne Meßverfahren (z.B. AMS Technik) versucht man die Meßgrenze auf über 70 ka auszudehnen [Wagner, 1995]. Ein weiterer wesentlicher Vorteil der AMS-Technik liegt in der geringen benötigten Probenmenge. Hierdurch kann eine gezielte Auswahl des Probenmaterialsr gewährleistet werden. Überprüft wurde die Zuverlässigkeit der Altersdatierungen mit der ¹⁴C

Methode mit den Datierungen der Jahresringe (Dendrochronologie) am selben Probenmaterial. Dabei zeigte sich, daß das atmosphärische ¹⁴C/¹²C Verhältnis nicht konstant ist. Analog zu ¹⁰Be können Änderungen in der Intensität der kosmischen Strahlung, im Magnetfeld der Sonne und der Erde zu Variationen im ¹⁴C/¹²C Verhältnis geführt haben. Diese Schwierigkeiten bei der ¹⁴C-Methode, aufgrund der Schwankungen in der atmosphärischen ¹⁴C Produktion, ist ausführlich bei Kromer und Becker [1990] dargestellt.

2.4.2 δ¹⁸O-Stratigraphie

Im Ozean liegt das Wassermolekül in den Modifikationen H2¹⁶O, H2¹⁸O und HD¹⁶⁻¹⁸O vor. Bei der Verdunstung, vor allem in Gebieten nahe des Äquators, tritt eine Fraktionierung zugunsten der leichteren Isotope auf, wodurch der Wasserdampf isotopisch leichter als das Ausgangswasser wird. Zusätzlich kommt es zu einer Abreicherung an H2¹⁸O im Vergleich zu H2¹⁶O bei der Ausregnung von in äquatorial gebildetem Wasserdampf auf seinem Weg in höhere nördliche Breiten, Hieraus ergibt sich, daß in Kaltzeiten (Glazialen) H216O bevorzugt in den sich in hohen nördlichen Breiten gebildeten Eismassen gespeichert und nicht wieder dem Ozean zugeführt wird. Der glaziale Ozean zeichnet sich deshalb durch ein höheres ¹⁸O/¹⁶O Verhältnis aus als der interglaziale Ozean [Broecker und Denton, 1990]. Das vorherrschende Sauerstoffisotopenverhältnis in der Wassersäule wird von den lebenden Foraminiferen in den karbonatischen Skeletten eingebaut und bei ihrer Ablagerung in den Sedimenten archiviert. Durch den Vergleich der gemessenen S¹⁸O-Werte von Foraminiferen in den untersuchten Sedimentkernen mit dem Verlauf der generalisierten Sauerstoffisotopenstratigraphie von Martinson et al. [1987] und Imbrie et al. [1984] ist es möglich Klimastadienübergänge festzulegen. Bei höherer Auflösung der Profile können auch einzelne Unterstadien bestimmten Kerntiefen zugewiesen werden. Nach Emilliani [1955] kennzeichnen hierbei ungerade Zahlen Warm- und gerade Zahlen Kaltzeiten. Eine besondere Auffälligkeit im δ^{18} O Profil stellt der markante Anstieg der δ^{18} O-Werte bei den Glazial/Interglazialübergängen 2/1 und 6/5 dar (Abb. 8), dessen Ursache in dem Abschmelzen großer Eismassen begründet liegt. Man bezeichnet z.B. den Übergang 2/1 als "Termination I", den Übergang 6/5 als "Termination II". Die Altersbereiche der jeweiligen Isotopenstadien sind in Tabelle 11 aufgelistet.

Abb. 8: $\delta^{18}O$ Stratigraphie nach Imbrie et al. [1984]

19

ummagan	Grund	lagen	
---------	-------	-------	--

Stadiengrenze	Alter [ka]	Stadiengrenze	Alter [ka]
1/2	12	11/12	423
2/3	24	12/13	478
3/4	59	13/14	524
4/5	71	14/15	565
5/6	128	15/16	620
6/7	186	16/17	659
7/8	245	17/18	689
8/9	303	18/19	726
9/10	339	19/20	736
10/11	362	20/21	763

Tab. 11: Altersbereiche der jeweiligen Isotopenstadien

In hohen nördlichen Breiten ist die zeitliche Einteilung der untersuchten Sedimentkerne mit der δ^{18} O-Stratigraphie entweder nicht möglich oder mit großen Unsicherheiten verbunden. Dies ist durch die geringe Bioproduktivität im Arktischen Ozean und dem demzufolge geringen Anteil an biogenen karbonatischen Skeletten in der Wassersäule, der geringen Archivierung der Foraminiferen in den Sedimenten aufgrund der agressiven Tiefenwassermassen (hoher Anteil an CO₂) und den Verfälschungen des δ^{18} O-Signals durch lokale Schmelzwassereinträge [Köhler und Spielhagen, 1990] bedingt.

2.4.3 Alterseinteilung anhand der Radionuklide ²¹⁰Pbex, ²³¹Paex, ²³⁰Thex

2.4.3.1 Alterseinteilung anhand des radioaktiven Zerfalls

Anhand der Bestimmung der Sedimentationsraten ist es möglich, eine zeitliche Einteilung der bearbeiteten Sedimentkerne vorzunehmen. Die mittleren Sedimentations- bzw. Akkumulationsraten von Sedimentkernen können mit dem radioaktiven Zerfallgesetz durch einen exponentiellen Fit (Gl. 11, 12, 13) abgeleitet werden. Hierzu werden die ²¹⁰Pb_{ex} (²³¹Pa_{ex}, ²³⁰Th_{ex}) Aktivitäten auf einer logarithmischen Skala gegen die Massentiefe (bzw. Kerntiefe) auftragen. Die Massentiefe G (Masse von trockenem Sediment, die pro cm² abgelagert ist) berücksichtigt dabei Kompaktionseffekte im Sediment.

$${}^{210}\text{Pb}_{\text{ex}}(G) = {}^{210}\text{Pb}_{\text{ex}}(0) \cdot \exp\left(-\lambda \cdot \frac{G}{R}\right)$$
(11)

$$R = -\lambda \cdot G \cdot \left[\ln \left(\frac{2^{10} Pb_{ex}(G)}{2^{10} Pb_{ex}(0)} \right) \right]^{-1}$$
(12)
$$S = \frac{R}{2}$$
(13)

mit:

ρ

20

1.2

2.4.3.2 Alterseinteilung anhand des "Constant Flux" Modells

Unter der Vorraussetzung einer konstanten ²³⁰Th_{ex} (²³¹Pa_{ex}, bzw. ²¹⁰Pb_{ex}) Depositionsflußdichte über die letzten 350 ka (200 ka bzw. 150 a) kann für jeden bearbeiteten Kernabschnitt ein Alter berechnet werden. Abweichungen der ²³⁰Th_{ex} bzw. ²³¹Pa_{ex} oder ²¹⁰Pb_{ex} Aktivitäten vom idealen exponentiellen Verlauf werden hierbei auf Änderungen in der Sedimentationsrate zurückgeführt.

Flußdichteberechnungen der Radionuklide 230 Thez, 231 Paex und 210 Pbez

Die Depositionsflußdichte ist als Durchgang von Partikeln (wie ²³⁰Th, ²³¹Pa, ²¹⁰Pb) durch eine Grenzschicht Wasser/Sediment pro Fläche und Zeiteinheit definiert. Die aus der Produktion erwarteten Depositionsflußdichten von ²³⁰Th_{ex} und ²³¹Pa_{ex} errechnen sich nach den Gleichungen 4 bzw. 10 und der Wassertiefe, in der sich der zu untersuchende Sedimentkern befunden hat. Bei ²¹⁰Pb_{ex} ist die erwartete Depositionsflußdichte gleich der atmosphärischen Produktion.

> $F_P ({}^{230}Th_{ex}) = 2,63 \text{ dpm cm}^2 \text{ ka}^{-1} 1000 \text{m}^{-1} \cdot \text{WT}$ $F_P ({}^{231}Pa_{ex}) = 0,24 \text{ dpm cm}^{-2} \text{ ka}^{-1} 1000 \text{m}^{-1} \cdot \text{WT}$ $F_P ({}^{210}Pb_{ex}) = F_{ATM}$

mit WT

= Tiefe des Sedimentkernes unterhalb der Wasseroberfläche [km]

Die tatsächlichen ²³⁰Th_{ex}, ²³¹Pa_{ex} und ²¹⁰Pb_{ex} Depositionsflußdichten (F_A) werden mit Hilfe der Gleichung 14 berechnet:

$$F_{A}(x) = A(x) \cdot \rho(x) \cdot S(x)$$
(14)

mit

X

A (x) = Zerfallskorrigierte ²³⁰Th_{ex}, ²³¹Pa_{ex} und ²¹⁰Pb_{ex} Aktivität [dpm g⁻¹] $\rho(x)$ = Trockenraumdichte [g cm⁻³]

S(x) = Sedimentationsrate [cm ka⁻¹]

= Kerntiefe [cm]

Detailliertere Betrachtungen der ²³⁰Th_{ex} und ²³¹Pa_{ex} Flußdichten

A) Im einfachsten Fall ist davon auszugehen, daß das gesamte ²³⁰Th_{ex} bzw. ²³¹Pa_{ex}, welches in der Wassersäule gebildet wird in das darunterliegende Sediment gelangt.

$$F_A = F_P$$

(15)

Ist diese Bedingung stets erfüllt, ist es möglich, Sedimentkerne mit dem "Constant Flux" Modell (Abschnitt 2.4.3.3) zu datieren. Hierbei wird die Gleichung 14 nach der Sedimentationsrate S aufgelöst und F_A durch F_P ersetzt.

$$=\frac{F_{P}(x)}{A(x)\cdot\rho(x)}$$

S

Die Bedingung $F_A = F_P$ stellt jedoch einen Sonderfall dar und ist in den meisten Fällen nicht gegeben. Prozesse wie SCAVENGING, FOCUSING und WINNOWING stellen die Ursache für die Abweichung zwischen der erwarteten Flußdichte (F_P) und der tatsächlich in den Sedimenten akkumulierten Flußdichte (F_A) dar. Diese Prozesse werden im folgenden detaillierter beschrieben und in Abbildung 9 dargestellt.

Abb. 9: Veranschaulichung der 230 Th Flußdichten

SCAVENGING: Dieser Prozeß spiegelt das effektive Entfernen der Radionuklide aus der Wassersäule wider. Ist dies in einem bestimmten Gebiet der Fall, können diese Nuklide aufgrund des entstandenen Konzentrationsgradienten diffusiv aus den umgebenden Bereichen nachgeliefert werden. Ein solcher Prozeß kann vor allem an Ozeanrändern (boundary Scavenging) und in Gebieten hoher biologischer Produktivität [Mangini und Diester-Haas, 1983] beobachtet werden. Je länger die Verweilzeiten der betrachteten Radionuklide in der Wassersäule sind, desto ausgeprägter ist der diffusive Antransport der Radionuklide in die Gebiete in denen erhöhtes Scavenging vorliegt. Während Thorium mit Verweilzeiten von 5 - 60 Jahren unmittelbar in die Sedimente deponiert wird [Scholten et al., 1995; Anderson et al., 1993 a,b], spielen Scavenging Prozesse eine bedeutende Rolle bei den Radioisotopen ²³¹Pa und ¹⁰Be, die Verweilzeiten von 20 - 160 a [Scholten et al., 1995; Anderson et al., 1993 a,b] bzw. 500 -1.000 a [Segl et al., 1987; Ku et al, 1990; Lao et al., 1992 a] aufweisen.

FOCUSING: Als Focusing bezeichnet man den Vorgang, daß bereits die in den Sedimenten abgelagerten Radionuklide (²³⁰Th_{ex,}²³¹Pa_{ex}) durch Bodenströmungen und Rutschungen wieder an Partikeln adsorbiert in den Wasserkörper gelangen und zum Untersuchungsgebiet transportiert werden.

(16)

WINNOWING: Winnowing kennzeichnet hingegen den Export der an Sedimentpartikeln adsorbierten Radionukliden (²³⁰Th_{ex}, ²³¹Pa_{ex}) aus dem Untersuchungsgebiet.

Können Scavenging Prozesse für ²³⁰Th vernachläßigt werden, deuten F_A/F_P (²³⁰Th) > 1 auf Focusing und F_A/F_P (²³⁰Th) < 1 auf Winnowing hin [Scholten et al., 1994]. Der Quotient der Flußdichten - F_A/F_P - von ²³⁰Th_{ex} wird als Focusing-Faktor bezeichnet. Die Flußdichten anderer Radionuklide oder Elemente können unter Berücksichtigung der angeführten Bedingung anhand dieses Focusing-Faktors nach Gleichung 17 auf Sedimentumlagerungen korrigiert werden.

$$F_{V}(A) = \frac{F(A)}{\frac{F_{A}}{F_{P}}(^{230}Th_{ex})}$$
(17)

mit

F(A) Fv(A) berechnete Flußdichte des Elementes A [dpm bzw. ppm cm⁻² a⁻¹] auf Sedimentumlagerung korrigierte Flußdichte des Elementes A [dpm cm⁻² a⁻¹] bzw. [ppm cm⁻² a⁻¹]

B) Ist $F_A = F_P$ nicht erfüllt, so kann F_A in Gleichung 14 nicht durch F_P ersetzt werden. In diesem Fall wird anhand der $\delta^{18}O$ Stratigraphie für jedes Isotopenstadium eine mittlere ²³⁰Th_{ex} Depositionsflußdichte berechnet. Unter der Annahme, daß sich die ²³⁰Th_{ex} Flußdichte während der einzelnen Klimastadien nicht geändert hat, kann eine Datierung mit Hilfe des "Constant Flux" Modells in den jeweiligen Isotopenstadien erstellt werden. Man erhält auf diese Weise im Vergleich zur $\delta^{18}O$ Stratigraphie eine hochaufgelöstere Datierung des bearbeiteten Sedimentkernes.

"Constant Flux" Modell

Die Alter pro Probe können durch Auflösen von Gleichung 16 nach der Sedimentationsrate berechnet werden:

$$S_1 = \frac{F}{C_{x1}} = \frac{dx_1}{dt_1}$$

mit

dx = Tiefenintervall [cm]

dt = Altersintervall [ka]

retrained (Abb. 112)

 $C_{x1} = {}^{230}\text{Th}_{ex}$ Konzentration der obersten Probe [dpm g⁻¹]

Zur Bestimmunug des Altersintervalls, daß in dem obersten bearbeiteten Probenstück enthalten ist, wird die Gleichung 18 unter Berücksichtigung von Gleichung 14 umgeformt:

$$dt_1 = \frac{dx_1 \cdot C_{x_1} \cdot \rho}{F}$$
(19)

(18)

Die Alter pro Probe für die weiteren Probenabschnitte wird wie folgt berechnet:

$$dt_{x} = \frac{dx_{x} \cdot C_{x_{x}} \cdot \rho \cdot e^{\lambda \cdot t_{x_{1}}}}{F_{\text{Isotopenstadium}}}$$
(20)

Zur Bestimmung eines kontiniuerlichen Altersmodells werden die ermittelten Altersintervalle der untersuchten Probenabschnitte aufaddiert.

$$x = \sum_{x=0} \Delta t_x$$
(21)

mit

 λ = Zerfallskonstante von ²³⁰Th (9,22 10⁻³ ka⁻¹)

= Zerfallskonstante von 231 Pa (2,15 10⁻² ka⁻¹)

= Zerfallskonstante von ²¹⁰Pb (0,031 a⁻¹)

2.4.4 ¹⁰Be Stratigraphie

Das kosmogene Radionuklid ¹⁰Be stellt einen sensiblen Indikator für klimatische Veränderungen im Arktischen Ozean während der letzten 1 Million Jahre dar. Untersuchungen an Sedimentkernen aus der Norwegischen und Grönländischen See ergaben eine hohe ¹⁰Be-Konzentration im Sediment während der Interglazialstadien und eine deutlich geringere Konzentration während den Glazialstadien [Eisenhauer et al., 1994]. Diese deutlichen Konzentrationsänderungen an den Klimastadienübergängen ermöglichen eine stratigraphische Zuordnung der einzelnen Isotopenstadien, die sogenannte "¹⁰Be-Stratigraphie", für die Gebiete hoher Breiten.

2.4.5 ESR (Elektronen - Spin - Resonanz)

Die ESR Datierung liefert wie die ¹⁴C Methode absolute Alter. Sie ist neben der δ^{18} O Stratigraphie, der ¹⁰Be- und ²³⁰Th_{ex} Methode ein zusätzliches Hilfsmittel zur Kontrolle der stratigraphischen Einteilung von Sedimentkernen. Im Folgenden werden die Grundlagen der ESR Datierung soweit dargestellt, wie sie zum Verständnis dieser Arbeit notwendig sind. Für eine tiefergehende Behandlung sowohl des Datierungsprinzips als auch der ESR Spektroskopie sei auf die Arbeiten von Grün [1989], Barabas [1989] und Molnar [1995] verwiesen.

Bei der ESR Datierung nutzt man die Tatsache aus, daß nichtleitende Kristalle (z.B. Karbonatschalen von Foraminiferen oder Muscheln) die radioaktive Umgebungsstrahlung speichern können. Dabei wird die radioaktive Umgebungsstrahlung hauptsächlich durch die Isotope der Uran- und Thoriumzerfallsreihe und das ⁴⁰K Isotop bestimmt. Läßt sich die gespeicherte Dosis (D_E) messen und ist die natürliche radioaktive Dosisrate D(t), der das Material während einer Zeit T ausgesetzt war, bekannt, so kann man aus

$$D_{\rm E} = \int_{0}^{\rm T} D(t) dt$$

(22)

die Zeitdauer der radioaktiven Bestrahlung und demzufolge das Probenalter bestimmen. Damit die ermittelten Alter den Zeitpunkt der Deposition der Foraminiferen bzw. Muscheln in den Sedimenten repräsentieren, muß gewährleistet sein, daß

- a) der Speicherprozeß erst mit der Deposition beginnt
- b) die Größe der gespeichterten Energie während des Bestrahlungszeiraums nicht verfälscht wird (Fading)

2.4.5.1 Speicherung der Energie

In natürlichen Substanzen (Realkristall) gibt es Störungen in der Kristallstruktur durch Fremdatome, Gitter-Leerstellen und Zwischengitteratome. Diese Störungen können die Bildung von räumlich lokalisierten Energieniveaus zwischen Valenz- und Leitungsband bewirken. Wird in einem solchen Kristall ein Elektron durch Bestrahlung mit α -, β -, oder γ -Strahlung aus dem Valenzband ins Leitungsband angehoben, so besteht eine gewisse Wahrscheinlichkeit, daß dieses nicht in das Valenzband rekombiniert, sondern als ungepaartes Elektron in eines der Zwischenniveaus fällt (Abb.10). Je größer der energetische Abstand zwischen Leitungsband und Zwischenniveau ist, desto länger können die Elektronen darin fixiert werden. Eine Methode zur Messung der relativen Anzahl der Elektronen in diesen Zwischenniveaus bildet die ESR Spektroskopie.

Abb. 10: Modell der Signalentstehung durch Einwirkung radioaktiver Strahlung (nach Grün [1989])

2.4.5.2 Bestimmung der Äquivalenzdosis D_E

Die akkumulierte Dosis wird durch die "Additive-Dosis Methode" [Grün, 1989] bestimmt. Hierbei wird eine Probe künstlich in mehreren Schritten zusätzlich bestrahlt, in jedem Schritt das ESR-Signal gemessen und die ESR Intensität anschließend gegen die applizierten Dosen aufgetragen (Abb. 11).

Extrapoliert man das ESR Signal auf den Nullwert, so erhält man die Strahlungsdosis (D_E), die die Probe von ihrer Deposition bis zur Gegenwart akkumuliert hat. Die ESR Signale in den Foraminiferen nähern sich bei zunehmender Bestrahlung einem Sättigungsbereich an [Barabas et al., 1989]. Zur Regression wird deshalb eine exponentielle Sättigungsfunktion benutzt [Molnar, 1995].

2.4.5.3 ESR Signale von Foraminiferen

ESR Signale werden durch ihren g-Faktor charakterisiert. In Foraminiferen findet man Signale bei g = 2,0006, g = 2,0036 und g = 2,0057. Diese werden einem CO₂, SO₃⁻ und einem SO₂⁻-Radikal zugeordnet [Barabas et al., 1992].

Zur Datierung von Sedimentkernen wird hauptsächlich das SO_3 Signal verwendet. Das CO_2 Signal (g = 2,0006) zeigt wegen seiner geringen thermischen Stabilität ab einem Alter von 100 ka ein systematisch zu niedriges Signal [Barabas, 1989; Barabas et al., 1992; Mudelsee et al., 1992], was eine thermische Korrektur des Signales erfordern würde. Dagegen kann das SO_3 Signal (g = 2,0036) für einen Datierungszeitraum von etwa 800 ka genutzt werden [Mudelsee et al., 1992].

2.5 Der Arktische Ozean und das Europäische Nordmeer

2.5.1 Bathymetrie des Arktischen Ozeans

Der Arktische Ozean, der zum größten Teil von Landmassen umschlossen ist, steht mit den anderen Ozeangebieten über die Beringstraße (Pazifischer Ozean) und die Framstraße (Atlantischer Ozean) in Verbindung. Die einzige Tiefenwasserverbindung stellt die 2600 m tiefe Framstraße dar. Die Bathymetrie des Arktischen Ozeans (Abb. 12) ist durch Rückensysteme (Nansen-Gakkel Rücken, Mendeleev Rücken, Alpha-Rücken, Lomonosov Rücken), Tiefseeebenen (Makarov Becken, Amundsen Becken, Nansen-Becken, Kanadisches Becken) und durch ausgedehnte Schelfgebiete (Barents See, Kara See, Laptev See, Ostsibirische See) gekennzeichnet.

Abb. 12: Die Tiefseeebenen, Rückensysteme und Schelfgebiete des Arktischen Ozeans [Tiefe in m] aus Schubert [1995] nach Gierloff-Emden [1982], Wollenburg [1993]

Im Eurasischen Teil nehmen die Schelfgebiete etwa 35% der Fläche ein [Barry, 1989]. Aufgrund der großen Mengen an Sedimentfracht, die rezent mit den Flüssen (wie Lena, Yenisei, Ob) eingetragen werden, kommt den Schelfgebieten kommt eine besondere Rolle zu, da sie die Akkumulationsbedingungen im Arktischen Ozean wesentlich mitbestimmen. Das Hauptaugenmerk in dieser Arbeit wurde auf das Schelfgebiet der Laptev See (Abschnitt 2.5.3) gelegt.

27
2.5.2 Wassermassenzirkulation und Eisbedeckung im Arktischen Ozean und im Europäischen Nordmeer

2.5.2.1 Wassermassenzirkulation

Kennzeichnend für die Wassermassen des Nordpolarmeeres (Abb. 13) sind vor allem der Einstrom von atlantischem Wasser durch die Framstraße und über die Barentssee sowie der Einstrom von pazifischen Wassermassen durch die Beringstraße. Einen weiteren wesentlichen Beitrag, wie oben angeführt, liefern die sibirischen und kanadischen Flußsysteme, die dem Nordpolarmeer salzarmes Wasser zuführen. Die Wassersäule im Nordpolarmeer weist eine deutliche Schichtung in Oberflächen-, Zwischen- und Tiefenwasser auf [Aagard et al., 1985]. Das Oberflächenwasser besteht hauptsächlich aus niedrigsalinem Süßwasser, das vorwiegend durch die fluvialen Einträge der zirkumarktischen Flüsse und der in den Sommermonaten bestimmt wird. Eisschmelze Aufgrund der hohen Schichtungsstabilität können die Wassermassen, die unterhalb der Halokline gefunden werden (Zwischenwasser) nur advektiv von der Framstraße oder von den Schelfen her erneuert werden. Der Tiefenbereich des Zwischenwassers wird von Rudels [1994] zwischen 200 m und 1700 m angesetzt. Das Zirkulationsmuster dieser Wasserschichtung ist in Abbildung 13 dargestellt und wird im Folgenden beschrieben.

Abb.13: Zirkulation des Zwischenwassers nach Rudels et al. [1994] (aus Schubert [1995])

Ausgangspunkt für die Wassermassenzirkulation ist das Atlantische Wasser, daß mit dem Norwegischen Strom, dem Ausläufer des warmen Nordatlantikstromes ("Golfstrom"), entlang der Norwegischen Küste nach Norden vordringt. Dieser spaltet sich etwa auf der Höhe des Nordkaps in den Westspitzbergenstrom (Fram Strait Branch) und den Nordkapstrom (Barents Sea Branch) auf. Ein Teil des Westspitzbergenstroms rezirkuliert im Bereich der Framstraße,

Grundlagen

der andere Teil gelangt als Zwischenwasser ins Nordpolarmeer. Die weitere Zirkulation im Nordpolarmeer wird durch die dort vorherrschende Topographie bestimmt. Der Westspitzbergen- und der Nordkapstrom vereinigen sich wieder im Nansenbecken im Bereich des St. Anna Trogs. Diese Strömung bewegt sich in Richtung Laptev See und fließt weiter im Fram Becken zwischen Lomonosov- und Nansen Gakkel Rücken über den Nordpol hinweg zur Framstraße. Die ausströmenden Wassermassen besitzen sowohl im Oberflächen- als auch im Zwischenwasser die gleiche Strömungsstruktur. Dieses Strömungsmuster heißt "Transpolardrift". Mit der Transpolardrift wird das Meereis, das in den eurasischen sibirischen Schelfgebieten und insbesondere der Laptev See gebildet wird, aus dem Arktischen Ozean über die Framstraße in den Atlantik exportiert [Gordienko and Laktionov, 1969]. In der Laptev See gebildetes Eis benötigt etwa drei bis fünf Jahre [Dethleff, 1995], um in den Atlantik zu gelangen. Die charakteristische Oberflächenströmung im amerasischen Teil des Arktischen Ozeans ist der antizyklonale Beaufortwirbel, in dem das arktische Meereis im Mittel 5 bis 15 Jahre zirkuliert [Koerner, 1973], bevor das arktische Meereis im Europäischen Nordmeer abgelagert wird.

2.5.2.2 Meereisbedeckung

Der Zentralbereich des Nordpolarmeeres ist ganzjährig mit Eis bedeckt. Abbildung 14 zeigt neben der permanenten Eisbedeckung auch die Ausdehnung der Eisflächen in den Wintermonaten. In den Sommermonaten reduziert sich die Eisbedeckung etwa um die Hälfte [Parkinson et al., 1987; Zakharov, 1976, 1981; Parkinson et al., 1989; Walsh and Johnson, 1979]. Die durchschnittliche Dicke des Meereises beträgt ca. 3 m [Dethleff, 1995].

Abb. 14: Die durchschnittliche und maximale Meereisausdehnung im Arktischen Ozean (nach CIA [1978]; Barry [1989], and Myhre et al., [1995]).

2.5.3 Laptev See

Die Laptev See (Abb. 15) erstreckt sich von 105°E bis 145°E und von 71°N bis 77°N, weist eine mittlere Wassertiefe von 30 - 50 m auf und ist das flachste Schelfgebiet an der Nordküste Eurasiens mit einer Fläche von 662,000 km² [Timokhov, 1994].

Abb. 15: Übersichtskarte der Laptev See

2.5.3.1 Flußeintrag in die Laptev See

In die Laptev See münden die Flüsse Khatanga, Anabar, Olenek, Lena und Yana. Die jährliche Flußwasserzufuhr beträgt etwa 767 km³ [Timokhov, 1994], wobei der größte Anteil an dieser Zufuhr der Lena mit 514 km³ pro Jahr [Milliman and Meade, 1983] zugeschrieben wird. Die Lena ist neben dem Yenisei (ca. 603 km³) und dem Ob (ca 503 km³) einer der größten, in den Arktischen Ozean mündenden Flüsse (Abb. 16).

Abb. 16: Flußeintrag [km³ a⁻¹] in den Arktischen Ozean (aus Aagard and Carmack [1989])

Die Lena führt allerdings nicht ganzjährig Flußwasser dem Arktischen Ozean zu, sondern der Eintrag der Lena ist durch saisonale Schwankungen gekennzeichnet. Während die Lena in den Wintermonaten sehr geringe Ausflußraten aufweist, sind im Frühsommer nach dem Aufbrechen der Flüsse für nur kurze Zeit extrem hohe Ausflußraten vorzufinden. Der monatliche Jahresgang der Lena-Ausflußraten über die Jahre 1935 bis 1988 ist in Abbildung 17 dargestellt.

Abb. 17: Jahrsgang der monatlichen Ablußraten der Lena. Der Beobachtungszeitraum umfaßt die Jahre 1935 - 1988 (unveröffentl. Daten AARI St. Petersburg, Russia)

Nach Letolle et al. [1993] gelangt das Wasser der Lena über 4 Hauptmündungsarme (Abb. 18) (Tumatskaya, Olenekskaya, Bykovskaya und Trofimovskaya) in die Laptev See. Der Haupteintrag erfolgt dabei über die Arme Trofimovskaya (53-67% [Ivanov and Piskun,1995] und Bykovskaya (23,5-34,6% [Ivanov and Piskun,1995], die am östlichen bzw. nordöstlichen Teil des Deltas ins Meer münden.

Abb.18: Hauptausflußarme der Lena (nach Ivanov and Piskun [1995])

2.5.3.2 Bathymetrie der Laptev See

Die Bathymetrie der Laptev See (Abb. 19) ist durch fünf große, das Schelfgebiet durchziehende Rinnensysteme gekennzeichnet. Sie sind nach den Flüssen benannt, von denen sie während pleistozäner Meeresspiegelschwankungen geformt wurden und deren Verlängerung sie heute bilden [Holmes, 1967].

Abb. 19: Verteilung und Anteil der Sandfraktionen in Gew. [%] in Oberflächensedimenten der Laptev See (aus Lindemann [1994]) [a) Anabar-Khatanga Valley; b) Olenek Valley; c) Western Lena Valley; d) Eastern Lena Valley; e) Yana Valley]

Die von Lindemann [1994] durchgeführten Korngrößenanalysen von Sedimentkernen, die während der Transdrift I Expedition [Kassens et al., 1994] entnommen wurden, weisen deutliche Unterschiede in der Sedimentzusammensetzung zwischen der östlichen und westlichen Laptev See auf. Dabei zeichnet sich der östliche Teil durch tonigere Sedimentablagerungen aus [Lindemann,1994]. Im Einzugsbereich der Lena und Yana zeigen die von Lindemann [1994] erstellten Verteilungskarten ebenfalls eine deutliche Dominanz der Feinfraktion in den Oberflächenproben. Neben dem Flußwassereintrag wird die äußere Laptev See von atlantischen und pazifischen Wassermassen beeinflußt [Gorshkov, 1983]. Die Verbreitung dieser Wassermassen wird von der Flußwasserzufuhr gesteuert, so daß bei geringen Abflußraten der Lena oder des Khatangas die atlantischen und pazifischen Wassermassen bis zur Küstennähe vordringen können.

Grundlagen

33

2.5.3.3 Eisregime in der Laptev See

Die Laptev See wird während der Wintermonate Oktober bis Mai von einer geschlossenen küstennahen Festeisdecke mit einer Mächtigkeit von etwa 2 bis 2,5 m [Barnett, 1991] überdeckt. Zwischen der Festeisgrenze und dem sich in nördlicher Richtung daran anschließenden Packeis bildet sich in den Wintermonaten (Abb. 20) eine Zone von offenem Wasser (Polynia) aus. Nur in den Monaten Juli bis September ist das Schelfgebiet der Laptev See weitgehend eisfrei. Polynias "Flaw Lead" sind entsprechend der Definition von Smith et al. [1990] Gebiete, in denen es während der Eisbildung zu einer kontinuierlichen Abgabe von Wärme an die Atmosphäre kommt. Dadurch kann das Zufrieren der Wasserfläche verhindert werden. Die Laptev See scheint demzufolge ein Gebiet mit erheblicher Neueisproduktion zu sein [Kassens et al., 1994]. Untersuchungen von Dethleff [1995] im Winter 1991/92 zeigten, daß etwa 1/3 des arktischen Meereises, das in die Transpolare Drift gelangt, in der Laptev See gebildet wird.

Abb. 20: Eisverteilung innerhalb der Laptev See (März 1992, aus Lindemann [1994])

3 Atmosphärischer ¹⁰Be Eintrag in Grönland und in der Antarktis

In diesem Kapitel werden die atmosphärischen ¹⁰Be Flußdichten im Zeitraum der letzten 55 ka in Grönland und in der Antarktis dargestellt. Die atmosphärischen ¹⁰Be Flußdichten spielen eine wichtige Rolle bei der Datierung der Sedimentkerne (Kapitel 4 und 5) und für die Rekonstruktion der paläoklimatischen Bedingungen in hohen nördlichen Breiten (Kapitel 8).

3.1 Rezenter atmosphärischer Eintrag von ¹⁰Be in Grönland

An Oberflächenproben von Eisbohrkernen der Nordgrönland-Traverse und EGIG-Traverse (Abb. 21), die den Zeitraum der letzten 100 Jahre umfassen, wurden von Stanzick [1996] ¹⁰Be-Konzentrationen gemessen.

Abb. 21: Verlauf der NGT und EGIG Traversen in Grönland; an den dargestellten Lokationen wurden an Oberflächenproben ¹⁰Be Konzentrationen gemessen [Stanzick, 1996]

Die ermittelten ¹⁰Be Konzentrationen sind in Abbildung 22 gegen die vorherrschenden reziproken Niederschlagsraten aufgetragen. Die rezenten atmosphärischen ¹⁰Be Flußdichten liegen im Bereich von $(0,15 - 0,60) \cdot 10^6$ at cm⁻² a⁻¹. Weiterhin wurde von Stanzick [1996] die in Grönland vorgefundene Beziehung zwischen der Niederschlagsrate und der ¹⁰Be Flußdichte auf den Arktischen Ozean übertragen. Hieraus konnte eine rezente atmosphärische ¹⁰Be Flußdichte ¹⁰Be Flußdichte auf den Arktischen Ozean übertragen. Hieraus konnte eine rezente atmosphärische ¹⁰Be Flußdichte ¹⁰Be Flußdichte von $(0,20 - 0,40) \cdot 10^6$ at cm⁻² a⁻¹ für den zentralen Arktischen Ozean bestimmt werden.

Abb. 22: ¹⁰Be Konzentrationen in grönländischen Eisbohrkernen als Funktion der reziproken jährlichen Niederschlagsrate (aus Stanzick [1996])

3.2 Paläoaufzeichnungen des atmosphärischen ¹⁰Be Eintrags in den Eisbohrkernen von SUMMIT (Grönland) und VOSTOK (Antarktis)

3.2.1 ¹⁰Be-Profil vom SUMMIT Eisbohrkern

In Abbildung 23 sind die von Baumgartner [1995] bestimmten ¹⁰Be Konzentrationsprofile vom SUMMIT-GRIP-Eisbohrkern dargestellt. Das ¹⁰Be-Profil zeichnet sich hierbei im betrachteten Tiefenabschnitt von 2000 m bis 3000 m nur im Abschnitt zwischen 2200 und 2250 m durch höhere Konzentrationen aus. Dieser Bereich wird von Baumgartner als "Raisbeck-Peak" (Maximum bei 37 ka (grau schraffiert)) identifiziert. Im Isotopenstadium 5 (Pfeil kennzeichnet Stadium 5d bei 2788 m Tiefe; aus Baumgartner, 1995) liegt hingegen ein konstantes Konzentrationsprofil vor.

3.2.2 Vergleich der atmosphärischen ¹⁰Be Flußdichten von SUMMIT und VOSTOK

Die ¹⁰Be-Flußdichten wurden für den GRIP Eisbohrkern im Altersbereich von 15 ka bis 55 ka aus den ¹⁰Be-Konzentrationen, der Dichte des Eises und den Akkumulationsraten [cm Eis a⁻¹] von Baumgartner [1995] berechnet.

Man erhält einen mittleren Fluß von etwa 0,30 • 10⁶ at cm⁻² a⁻¹, der zwischen 30 und 40 ka (Raisbeck-Peak) auf Werte von bis zu 0,60 • 10⁶ at cm⁻² a⁻¹ ansteigt. Das Profil und die Größenordnungen der Flußdichten entsprechen den ermittelten Ergebnissen vom VOSTOK-Eiskern [Raisbeck et al., 1992] aus der Antarktis. In Abbildung 24 sind die ¹⁰Be-Flußdichten des VOSTOK und des SUMMIT Eisbohrkernes gegen das Alter dargestellt.

Abb. 24: Vergleich der atmosphärischen ¹⁰Be Fluβdichten von SUMMIT und VOSTOK (aus Baumgartner [1995])

4 Radionukliduntersuchungen im Schelfgebiet der Laptev See

Die Untersuchungen des Radionuklids ¹⁰Be an Sedimentkernen aus dem Schelfgebiet der Laptev See sollen einen Einblick geben, welchen Einfluß die sibirischen Flußsysteme (z.B. Lena, Yana, Kathanga) auf die ¹⁰Be Bilanz im Arktischen Ozean haben. Hierzu werden die ermittelten ¹⁰Be Depositionsflußdichten in den Schelfsedimenten dem atmosphärischen ¹⁰Be Eintrag in Grönland (Kapitel 3) gegenübergestellt. Zur Bestimmung der ¹⁰Be Depositionsflußdichten (Gl. 14) müssen die Sedimentationsraten der bearbeiteten Sedimentkerne ermittelt werden. Wie in Abschnitt 2.4.3 erläutert erfolgt dies anhand des Verlaufs der ²¹⁰Pb_{ex} Aktivitäten. Weiterhin kann aufgrund des in der Sedimentsäule vorliegenden Aktivitätsungleichgewichts zwischen den Radionukliden ²³⁰Th und ²²⁶Ra eine zeitliche Einteilung der Sedimentkerne aus dem Schelfbereich der Laptev See im Zeitraum der letzten 4.000 - 5.000 Jahre vorgenommen werden. Dies ist von Bedeutung, weil aufgrund der geringen Anteile an biogenen Karbonats in den Sedimentkernen vom Schelfgebiet der Laptev See offmals keine ¹⁴C Datierungen erstellt werden können.

4.1 Datierung (≈ 150 a) von Sedimentkernen aus dem Schelfgebiet der Laptev See mit der ²¹⁰Pb_{ex} Methode

Im folgenden werden die Radionuklidprofile von 12 Sedimentkernen, die während den russisch-deutschen Expeditionen Transdrift II [Kassens, 1994] und Transdrift III [Kassens, 1995] gezogen wurden, näher betrachtet (Abb. 25). Die geographischen Lokationen sind im Anhang A.1 aufgelistet.

Abb. 25: Die Laptev See mit den Lokationen der bearbeiteten Sedimenkerne

4.1.1 Datierung der Sedimentkerne anhand exponentieller Fitgeraden

Die Akkumulations- bzw. Sedimentationsraten werden aus den Steigungen des natürlichen Logarithmus an die ²¹⁰Pb_{ex} Aktivitäten nach Gleichung 12 bzw. 13 abgeleitet. Die ²¹⁰Pb_{ex} Aktivitäten wurden dabei gegen die Massentiefe G oder gegen die Kerntiefe x aufgetragen. In den Abbildungen 26, 27 und 28 sind die ²¹⁰Pb, die ²¹⁴Bi und die ²¹⁰Pb_{ex} Aktivitäten der 12 bearbeiteten Sedimentkerne dargestellt.

Abb. 26: ²¹⁰Pb-, ²¹⁴Bi- und ²¹⁰Pb_{ex} Aktivitäten der Sedimentkerne PM9402-3, PM9417-4, PM9441-4 und PM9442-3.

Abb. 27: ²¹⁰Pb-, ²¹⁴Bi- und ²¹⁰Pb_{ex} Aktivitäten der Sedimentkerne PM9451-7, PM9462-1, PM9463-8 und PM9481-2.

Abb. 28: ²¹⁰Pb-, ²¹⁴Bi- und ²¹⁰Pb_{ex} Aktivitäten der Sedimentkerne PM9482-1, PM94T3-2, KD9529-12 und KD9555-10.

Die durch den exponentiellen Fit ermittelten Akkumulationsraten g cm⁻² a⁻¹, die Trockenraumdichten (pers. Mitteilung H. Kassens) und die berechneten mittleren Sedimentationsraten der untersuchten Sedimentkerne sind in Tabelle 12 aufgelistet. An den Sedimentkernen PM9441-4 und PM9451-7 konnte keine Datierung vorgenommen werden, da keine ²¹⁰Pb_{ex} Aktivitäten aufzufinden sind. Dieser Umstand kann entweder durch Verdünnungsprozesse aufgrund sehr hoher Akkumulationsraten oder durch Bedingungen, die eine Ablagerung von ²¹⁰Pb_{ex} an diesen Lokationen verhindern, bedingt sein.

Lokation	Fit- bereich [g/cm ⁻²]	Akkumulationsrate (R) [g cm ⁻² a ⁻¹]	Trockenraumdichte [g cm ⁻³]	Sedimentationsrate (Sed. Rate) [cm a ⁻¹]
PM9402-3	2 - 7	0,15 ± 0,04	0,95	0,16 ± 0,06
PM9417-4	0-6	0,06 ± 0,03	0,73	0,08 ± 0,04
PM9417-4	0 - 10	0,05 ± 0,02	0,73	0,17±0,06
PM9441-4	whether the ho	keine Datierung	In Abbiidung 22 sint	The end of the order of the
PM9442-3	0 - 8	0,08 ± 0,03	0,62	0,13 ± 0,04
PM9451-7		keine Datierung	1,62	
PM9462-1	0-6	0,06 ± 0,03	0,69	0,09 ± 0,04
PM9462-1	0 - 15	0,17±0,05	0,69	0,25 ± 0,08
PM9463-8	0 - 25	0,24 ± 0,04	0,69	0,35 ± 0,06
PM9481-2	0 -12	0,11±0,05	1,15	0,10 ± 0,05
PM9481-2	0 - 25	0,28 ± 0,06	1,15	0,25 ± 0,06
PM9482-1	0 - 12	0,24 ± 0,06	0,49	0,46 ± 0,08
PM9482-1	0 - 25	0,57±0,08	0,49	1,16 ± 0,10
PM94T3-2	0 - 8	0,32 ± 0,05	0,50	0,64 ± 0,10
KD9529-12	0 - 9 cm	and comments	??	0,15 ± 0,05
KD9555-10	0 - 3 cm	T's "and	??	0,04 ± 0,03

2

5

1

 Tab. 12: Trockenraumdichten, Akkumulations- und Sedimentationsraten der bearbeiteten Sedimentkerne vom Schelfgebiet der Laptev See

Die Akkumulationsraten reichen von (0,06 - 0,57) g cm⁻² a⁻¹ und entsprechen somit Sedimentationsraten von (0,09 - 1,16) cm a⁻¹. Diese Sedimentationsraten sind deutlich höher als die Raten im zentralen Arktischen Ozean von etwa 0,0005 cm a⁻¹ [Schäper,1994]. Die Akkumulationsraten liegen allerdings in derselben Größenordnung wie im Bodensee, wo Werte von (0,05 - 0,20) g cm⁻² a⁻¹ [Bollhöfer et al., 1994] vorliegen.

4.1.2 "Standing Crop" Modell

Zur genaueren Bestimmung der Sedimentationsraten wird das "Standing Crop" Modell hinzugezogen. Hierbei geht man davon aus, daß das gesamte ²¹⁰Pb_{ex} Inventar in der Sedimentsäule den atmosphärischen Eintrag widerspiegelt. Das Gesamtinventar an ²¹⁰Pb_{ex} in der Sedimentsäule wird nach Gleichung 23 wie folgt bestimmt

$$SC := \int_{0}^{\infty} \rho(x) \cdot {}^{210}Pb_{ex}(x) \cdot dx$$

(23)

(24)

mit SC 210

ρ

$$C = Standing Crop [dpm cm-2]= 210Pbex Aktivität [dpm g-1]= Trockenraumdichte [g cm-3]$$

Aus den berechneten Gesamtinventaren können die Depositionsflußdichten von ²¹⁰Pb_{ex} für die jeweiligen Sedimentkerne mit Gleichung 24 abgeleitet werden:

$$F_A := \lambda \cdot SC$$

mit

 F_A = Depositionsflußdichte von ²¹⁰Pb_{ex} [dpm cm⁻² a⁻¹]

 λ = Zerfallskonstante von ²¹⁰Pb [0,031 a⁻¹]

Die ²¹⁰Pb_{ex} Depositionsflußdichten (Tab. 13) liegen im Bereich von (0, 12 - 0, 35) dpm cm⁻² a⁻¹ mit Ausnahme der Sedimentkerne PM9463-8 und PM9482-1, die deutlich größere Flußdichten aufweisen. All diese Werte liegen in der gleichen Größenordnung wie die ermittelten atmosphärischen ²¹⁰Pb Flußdichten, die in Abschnitt 2.1.1.1 aufgelistet sind.

Lokation	Depositionsflußdichte von ²¹⁰ Pb _{ex} (F _A)
Same S	[dpm cm ⁻² a ⁻¹]
PM9402-3	0,35 ± 0,04
PM9417-4	0,19 ± 0,02
PM9442-3	0,22 ± 0,04
PM9462-1	0,30 ± 0,03
PM9463-8	0,60 ± 0,04
PM9481-2	0,32 ± 0,04
PM9482-1	> 0,55
KD9529-12	0,19 ± 0,04
KD9555-10	0,12 ± 0,04

Tab. 13: ²¹⁰Pb Depositionsflußdichten der bearbeiteten Sedimentkerne aus dem Schelfgebiet der Laptev See

4.1.3 Datierung der Sedimentkerne anhand des "Constant Flux" Modells und Vergleich mit der ¹³⁷Cs Datierung

Ausgehend von den ²¹⁰Pb_{ex} Depositionsflußdichten (Tab. 13) können für jeden Sedimentkern mit dem "Constant Flux" Modell (Abschnitt 2.4.3.2) Alters-Tiefenbeziehungen mit Gleichung 20 bestimmt werden. Die Alters-Tiefenbeziehungen der bearbeiteten Sedimentkerne sind in den Abbildungen 30, 31, 32 und 32 dargestellt und in Tabelle 15 aufgelistet. Desweiteren wurden die zerfallskorrigierten ¹³⁷Cs-Aktivitäten (¹³⁷Cs _{zk}) in den Abbildungen 30, 31, 32 und 33 gegen die aus dem Constant Flux Modell ermittelten Alter aufgetragen, da das antrophogene Radionuklid ¹³⁷Cs einen unabhängigen Indikator zur Beurteilung der ²¹⁰Pb_{ex} Datierungen darstellt. Der Verlauf des atmosphärischen Inputs an ¹³⁷Cs wurde von Werner [1995] an Eisbohrkernen aus Grönland ermittelt. In Abbildung 29 sind die zerfallskorrigierten ¹³⁷Cs Aktivitäten von zwei Eisbohrkernen gegen die Altersskala aufgetragen. Die beiden Profile zeichnen sich durch maximale ¹³⁷Cs _{zk} Aktivitäten im Altersbereich um 1965 aus.

Abb. 29: Zerfallskorrigierte ¹³⁷Cs Aktivitäten in Eisbohrkernen aus Grönland (aus Werner [1995]); Lokationen der beiden Eisbohrkerne sind in Abbildung 21 eingezeichnet

Nordausfluß der Lena

Abb.30: Alters-Tiefenbeziehungen aus dem "Constant Flux" Modell und initiale ¹³⁷Cs Aktivitäten gegen die ermittelten Alter aus dem "Constant Flux" Modell

Abb. 31: Alters-Tiefenbeziehungen aus dem "Constant Flux" Modell und initiale 137Cs Aktivitäten gegen die ermittelten Alter aus dem "Constant Flux" Modell

Übrige Regionen

Abb. 32: Alters-Tiefenbeziehungen aus dem "Constant Flux" Modell und initiale ¹³⁷Cs Aktivitäten gegen die ermittelten Alter aus dem "Constant Flux" Modell

Schelfgebiet der Laptev See

Abb. 33: Alters-Tiefenbeziehungen aus dem "Constant Flux" Modell und initiale ¹³⁷Cs Aktivitäten gegen die ermittelten Alter aus dem "Constant Flux" Modell

Im Vergleich zu den ¹³⁷Cs _{zk} Profilen der Eisbohrkerne, die ein ¹³⁷Cs _{zk}. Maximum im Jahre 1965 aufweisen, ist der Verlauf der zerfallskorrigierten ¹³⁷Cs Aktivitäten der Sedimentprofile nicht durch ein derartig scharfes Profil gekennzeichnet. Hohe Aktivitäten liegen im Altersbereich von 1960 bis 1995 vor. Bei einzelnen Kernen (PM9402-3, PM9417-4, PM9462-1, PM9463-8) sind sogar Aktivitäten im Altersbereich um 1935 vorzufinden. Die Verteilung der ¹³⁷Cs _{zk}. Aktivitäten von 1960 bis 1995 kann durch nachträgliche diffusive Transportprozesse von ¹³⁷Cs in der Sedimentsäule herrühren. Es wird angenommen, daß solche Prozesse unter suboxischen bzw. anoxischen Bedingungen ablaufen können [Evans et al., 1983]. Da die Sedimente in der Laptev See schon wenige Zentimeter unterhalb der Sedimentoberfläche suboxische Bedingungen aufweisen [Langner et al., 1995], unterstützt dies die Annahme diffusiver Transportprozesse von ¹³⁷Cs in der Sedimentsäule. Ungeklärt bleibt der ¹³⁷Cs _{zk} Peak im Altersbereich um 1935.

4.1.4 Vergleich der Standing Crops

Eine weitere Möglichkeit, die Sedimentationsraten zu überprüfen, stellt der Vergleich der ²¹⁰Pb_{ex} Standing Crops der untersuchten Sedimentkerne mit dem Standing Crop vom Sedimentkern PM9463-8 dar. Der Sedimentkern PM9463-8 dient als Referenzkern für die Sedimentationsbedingungen in der Laptev See, da er eine hohe Sedimentationsrate aufweist und die Varianz der Fitgerade von den gemessenen ²¹⁰Pb_{ex} Aktivitäten (Abb. 27) im gesamten Kernbereich gering ist.

$$R_{x} = \frac{R_{63}}{SC_{63}} \cdot SC_{x}$$

(25)

mit	benegiled researchers
R ₆₃	= mittlere Akkumulationsrate des Sedimenkernes PM 9463-8 [g cm ⁻² a ⁻¹]
Rx	= mittlere Akkumulationsrate des Sedimentkernes x [g cm ⁻² a ⁻¹]
SC ₆₃	= Standing Crop des Sedimentkernes PM 9463-8 [dpm cm ⁻²]
SC _x	= Standing Crop des Sedimentkernes x [dpm cm ⁻²]

4.1.5 Vergleich der ermittelten Sedimentationsraten

46

Zusammenfassend sind die Sedimentationsraten der jeweiligen Sedimentkerne, die anhand von exponentiellen Fits an die ²¹⁰Pb_{ex} Aktivitäten, dem "Contant Flux" Modell und dem Vergleich der Standing Crops ermittelt wurden, in Tabelle 14 aufgelistet. Die Sedimentationsraten liegen in derselben Größenordnung, weisen allerdings geringfügige Unterschiede auf.

Schelfgebiet der Laptev See

Sed.rate [Fitgerade]	Sed.rate [Constant Flux]	Sed.rate [Standing Crop]
[cm a ⁻¹]	[cm a ⁻¹]	[cm a ⁻¹]
0,16 ± 0,06	0,16±0,05	0,15 ± 0,03
0,17±0,06	0,19 ± 0,04	0,11±0,03
0,13 ± 0,04	0,14 ± 0,04	0,13 ± 0,03
0,25 ± 0,08	0,27 ± 0,06	0,17±0,04
0,35±0,06	0,43 ± 0,04	0,35 ±0,06
0,25 ± 0,06	0,24 ± 0,05	0,12 ± 0,03
0,15±0,05	0,15 ± 0,05	0,11 ±0,03
0,04 ± 0,03	0,21 ± 0,10	0,07±0,04
	Sed.rate [Fitgerade] $[cm a^{-1}]$ $0,16 \pm 0,06$ $0,17 \pm 0,06$ $0,13 \pm 0,04$ $0,25 \pm 0,08$ $0,35 \pm 0,06$ $0,25 \pm 0,06$ $0,15 \pm 0,05$ $0,04 \pm 0,03$	Sed.rate [Fitgerade]Sed.rate [Constant Flux][cm a^{-1}][cm a^{-1}] $0,16 \pm 0,06$ $0,16 \pm 0,05$ $0,17 \pm 0,06$ $0,19 \pm 0,04$ $0,13 \pm 0,04$ $0,14 \pm 0,04$ $0,25 \pm 0,08$ $0,27 \pm 0,06$ $0,35 \pm 0,06$ $0,43 \pm 0,04$ $0,25 \pm 0,06$ $0,24 \pm 0,05$ $0,15 \pm 0,05$ $0,15 \pm 0,05$ $0,04 \pm 0,03$ $0,21 \pm 0,10$

Tab. 14: Ermittelte Sedimentationsraten anhand exponentieller Fits an die ²¹⁰Pb_{ex} Aktivitäten, dem "Contant Flux" Modell und dem Vergleich der Standing Crops

4.1.6 Betrachtungen der ¹³⁷Cs und ²¹⁰Pb Depositionsflußdichten im Schelfgebiet der Laptev See

4.1.6.1 ¹³⁷Cs Flußdichten in den bearbeiteten Sedimentkernen

An fünf Sedimentkernen aus der Laptev See wurden die Inventare (Gl. 23) und die ¹³⁷Cs Depositionsflußdichten (Gl. 24) bestimmt. Die ¹³⁷Cs Flußdichten (Tab. 15) weisen Werte von (0,06 - 0,14) dpm cm⁻² a⁻¹ auf.

Lokation	¹³⁷ Cs Depositionsflußdichte [dpm cm ⁻² a ⁻¹]
PM9402-3	0,09 ± 0,04
PM9417-4	0,06 ± 0,02
PM9462-1	0,08 ±0,03
PM9463-8	0,14 ± 0,05
PM9481-2	0,06 ±0,02

Tab. 15: 137 Cs Depositionsflußdichten im Schelfgebiet der Laptev See

Die ¹³⁷Cs Flußdichten in der Laptev See sind etwas geringer als in der Kara See, wo Werte von (0,09 - 0,34) dpm cm⁻² a⁻¹ [IAEA-MEL, 1996] vorliegen. Trägt man die ¹³⁷Cs Flußdichten gegen die Sedimentationsrate der jeweiligen Sedimentkerne auf (Abb. 34), so zeigt sich eine lineare Abhängigkeit der beiden Größen.

Abb. 34: ¹³⁷Cs Depositionsflußdichten der bearbeiteten Sedimentkerne gegen die entsprechenden Sedimentationsraten aufgetragen

4.1.6.2 ²¹⁰Pb Flußdichten im Schelfgebiet der Laptev See

Im Schelfgebiet der Laptev See erfolgt die Zufuhr von ²¹⁰Pb_{ex}, wie in Abschnitt 2.1.1.2 dargestellt, hauptsächlich durch den atmosphärischen Eintrag und der Zufuhr von ²¹⁰Pb aus den umliegenden Gebieten, während die Bildung von ²¹⁰Pb_{ex} in der Wassersäule durch den Zerfall von ²²⁶Ra aufgrund der geringen Wassertiefen von etwa 50 m keinen Beitrag leistet. Der Abtransport von ²¹⁰Pb_{ex} aus dem Untersuchungsgebiet erfolgt im wesentlichen durch die Sedimentation und den Sedimentexport, während der radioaktive Zerfall von ²¹⁰Pb_{ex} in der Wassersäule, aufgrund der geringen Wassertiefe und der kurzen Verweilzeit von ²¹⁰Pb_{ex} in der Depositionsflußdichten liefert demzufolge eine Aussage über den Import bzw. Export von Sedimentmaterial (Sedimentumlagerung). Während die Depositionsflußdichten im Rahmen

dieser Arbeit bestimmt wurden, gibt es bis dato keine Messungen des atmosphärischen ²¹⁰Pb Eintrags im Gebiet der Laptev See. Bisherige weltweite Messungen atmosphärischer ²¹⁰Pb_{ex} Flußdichten ergaben Werte von 0,15 bis 1,5 dpm cm⁻² a⁻¹ [Turekian et al., 1977]. In unseren weiteren Betrachtungen gehen wir, in Analogie zu einem atmosphärischen Radionuklidmodell von Rehfeld [1994], von einem atmosphärischen ²¹⁰Pb Fluß von (0,6 ± 0,1) dpm cm⁻² a⁻¹ aus.

Aus dem Verhältnis des atmosphärischen ²¹⁰Pb Flusses (F_P) und des Depositionsflusses (F_A) können, wenn Scavenging Prozesse vernachlässigbar sind, Aussagen über Focusing oder Winnowing Prozesse im Untersuchungsgebiet getroffen werden. Die Ergebnisse sind in Abbildung 35 dargestellt und in Tabelle 16 aufgelistet. Mit Ausnahme des Sedimentkernes PM9463-8 weisen alle Kerne F_A/F_P Verhältnisse kleiner 1 auf, was auf einen Nettoexport von ²¹⁰Pb_{ex} mit Sedimentpartikeln an den bearbeiteten Probenlokationen hinweist.

Abb. 35: ²¹⁰Pb Depositionsflußdichten der bearbeiteten Sedimentkerne gegen die entsprechenden Sedimentationsraten aufgetragen

Jedoch hängt diese Interpretation sehr empfindlich von der genauen Kenntnis des atmosphärischen ²¹⁰Pb Eintrages ab. Würde im Bereich der Laptev See z.B. ein atmosphärischer ²¹⁰Pb Eintrag von 0,3 dpm cm⁻² a⁻¹ vorliegen, zeichnet sich der Sedimentkern PM9463-8 durch Sedimentakkumulation aus, während an den anderen Lokationen keine Sedimentumlagerungen vorzufinden wären.

Lokation	Depositionsflußdichte von ²¹⁹ Pb _{ex}	Fa/Fp
	[dpm cm ⁻² a ⁻¹]	
PM9402-3	0,35 ± 0,04	$0,58 \pm 0,04$
PM9417-4	0,19 ± 0,04	0,32 ± 0,04
PM9442-3	0,22 ± 0,04	0,37 ± 0,06
PM9462-1	0,30 ± 0,04	0,50 ± 0,03
PM9463-8	0,60 ± 0,04	1,00 ± 0,08
PM9481-2	0,32 ± 0,04	0,53 ± 0,03
KD9529-12	0,19±0,04	0,32 ± 0,04
KD9555-10	0,12 ± 0,04	$0,20 \pm 0,04$

Tab. 16: ²¹⁰ Pb Depositionsflußdichten und F_A/F_P Verhältnisse der bearbeiteten Sedimentkerne

4.2 Datierung (4000 - 5000 a) von Sedimentkernen aufgrund des Aktivitätsungleichgewichts zwischen den Radionukliden²³⁰Th und²²⁶Ra

Das vorliegende Aktivitätsungleichgewicht soll am Sedimentkern PM9462-1/4 näher betrachtet werden, da in diesem Fall sowohl ²¹⁰Pb, ²¹⁴Bi und ²³⁰Th Profile als auch ¹⁴C Alter vorliegen. Die ²²⁶Ra Aktivitäten konnten nicht direkt gemessen werden, sondern wurden über das Tochternuklid ²¹⁴Bi (²¹⁰Pb_{terr}), daß sich aufgrund der kurzen Halbwertszeit von 19,7 Minuten mit ²²⁶Ra im Aktivitätsgleichgewicht befindet, bestimmt. In Abbildung 36 sind die ²¹⁰Pb_{terr} (²²⁶Ra), die ²³⁰Th Aktivitäten sowie die ¹⁴C Alter (pers. Mitt. H. Bauch) aufgetragen.

Abb. 36: ²³⁰Th und ²²⁶Ra Aktivitäten des Sedimentkernes PM9462-1 4 gegen die Kerntiefe; desweiteren sind drei ¹⁴C Alter eingetragen

Bei dieser Ungleichgewichtsdatierung bedient man sich der Tatsache, daß sich bei einem angenommenen konstanten initialen ²³⁰Th zu ²²⁶Ra Aktivitätsungleichgewichts die ²²⁶Ra Aktivität im Laufe der Jahre mit der Halbwertszeit von ²²⁶Ra der Aktivität von ²³⁰Th annähert. Große Unsicherheiten bei der Bestimmung des Aktivitätsungleichgewichts zwischen den Radionukliden ²³⁰Th und ²²⁶Ra stellen jedoch die großen statistischen Fehler der einzelnen Messpunkte dar. Ein Meßfehler von 10% (Abb. 37) führt dazu, daß ab etwa 2000 Jahren ein scheinbares Aktivitätsgleichgewicht aufgefunden wird. Präzisere Messungen (Abb. 38) der Aktivitäten (²³⁰Th, ²²⁶Ra massenspektrometrisch, Fehler 1%) ermöglichen hingegen eine genauere Bestimmung der Kerntiefe, in der das Aktivitätsgleichgewicht vorliegt.

Abb. 37: 10% Fehler der Einzelmessungen der 230 Th und 226 Ra Aktivitäten gegen Alter

Schelfgebiet der Laptev See

Abb. 38: 2% Fehler der Einzelmessungen der 230 Th und 226 Ra Aktivitäten gegen Alter

In Abb. 39 ist der Aktivitätsüberschuß von ²³⁰Th gegenüber ²¹⁴Bi (²²⁶Ra) vom Sedimentkern PM 9462-1/4 gegen die Massentiefe aufgetragen. Mit der Annahme eines konstanten Aktivitätsungleichgewicht bei der Ablagerung in den Sedimenten kann aus dem exponentiellen Zerfall mit der Kerntiefe eine mittlere Sedimentationsrate bestimmt werden. Aus der Steigung der exponentiellen Fitgerade wird eine Akkumulationsrate (bzw. Sedimentationsrate) abgeleitet. Es ergibt sich eine mittlere Sedimentationsrate von 0,05 ± 0,03 cm a⁻¹. Diese Rate stimmt sehr gut mit der mittleren Sedimentationsrate von 0,055 cm a⁻¹, die anhand der ¹⁴C Alter bestimmt wurde, überein.

Abb. 39: (²³⁰Th-²¹⁴Bi) Profil des Sedimentkernes PM9462-1.4 gegen die Massentiefe

An zwei weiteren Sedimentkernen, PM9417-4 (Abb. 42) und PM9463-8 (Abb. 40), aus dem Nordausfluß der Lena wurden ²³⁰Th Aktivitäten gemessen und mit den ²¹⁴Bi (²²⁶Ra) Aktivitäten in Beziehung gesetzt.

50

2

us

en et. die der Pb, em von nen

Während in den oberen 35 cm die ²¹⁴Bi (²²⁶Ra) Aktivitäten bei etwa 1,00 \pm 0,20 dpm g⁻¹ und die ²³⁰Th-Aktivitäten bei etwa 2,25 \pm 0,20 dpm g⁻¹ liegen, zeichnet sich in 43,5 cm Kerntiefe eine entscheidende Änderung ab. In diesem Kernbereich erhöht sich die ²¹⁴Bi-Aktivität auf 1,75 \pm 0,14 dpm g⁻¹. Berücksichtigt man diesem Anstieg, kann der Tiefe von 43,5 cm ein Alter von 1700 \pm 400 Jahren zugeordnet werden. Demzufolge wurden die obersten 35 cm in den letzten 350 \pm 100 Jahren abgelagert und es schließt sich ein Alterssprung von etwa 1300 Jahren an.

Abb. 41: 230 Th und 214 Bi Aktivitäten des Sedimentkerns PM9463-8 gegen die Kerntiefe

Bei diesem Sedimentkern sind über den gesamten bearbeiteten Kernbereich konstante ²³⁰Th Aktivitäten von 2,50 ± 0,20 dpm g⁻¹ und konstante ²¹⁴Bi Aktivitäten von 1,00 ± 0,20 dpm g⁻¹ aufzufinden (Abb. 41). Das bedeutet, daß dieser Sedimentkern im betrachteten Kernbereich mit dieser Methode nicht datierbar ist. Am Sedimentkern PM9463-4 VC wurden von Erlenkeuser (Leibnitz Labor Kiel) ²¹⁰Po (\equiv ²¹⁰Pb) Aktivitäten bestimmt. Das Profil (Abb. 42) zeigt, daß sich ²¹⁰Po Aktivitäten ab etwa 70 cm mit dem Tochternuklid ²¹⁴Bi (1 dpm g⁻¹) im Aktivitätsgleichgewicht befinden und anschließend anwachsen. Bei etwa 165 cm beträgt die ²¹⁰Po Aktivität 1,45 dpm g⁻¹. Da bisher keine ²³⁰Th_{ex} Aktivitäten am Vibrocore-Kern gemessen wurden, können keine Aussagen über den Verlauf des Aktivitätsungleichgewichts

zwischen ²³⁰Th und ²²⁶Ra getroffen werden. Es scheint jedoch auch bei diesem Kern ein deutlicher Alterssprung in dem Kernbereich von 140 bis 160 cm vorzuliegen.

Abb. 42: 210 Po Aktivitäten des Sedimentkernes PM9463-4 (Erlenkeuser, pers. Mitt.)

Detailliertere Betrachtungen der Radionuklidprofile aus dem Schelfbereich der Laptev See Um die Ursachen für das vorliegende Aktivitätsungleichgewicht zu klären, werden im folgenden die Radionuklidprofile des Sedimentkernes PM9463-8 und die Elementprofile von 6 Sedimentkernen, die repräsentativ für die Laptev See sind, näher betrachtet. Hierbei wurden am Sedimentmaterial die Elemente Mangan, Barium und Eisen anhand der Atom-Absorptionsspektrometrie bestimmt. Das chemische Aufschlußverfahren des Probenmaterials ist im Anhang beschrieben.

Am Sedimentkern PM9463-8 wurden die Radionuklide ²³⁸U, ²³⁰Th (α -Spektroskopie) und ²³⁴Th, ²¹⁰Pb und ²¹⁴Bi (γ -Spektroskopie) gemessen. Wie in Abbildung 43 dargestellt, erkennt man ein Aktivitätsungleichgewicht zwischen dem Mutternuklid ²³⁰Th und dem Tochternuklid ²¹⁴Bi. Der Aktivitätsunterschied beträgt etwa 1,5 dpm g⁻¹. Die ²³⁸U und ²³⁰Th Aktivitäten scheinen, abgesehen von den obersten 5 cm Kerntiefe, ein Aktivitätsgleichgewicht aufzuweisen.

Abb. 43: ²³⁸U,²³⁰Th, ²¹⁴Bi und ²¹⁰Pb Aktivitäten des Sedimentkernes PM9463-8 gegen Kerntiefe

Zum besseren Verständnis der Radionuklidverteilungen in der Sedimentsäule ist es notwendig einen Einblick in die geochemischen Bedingungen der Sedimente zu erhalten. Langner [1995] hat an Sedimentkernen aus der Laptev See die Konzentrationen an Mangan, Eisen und Sulfat

52

in Porenwässern bestimmt. Durch diese Untersuchungen wurde gezeigt, daß in der Laptev See deutliche Änderungen der Redoxbedingungnen in der Sedimentsäule vorzufinden sind. Schon wenige Zentimeter unterhalb der Sedimentoberfläche ist ein Übergang zwischen oxischen und suboxischen Bedingungen auszumachen. Während ²³⁰Th und ²¹⁴Bi durch Änderungen der Redoxbedingungen in der Sedimentsäule nicht beeinflußt werden, reagieren die Uranisotope, wie in Abschnitt 2.1.2.3 dargestellt, sensibel auf die äußeren Bedingungen. Die ermittelten Mn/Al Verhältnisse, die in Abbildung 44 präsentiert sind, geben dabei Aufschluß, ob oxische oder suboxische Bedingungen vorliegen. Durch diese Betrachtungen könnte demzufolge nur das Ungleichgewicht zwischen ²³⁰Th und ²³⁸U, nicht aber das Ungleichgewicht zwischen ²³⁰Th und ²¹⁴Bi geklärt werden.

Mn/Al- Verhältnisse

t

Während Mangan unter suboxischen bzw, anoxischen Bedingungen in gelöster Phase (Mn²⁺) vorliegt, wird es am Übergangsbereich suboxisch/oxisch wieder aufoxidiert (MnO₂) und im Sediment fixiert. In der Abbildung 44 sind die Mn/Al Profile und das terrigene Mn/Al Verhältnis von 0,0044 eingezeichnet. Mn/Al Verhältnisse größer als die terrigene Komponente werden dabei mit oxischen Bedingungen, Verhältnisse, die der terrigenen Komponente entsprechen mit sub- bzw. anoxischen Bedingungen gleichgesetzt. Der oxische Bereich ist demzufolge bei den Sedimentkernen PM9402-3, PM9417-4, PM9463-8 und PM9482-1 in den obersten 0 - 4 cm vorzufinden. Bei den Sedimentkernen PM9462-1 und PM9481-2 aus dem östlichen Gebiet der Laptev See erstreckt sich dieser Bereich in eine Tiefen größer 15 cm. Diese Ergebnisse sind im Einklang mit den Ergebnissen von Langner [1995]. Der Fehler der Einzelmessung liegt bei 10%.

Abb. 44: Mn/Al Verhältnisse der bearbeiteten Sedimentkerne aus dem Schelfgebiet der Laptev See

Schelfgebiet der Laptev See

Ba/Al-Verhältnisse

Die Ba/Al Verhältnisse von Sedimentkernen aus der Laptev See, die im Rahmen dieser Arbeit bestimmt wurden, geben einen Einblick über die Produktivitätsbedingungen in der Wassersäule. Wie bei Rutsch et al. [1995] gezeigt, führen hohe Produktivitäten zu erhöhten Radionuklidflußdichten in die Sedimente. Der biogene Anteil an Barium kann mit der Gleichung 26 berechnet werden. Hierbei geht man von einem terrigenen Ba/Al Verhältnis im Bereich von 0,005 bis 0,01 [Rutsch et al., 1995; Dymond, 1992; Wedepohl, 1995] aus.

$$Ba_{bio} = Ba_{gesamt} - (Al_{gesamt} \cdot [(Ba/Al)_{terr}])$$
(26)

Die Ba/Al Verhältnisse aller Sedimentkerne (Abb. 45) spiegeln die terrigene Komponente wieder und deuten auf eine äußerst geringe oder gar nicht vorhandene Produktivität im Schelfgebiet der Laptev See hin.

Betrachtungen der Element- und Radionuklidprofile des Sedimentkernes PM9463-8

Bei dem Sedimentkern PM9463-8 kommt es nahe der Sedimentoberfläche zu einer Änderung der Redoxbedingungen. Das Mn/Al Verhältnis (Abb. 44) deutet auf oxische Bedingungen in den oberen 3 cm und suboxischen bzw. anoxischen Bedingungen in den tieferen Kernabschnitten hin. Unter den gegebenen äußeren Bedingungen kann es im suboxischen bzw. anoxischen Bereich zu einer Anreicherung an authigenem Uran kommen. Im oxischen Bereich (0 - 3 cm) liegen beim PM9463-8²³⁰Th Aktivitäten von 3,00 ± 0,15 dpm g⁻¹ vor und ²³⁸U Aktivitäten von 2,00 ± 0,05 dpm g⁻¹. Hieraus ergibt sich ein terrigenes ²³⁸U/²³²Th-Verhältnis vont 0,73 ± 0,10. Dieses Verhältnis steht im Einklang mit dem von Wedepohl [1995] bestimmten Wert von 0,75 ± 0,20. Die ²³⁰Th_{ex} Aktivitäten können mit Gleichung 27, die an dieser Stelle nochmals aufgeführt wird, berechnet werden.

$$^{230}\text{Th}_{ex} = ^{230}\text{Th}_{gesamt} - (0,73 * ^{232}\text{Th})$$
 (27)

Hieraus ergibt sich in 1,5 cm Kerntiefe eine ²³⁰Th_{ex} Aktivität von 1,00 \pm 0,30 [dpm g⁻¹]. Die ²³⁰Th_{ex} Aktivitäten für den gesamten bearbeiten Kernbereich vom PM9463-8 wurden für die terrigenen ²³⁸U/²³²Th Aktivitätsverhältnisse von 0,50 und 0,75 ermittelt. Die terrigenen ²³⁸U Aktivitäten werden durch folgende Gleichung 28 berechnet und in den Abbildungen 46 und 47 dargestellt.

$$^{238}U_{\text{terr}} = ^{238}U_{\text{gesamt}} - (0,73 \cdot ^{232}\text{Th})$$
 (28)

Abb. 46: Berechnete terrigene ²³⁸U Aktivitäten mit dem terrigenen ²³⁸U/²³²Th-Verhältnis von 0,75 beim Sedimentkern PM9463-8

Abb. 47: Berechnete terrigene ²³⁸U Aktivitäten mit dem terrigenen ²³⁸U/²³²Th-Verhältnis von 0,50 beim Sedimentkern PM9463-8

Die terrigenen ²³⁸U Aktivitäten weisen bei einem Verhältnis von 0,75 einen Wert von 1,75 dpm g⁻¹ und bei einem angenommenen Verhältnis von 0,50 einen Wert von 1,2 auf. Aus dem authigenem ²³⁸U Profil, die nach Gleichung 8 ermittelt wurden, und den Mn/Al Verhältnissen (Abb. 48) läßt sich abbleiten, daß Mangan hauptsächlich in der oxischen Schicht eingelagert wird, während kein authigenes ²³⁸Uran in in diesem Kernabschnitt vorliegt. Im suboxischen bzw. anoxischen Bereich liegen hohe Anteile an authigenem ²³⁸U vor, wohingegen das

gemessene Mn/Al Verhältnis dem terrigenen Verhältnis entspricht. Die beiden Profile weisen demzufolge einen Verlauf auf, wie er unter den vorherrschenden Bedingungen gefordert wird.

Abb. 48: Authigener ²³⁸U Anteil und Mn/Al Profil des Sedimentkernes PM9463-8

Weiterhin konnten nach Gleichung 5 die ²³⁰Th_{ex} Aktivitäten (Abb. 49) für die beiden angenommenen terrigenen ²³⁸U/²³²Th Verhältnisse bestimmt werden.

Abb. 49: Berechnete ²³⁰Th_{ex} Aktivitäten für unterschiedliche terrigene ²³⁰Th Anteile des Sedimentkernes PM9463-8 (mit $A = {}^{238}U/{}^{232}Th$ Verhältnis)

Hieraus würden sich ²³⁰Th_{ex} Depositionsflußdichten von 220 oder 400 dpm cm⁻² a⁻¹ ergeben. Diese Flußdichten liegen etwa um das 1500 bis 3000 fache über der Produktionsrate im Schelfbereich der Laptev See und erscheinen nicht als realistisch. Aus diesem Grund wurden die Aktivitäten der Radionuklide ²³⁰Th, ²³²Th, ²³⁸U, ²³⁴U, ²¹⁴Bi, ²¹⁰Pb am Gesteinsmaterial aus der unmittelbaren Nähe zur Lena Nordenskiöld Hütte gemessen. Diese Aktivitäten sind in Tabelle 17 aufgelistet.

4.3 ¹⁰Be Depositionsflußdichten im Schelfgebiet der Laptev See

Die ¹⁰Be Depositionsflußdichten wurden nach Gleichung 14 unter Verwendung der Sedimentationsraten (Tab. 14) berechnet. Für die Sedimentationsraten wurden hierbei sowohl die ermittelten Werte aus dem "Constant Flux" Modell als auch aus dem Vergleich der Standing Crops eingesetzt. In Tabelle 18 sind die ¹⁰Be Konzentrationen, die Sedimentationsraten und die berechneten ¹⁰Be-Depositionsflußdichten der bearbeiteten Sedimentkerne aufgelistet.

Lokation	Kerntiefe	¹⁰ Be [10 ⁸ Atome g ⁻¹]	Sedimentationsrate	¹⁹ Be- Depositiosflußdichte [10 ⁶ Atome cm ⁻² a ⁻¹]
PM9402-3	0 - 1	$2,95 \pm 0,23$	0,16±0,06	44,8±17,0
PM9402-3	14 - 16	3,28 ± 0,16	0,16±0,06	49,8 ± 19,0
PM9402-3	32 - 36	3,53 ± 0,14	0,16 ± 0,06	53,6 ± 20,0
PM9417-4	0 - 1	4,62 ± 0,32	0,11 ± 0,03	37,1 ± 10,5
PM9417-4	0 - 1	4,62 ± 0,32	0,19 ± 0,04	64,1 ± 15,0
PM9451-7	1-2	0,56 ± 0,11	ing a separate of the second s	D.A. Anine
PM9462-1	0 - 1	3,53 ± 0,16	0,17 ± 0,04	41,4 ± 10,0
PM9462-1	14 - 16	4,49 ± 0,21	0,17±0,04	52,6 ± 13,0
PM9462-1	0 - 1	3,53 ± 0,16	0,27 ± 0,06	65,7 ± 15,0
PM9462-1	14 - 16	4,49 ± 0,21	0,27 ± 0,06	83,6 ± 20,0
PM9463-8	1 - 2	3,93 ± 0,30	0,35 ±0,06	94,9 ± 18,0
PM9463-8	14 - 16	$4,02 \pm 0,31$	0,35 ±0,06	97,1 ± 18,5
PM9463-8	32 - 36	4,78±0,23	0,35 ± 0,06	115,4 ± 20,5
PM9463-8	1 - 2	3,93 ± 0,30	0,43 ± 0,04	116,6 ± 15,0
PM9463-8	14 - 16	4,02 ± 0,31	$0,43 \pm 0,04$	119,3 ± 15,0
PM9463-8	32 - 36	4,78±0,23	0,43 ± 0,04	142,0 ±15,0
PM9481-2	1 - 2	1.87±0,19	0.12 ± 0.03	25.8 ± 7.0
PM9481-2	14 - 16	$1,99 \pm 0,10$	0,12 ±0,03	27,5 ± 7.0
PM9481-2	1-2	1,87±0,19	$0,24 \pm 0.05$	51,6 ± 12,0
PM9481-2	14 - 16	1,99 ± 0,10	0,24 ± 0,05	55,0 ± 12,0
PM9482-1	0 - 1	$4,10 \pm 0.44$	0,46 ± 0.08	94,3 ± 20.0
PM9482-1	0 - 1	4,10±0,44	1,16±0,10	237,8 ± 34,0

Tab. 18: ¹⁰Be Konzentrationen, Sedimentationsraten und die berechneten ¹⁰Be Depositionsflußdichten

Diese ¹⁰Be Flußdichten weisen Werte zwischen $(25 - 240) \cdot 10^6$ at cm⁻² a⁻¹ auf und sind um bis zu zwei Größenordnungen höher als der erwartete rezente atmosphärische Eintrag im Arktischen Ozean von $(0, 2 - 0, 4) \cdot 10^6$ at cm⁻² a⁻¹ und in anderen Regionen von $(0, 2 - 1, 5) \cdot 10^6$

230 Th	²³² Th	²³⁸ U	234Th	²³⁴ U	AU
[dpm g ⁻¹]					
2,17 ± 0,10	2,85 ± 0,12	1,76 ± 0,15	1,76 ± 0,10	1,76 ± 0,15	1,00 ±0,09

²¹⁴ Bi	²¹⁰ Pb	²³⁸ U/ ²³² Th
[dpm g ⁻¹]	[dpm g ⁻¹]	LA1/
1,49 ± 0,05	1,73 ± 0,08	0,60 ± 0,05

Tab. 17: Gemessene Radionuklidaktivitäten im Sedimentmaterial in der Nähe der Lena Nordenskiöld Hütte (Yakutien)

Wie man in Tabelle 17 erkennt, befinden sich die Radionuklide ²³⁸U und ²³⁴U im Aktivitätsgleichgewicht. Weiterhin ist auch ein Aktivitätsgleichgewicht zwischen den Radionukliden ²³⁸U, ²³⁴Th und ²¹⁰Pb im terrigenen Material zu sehen. Deutlich erkennbar sind auch hier die vorliegenden Aktivitätsungleichgewichte zwischen ²³⁰Th und den Radionukliden ²³⁸U und ²¹⁴Bi. Geht man beim Sedimentkern PM9463-8 vom ermittelten terrigenen ²³⁸U/²³²Th Verhältnis von 0,60 \pm 0,05 aus, spiegeln die ermittelten Radionuklidaktivitäten (Abb. 50) die Verhältnisse im Gesteinsmaterial wider.

Abb. 50: Berechnete terrigene²³⁸U Aktivitäten mit dem terrigenen²³⁸U/²³²Th-Verhältnis von 0,60 beim Sedimentkern PM9463-8

Es muß deshalb davon ausgangen werden, daß die berechneten ²³⁰Th_{ex} Aktivitäten nicht durch Adsorption von ²³⁰Th aus der Wassersäule sondern hauptsächlich durch das Ungleichgewicht zwischen den ²³⁴U und ²³⁰Th Aktivitäten im terrigenen Material verursacht wird. Die Ursachen für dieses Ungleichgewicht und das Aktivitätsungleichgewicht zwischen ²³⁰Th und ²¹⁴Bi kann in dieser Arbeit nicht geklärt werden.

Schelfgebiet der Laptev See

at cm⁻² a⁻¹ [Stanzick, 1996; Monaghan, 1985/86; Lao et al., 1992 a/b; Southon et al., 1987; Finkel et al., 1977]. Demzufolge kann der atmosphärische Eintrag im Bereich der Laptev See vernachlässigt werden. Diese Flußdichten deuten auf eine erhöhte Zufuhr von kontinentalem ¹⁰Be durch die in die Laptev See mündenden Flüsse hin. In Abbildung 51 erkennt man, daß eine Abhängigkeit zwischen den ¹⁰Be Konzentrationen und den ²²⁸Ac Aktivitäten, die ein Maß für die mit den Flüssen eingetragenen Partikelmengen darstellen, vorliegt.

Abb. 51: ¹⁰Be Konzentrationen gegen die entsprechenden ²²⁸Ac Aktivitäten von Sedimentproben aus dem Schelfgebiet der Laptev See

Zeitlicher Verlauf der ¹⁰Be-Depositionsflußdichten vom Sedimentkern PM9462-1/4 Neben der räumlichen Bestimmung der ¹⁰Be-Depositionsflußdichten kann anhand der vorliegenden Datierung des Sedimentkernes PM9462-1/4 auch eine zeitliche Auflösung der ¹⁰Be-Depositionsflußdichten in den letzten 7000 Jahren erfasst werden. Die Berechnung der ¹⁰Be-Flußdichten erfolgt mit Gleichung 14, unter Berücksichtigung der in Abschnitt 4.2 ermittelten konstanten Sedimentationsrate von 0,05 [cm a⁻¹]. In Abbildung 52 sind die ¹⁰Be-Depositionsflußdichten vom Sedimentkern PM9462-1/4 und der rezente atmosphärische ¹⁰Be Eintrag dargestellt. Es zeigt sich, daß in den letzten 7000 Jahren die Depositionsflußdichten deutlich über dem atmosphärischen Eintrag lagen und demzufolge auf einen Eintrag von kontinentalem ¹⁰Be mit den Flußsystemen im gesamten Zeitintervall geschlossen werden kann.

2 11

Abb. 52: Berechnete ¹⁰Be Depositionsflußdichten des Sedimentkernes PM9462-1/4 gegen die Kerntiefe; desweiteren sind vier ¹⁴C Alter eingezeichnet

5 Datierung von Sedimentkernen aus hohen Breiten

Da eine konventionelle Datierung von Sedimentkernen mit der δ^{18} O-Stratigraphie im Gebiet hoher nördlicher Breiten aufgrund der geringen Anteile an archiviertem biogenem Karbonat (Foraminiferen) in den Sedimenten und/oder der Verfälschung des δ^{18} O-Signals durch Schmelzwassereinflüsse [Köhler und Spielhagen, 1990] oft nicht möglich ist, müssen alternative Datierungsmethodiken erschlossen werden. Die Datierung dieser Sedimentkerne anhand der ²³⁰Thex und ¹⁰Be Radionuklidprofile sowie der ESR Methode soll in dieser Arbeit etabliert werden. Bis dato erfolgt die Bestimmung von Akkumulationsraten der bearbeiteten Sedimentkerne aus dem Nordpolarmeer anhand von ¹⁴C-Altern, Aminosäurendatierungen und der Bio- bzw. Magnetostratigraphie [Linkova, 1969; Finkel and Krishnaswami, 1977; Clark et al., 1984, 1985; Morris et al., 1985; Aksu and Mudie, 1985; Zahn et al., 1985; Clark et al., 1986; Herman, 1989; Darby et al., 1989; Mienert et al., 1990; Nowaczyk, 1991; Nowaczyk and Baumann, 1992; Nowaczyk et al., 1994; Stein et al., 1994 b; Henrich and Baumann, 1994; Ishman et al., 1996]. Während mittels der ¹⁴C-Methode der Altersbereich der letzten 40.000 Jahre erfaßt wird, ermöglicht die Magnetostratigraphie die zeitliche Einteilung der Sedimentkerne im Bereich mehrerer Millionen Jahre. Weiterhin soll im Abschnitt 5.5 gezeigt werden, ob es möglich ist, Sedimentkerne aus der Antarktis analog zur Arktis mit Hilfe der Radionuklide 230 They und 10 Be zu datieren.

5.1 Datierungsmethoden in hohen Breiten

5.1.1 ¹⁴C Alter

Nørgaard [1996] ermittelte an mehreren Sedimentkernen aus dem zentralen Arktischen Ozean¹⁴C Alter. Hierbei wurden an den GKG-Sedimentkernen PS2185-3 und PS2200-5, die eine wichtige Rolle bei unseren Radionukliduntersuchungen spielen, für die letzten 30 ka Sedimentationsraten von 0.55 ± 0.05 cm ka⁻¹ bzw. von 0.35 ± 0.05 cm ka⁻¹ bestimmt.

5.1.2 Magnetostratigraphie

Von Nowaczyk [1991] und Frederichs [1995] wurde eine hochauflösende Magneto stratigraphie für Sedimentkerne aus hohen nördlichen Breiten erstellt. Für die zeitlicht Einteilung der aufgefundenen Polaritätsereignisse standen unabhängige chronostratigraphische Untersuchungen (δ^{18} O-Stratigraphie, Verteilungsmuster von Coccolithen vergesellschaftungen, ²³⁰Th Datierungen) an Sedimentkernen aus der Framstrasse zu. Verfügung. Die aus diesen Untersuchungen abgeleitete Polaritäts-Zeit-Skala der letzten 500.000 Jahre [Nowaczyk, 1991] ist in Abbildung 53 a dargestellt. Abbildung 53 b zeigt di Polaritäts-Zeit-Skala nach Berggren et al. [1985] für den Zeitbereich der letzten 5 Millionen Jahre.

Abb. 53 a) Polaritätszeitskala für die geomagnetische Bruhnes Chron (aus Nowaczyk [1991])

Utter [ka]

Abb. 53 b) Polaritätszeitskala der letzten 5.000.000 Jahre abgeleitet aus magetischen Anomalien des Ozeanbodens (aus Cande and Kent [1992])

5.1.3 Biostratigraphie

5

1

)-10-11-11-

en

lie

en

An ausgewählten Sedimentkernen der ARK IV/3 Expedition wurden Untersuchungen zur Häufigkeit und Artenzusammensetzung von Coccolithen durchgeführt [Baumann, 1990, Nowaczyk and Baumann, 1992]. Dabei konnte gezeigt werden, daß das Sauerstoffisotopenstadium 1 im wesentlichen durch das Auftreten von *Coccolithus pelagicus* bestimmt ist, während im Klimastadium 3 die Coccolithenflora *Emiliania huxleyi* und im Klimastadium 5 *Geophyrocapsa muellerae* (Abb. 54) dominieren. In den Glazialstadien 2, 4 und 6 sind, insbesondere in den hohen nördlichen Breiten, keine Coccolithen in den Sedimentkernen aufzufinden. Bei Gard und Backman (1990) wird gezeigt, daß die Coccolithen mit dem Norwegenstrom in die Norwegen - und Grönland See und in die Framstrasse gelangen. Im Gegensatz dazu ist der Ost-Grönlandstrom (Polare Wassermasse) an Coccolithen abgereichert. Die Anwesenheit von Coccolithen in den Sedimentkernen im Nordpolarmeer spiegelt demzufolge Zeitbereiche wider, in denen Nordatlantische Wassermassen weiter nach Norden vorgedrungen sind.

5.1.4 ²³⁰Th, ¹⁰Be

An zahlreichen ausgewählten Lokationen (Abb. 55) aus dem Europäischen Nordmeer (Norwegen und Grönland See, Framstrasse) und dem Nordpolarmeer (Yermak Plateau, Morris Jesup Rise, Nansen Becken, Kontinentalhang der Barents See, Kontinentalhang der Laptev See, Lomonosov Rücken, Makarov Becken) wurden von Eisenhauer et al. [1994], Schäper [1994], Molnar [1995] und in dieser Arbeit Radionuklidprofile erstellt.

Abb. 55: Lokationen, an denen Radionuklidprofile (²³⁰Th, ¹⁰Be) bestimmt wurden

Erste Untersuchungen von Radioisotopen [Eisenhauer et al., 1994] an Sedimentkernen aus der Norwegen- und Grönland See zeigten eine Korrelation zwischen der Abfolge von Warmund Kaltzeiten und den ¹⁰Be Konzentrationen. Hierbei sind hohe ¹⁰Be Konzentrationen im Sediment während Interglazialstadien und deutlich geringere Konzentrationen während den Glazialstadien aufzufinden. Dieser Sachverhalt kann besonders beim Sedimentkern 23059-3 aus der Norwegen See gezeigt werden, da in diesem Fall durch die vorhandene δ^{18} O-Stratigraphie eine eindeutige Einteilung der einzelnen Klimastadien vorgenommen werden konnte.

Das ¹⁰Be-Profil zeichnet sich durch hohe ¹⁰Be Konzentrationen in den Interglazialstadien 5, 7 und 9 aus, während in den Glazialstadien 2 - 4, 6 und 8 deutlich geringe ¹⁰Be-Konzentrationen aufzufinden sind. Auf Grundlage dieser Abfolge beruht die sogenannte "¹⁰Be-Stratigraphie", die eine zeitliche Einteilung von Sedimenten aus dieser Region ermöglichen könnte. Jedoch ist es notwendig, daß die Datierungen von Sedimentkernen aus hohen nördlichen Breiten nicht nur auf den ¹⁰Be-Profilen basieren, sondern zusätzliche Möglichkeiten zur Erfassung von Altersinformationen in Betracht gezogen werden. Nur ein in sich konsistentes Bild verschiedener Datierungsmethodiken führt zu einem vertrauenswürdigen Altersmodell, welches für die Rekonstruktion der komplexen paläoklimatischen Bedingungen im Nordpolarmeer unabdingbar ist. Ein solches Hilfsmittel für den Zeitraum der letzten 400.000 Jahren stellt das ²³⁰Th_{ex} Profil dar. In Abbildung 58 ist das ²³⁰Th_{ex} Profil des Sedimentkernes 23059-3 mit den entsprechenden Klimaeinteilungen aufgetragen. Kennzeichnend für die ²³⁰Th_{ex} Profile in diesen Regionen sind die deutlichen Aktivitätserhöhungen an den Stadiengrenzen 2/1 und 6/5 [Scholten et al., 1994, Paetsch, 1991]. Beim Sedimentkern 23059-3 ist vor allem der Übergang 6/5 (Pfeil) ausgeprägt.

Abb. 58: 230 Thex Aktivitäten des Sedimentkernes 23059-3 gegen die Kerntiefe

Anhand der in Abbildung 58 eingezeichneten radioaktiven Zerfallskurve ergibt sich eine mittlere Sedimentationsrate des gesamten bearbeiteten Sedimentkernes von 1,85 cm ka⁻¹. Ausgehend von dieser Rate können die Alter für die entsprechenden Kerntiefen berechnet und mit den Altern aus der δ^{18} O-Stratigraphie verglichen werden. Wie in Tabelle 19 aufgelistet, zeigt sich, daß die zeitliche Einteilung bei diesem Sedimentkern bis zum Isotopenstadium 7 übereinstimmt, während sie in den tieferen Kernabschnitten differiert.

Kerntiefe [cm]	Alter [ka]	Isotopen- stadium	Isotopen- stadium
$\gamma_{i}(\hat{x}_{i}) = \hat{x}_{i}^{i}(\hat{x}_{i})$		Thex	<u>δ¹⁶0</u>
50	27	3	3
100	54	3	3
150	81	5	5
200	108	5	5
250	135	6	6
300	162	6	6
Kerntiefe [cm]	Alter [ka]	Isotopen- stadium	Isotopen- stadium
-------------------	---	----------------------	----------------------
an talenta	$\sum_{i=1}^{n} \frac{\partial \phi_{i}}{\partial x_{i}} dx \left\{ \frac{\partial \phi_{i}}{\partial y_{i}} + \frac{\partial \phi_{i}}{\partial y_{i}} \right\}$	239 Thes	δ ¹⁸ Ο
350	189	7	7
400	216	7	7
450	242	7/8	8
500	270	8	9

Tab. 19: Aus dem exponentiellen Fit erwartete Alter und korrespondierende Isotopenstadien; Vergleich mit den Isotopenstadien, die mit der $\delta^{18}O$ Stratigraphie ermittelt wurden

Die deutlichen Abweichungen im Verlauf der ²³⁰Th_{ex} Aktivitäten vom idealen exponentiellen Verlauf (Abb. 58) können durch Änderungen in der Sedimentationsrate (z.B. Verdünnungseffekte bei hohen Raten) und/oder durch Änderungen der deponierten ²³⁰Th_{ex} Depositionsflußdichte im betrachteten Zeitintervall verursacht werden. Sind diese Abweichungen nur durch Änderungen in der Sedimentationsrate bedingt, kann ein grobes Altersmodell anhand der ²³⁰Th_{ex}/¹⁰Be-Verhältnisse und ein genaueres Altersmodell anhand des "Constant Flux" Modells (siehe Abschnitt 2.4.3) ermittelt werden.

5.2.1.2 ²³⁰Th_{ex}/¹⁰Be Verhältnisse

-ine

und

1

Zur Korrektur der durch Verdünnungseffekte verursachten Konzentrationsschwankungen berechnet man das ²³⁰Th_{ex}/¹⁰Be Verhältnis. Aufgrund der langen Halbwertszeit von ¹⁰Be zerfällt dieses Verhältnis (Abb. 59) mit der Halbwertszeit von ²³⁰Th. Bei logarithmischer Darstellung ist aus der Steigung der Regressionsgeraden eine mittlere Sedimentationsrate von 1,85 ± 0,05 cm ka⁻¹ ableitbar. In Abbildung 59 sind desweiteren die erwarteten ²³⁰Th_{ex} von 5 Aktivitäten (horizontale Linien) unter der Annahme einer Anfangsaktivität von ²³⁰Th_{ex} von 5 dpm g⁻¹ für die Interglazialstadien eingezeichnet.

Abb. 59: 230 Thex 10 Be Verhältnisse des Sedimentkernes 23059-3 gegen die Kerntiefe

Während in den Interglazialstadien die ²³⁰Th_{ex}/¹⁰Be Verhältnisse den radioaktiven Zerfall widerspiegeln, sind die Verhältnisse in den Glazialstadien 2, 6 und 8 deutlich größer als erwartet. Die Ursachen für die hohen ²³⁰Th_{ex}/¹⁰Be Verhältnisse können entweder hohe ²³⁰Th_{ex}

65

Pris 1 Arg 1 Pris

Depositionsflußdichten oder niedrige ¹⁰Be-Depositionsflußdichten in den jeweiligen Zeiträumen darstellen. Aufgrund der zunehmenden Eisbedeckung im Europäischen Nordmeer und im Nordpolarmeer während den Glazialstadien [Broecker und Denton, 1990] scheint ein verringerter Eintrag an ¹⁰Be aus der Atmosphäre die entscheidende Größe für die erhöhten ²³⁰Th_{ex}/¹⁰Be Verhältnisse zu sein.

5.2.1.3 "Constant-Flux" Modell

Basierend auf der Voraussetzung, daß die Ursache der Schwankungen der ²³⁰Th_{ex} Aktivitäten in den jeweiligen Klimastadien in den Änderungen der Sedimentationsraten und nicht der Flußdichten liegt, kann mit der "Constant Flux" Methode für jedes Isotopenstadium eine hohe zeitliche Auflösung erreicht werden. Die zerfallskorrigierten ²³⁰Th_{ex} (\equiv ²³⁰Th_{ex zk}) Aktivitäten gegen die Alter, die aus dem "Constant Flux" Modell berechnet wurden sind in Abbildung 60 dargestellt.

Abb. 60: Zerfallskorrigierte²³⁰Th_{ex} Aktivitäten des Sedimentkernes 23059-3 gegen die Alterskala

Wie in Abbildung 60 gezeigt zeichnen sich im besonderen die Warmstadien 5 und 7 durchhohe 230 Th_{ex z.k.} Aktivitäten aus. In der weiteren Betrachtung wird das 230 Th_{ex z.k.} Aktivitätsprofil mit dem Profil der δ^{18} O Werte des grönländischen GRIP-Eisbohrkernsverglichen.

5.2.1.4 Vergleich des δ¹⁸O-Profils des grönländischen GRIP-Eisbohrkerns mit dem ²³⁰Th_{ex} Profil des Sedimentkerns 23059-3

Die sehr hohe kurzzeitskalige Variabilität der Klimabedingungen im Nordpolarmeer wurd z.B. an δ¹⁸O-Profilen grönländischer Eisbohrkerne [Dansgaard et al., 1993] nachgewiesen. In Sedimentkernen kann eine entsprechend hohe zeitliche Auflösung nicht erreicht werden Allerdings können anhand von Sedimentkernen Klimavariationen mit Hilfe de Radionuklides ²³⁰Th aufgrund seiner geringen Verweilzeit von 5 - 60 Jahren [Scholten et al., 1995] in der Wassersäule rekonstruiert werden. Die geringen Verweilzeiten verhinder großräumige Scavengingprozesse und eine Homogenisierung des Radionuklides in der Wassersäule. Insbesondere in exponierten Regionen (z.B. Kontinentalhangbereich), in denen hohe Akkumulationsraten vorliegen, können klimatisch bedingte Änderungen in der ²³⁰Th Aktivität mit hoher zeitlicher Auflösung archiviert werden.

8¹⁸O-Werte vom Gisp Eisbohrkern

h

k IS

de

In

211.

les al.,

em

der nen

hex

In Abbildung 61 sind die von Dansgaard et al. [1993] gemessenen δ^{18} O Werte des Summit-Grip-Eisbohrkerns gegen die Kerntiefe in Meter aufgetragen. Je negativer die δ^{18} O Werte sind, desto tiefere Temperaturen lagen zu den gegeben Zeitpunkten vor. Zwei wichtige Zeitmarken konnten in diesem Eisbohrkern festgelegt werden. Diese sind in Abb. 61 durch Pfeile gekennzeichnet:

Jüngere Dryas (11,5 ka B.P.) und das maritime Isotopenstadium 5 d bei 110 ka.

Ausgehend von diesem Profil zeigt sich, daß sich sowohl im Holozän (0 - 12 ka) als auch im Klimastadium 5 (74 - 128 ka) wärmere klimatische Bedingungen vorgelegen haben. Die Eiszeiten hingegen wurden durch eine Vielzahl an Interstadialen unterbrochen.

Abb. 61: δ¹⁸O Werte im GRIP Eisbohrkern von SUMMIT (Grönland) (aus Baumgartner [1995])

Die Aufzeichnungen der δ^{18} O Werte gegen die geschätzten Alter nach Baumgartner [1995] sind in Abbildung 62 präsentiert. Für den Tiefenbereich von 2700 bis 3000 m konnten bisher keine Altersdatierungen vorgenommen werden.

Vergleicht man das ²³⁰Th_{ex z.k} Aktivitätsprofil des Sedimentkernes 23059-3 mit dem Verlauf der δ^{18} O Werte vom GRIP Eisbohrkern, korrelieren hohe ²³⁰Th_{ex z.k} Aktivitäten im Altersintervall zwischen 100 und 120 ka mit hohen δ^{18} O-Werten. In wärmeren Zeitabschnitten findet man demzufolge höhere ²³⁰Th_{ex z.k} Aktivitäten.

5.2.1.5 Sedimentologische Untersuchungen

Zur Bestimmung der Bedingungen in der Sedimentsäule werden die Mn/Al Verhältnisse, der Anteil an authigenem ²³⁸Uran (Redoxbedingungen) und Produktivitätsindikatoren wie Kalziumkarbonat und biogenes Barium näher betrachtet.

Authigenes²³⁸Uran und Mn/Al Verhältnisse

Die Aktivitäten an authigenem ²³⁸U, die nach Gleichung 8 mit einem terrigenen ²³⁸U/²³²Th Aktivitätsverhältnis von 0,75 berechnet wurden, sind in Abbildung 63 dargestellt. Aus dem Verlauf dieses Profils wird ersichtlich, daß sich nur das Isotopenstadium 6 durch deutliche Aktivitäten an authigenem ²³⁸U auszeichnet. Die Mangan und Aluminium Konzentrationen wurden mit einer Röntgenfluoreszenzanlage bestimmt [Paetsch, 1991]. Es liegen jedoch nur vereinzelt Stichproben vor. Das ermittelte Mn/Al Verhältnis weist im Gegensatz zum authigenen ²³⁸U Profil Anreicherungen in den Isotopenstadien 1 und 5 auf.

Abb. 63: Authigenes Uran und Mn/Al Verhältnisse des Sedimentkernes 23059-3 gegen die Kerntiefe

Kalziumkarbonat

Wie in Abbildung 64 dargestellt sind hohe Kalziumkarbonatkonzentrationen in den Interglazialstadien 1 und 5 aufzufinden. Die Kalzium Konzentrationen wurden ebenfalls mit der Röntgenfluoreszenzmethode gemessen [Paetsch, 1991]. Ein Problem für weiterführende Diskussionen stellt jedoch die geringe Anzahl der bestimmten Kalziumkarbonatwerte dar. Der Verlauf des Karbonatprofils vom 23059-3 kann entweder durch eine hohe Paläoproduktivität und/oder durch Auflösungsprozesse von Kalziumkarbonat und/oder durch Verdünnungseffekte begründet sein. Jedoch kann anhand dieses Profils nicht geklärt werden, welcher der Komponenten zu einem bestimmten Zeitpunkt dominiert.

Abb. 64: Kalziumkarbonatkonzentrationen des Sedimentkernes 23059-3 gegen die Kerntiefe

Biogenes Barium

den

mit

nde dar. 10he 1rch den, Als Indikator für die Paläoproduktivität hat sich das Element Barium [Rutsch et al., 1995] erwiesen. Der Anteil an biogenem Barium errechnet sich nach Gleichung 31 mit einem angenommenen terrigenen Ba/Al Verhältnis von 0,0075.

Abb. 65: Konzentrationen von biogenem Barium des Sedimentkernes 23059-3 gegen die Kerntiefe

Die berechneten Konzentrationen an biogenem Barium sind in Abb. 65 dargestellt und weisen hohe Konzentrationen in den Interglazialstadien 1 und 5 auf. Die Maxima an biogenem Barium sind in den Kernabschnitten 0 - 20 cm (Holozān) und 200 bis 220 cm (Stadium 5e) archiviert. Zusammenfassend kann aus dem Karbonatprofil und dem Bariumprofil geschlossen werden, daß diese Lokation im Holozän und im Eem biogen beeinflußt war.

5.2.2 Datierung des Sedimentkernes 23235-3 (Framstraße)

5.2.2.1 ¹⁰Be, ²³⁰Th

Auf der Grundlage der erzielten Erkenntnisse scheint es möglich zu sein, zeitliche Einteilungen von Sedimentkernen aus der Framstraße und dem Nordpolarmeer vorzunehmen. Im folgenden soll der Sedimentkern 23235-2, der bereits von Eisenhauer et al. [1994] bis zum Klimastadium 6 eingeteilt wurde, nach den oben angeführten Kriterien beurteilt werden.

Abb. 66: ¹⁰Be und ²³⁰Thex Profil des Sedimentkernes 23235-3 gegen Kerntiefe

Das ¹⁰Be-Profil (Abb. 66) ist nahezu identisch mit dem Profil vom 23059-3 und enthält ebenfalls drei Bereiche, die durch hohe ¹⁰Be-Konzentrationen gekennzeichnet sind. Diese Abschnitte können in Analogie zum Norwegenkern 23059-3 mit den Klimastadien 5, 7 und 9 in Verbindung gebracht werden. Der Klimaübergang 6/5 kann bei diesem Sedimentkern sowohl durch das ¹⁰Be-Profil (hohe ¹⁰Be Konzentrationen im Isotopenstadium 5) als auch durch das ²³⁰Th_{ex} Profil (deutliche Aktivitätserhöhung am Isotopenübergang) in der Kerntiefe von 360 cm fixiert werden. Das ²³⁰Th_{ex} Profils zeichnet sich weiterhin durch höhere ²³⁰Th_{ex} Aktivitäten in den Isotopenstadien 7 und 9 verglichen mit den Glazialen 6, 8 und 10 aus.

5.2.2.2 Exponentieller Zerfall der ²³⁰Th_{ex} Aktivitäten

In Abbildung 67 soll gezeigt werden, ob es möglich ist, die Einteilung der Isotopenstadien, basierend auf dem ¹⁰Be-Profil, durch einen exponentiellen Fit an die ²³⁰Th_{ex} Aktivitäten zu reproduzieren. Hierbei werden an die ²³⁰Th_{ex} Aktivitäten vom 23235-3 zwei Fitgeraden gelegt, die sich nur im ausgewählten Fitintervall unterscheiden. Die erste Fitgerade umfasst dabei den gesamten ²³⁰Th_{ex} Bereich von 0 bis 800 cm. Das zweite Fitintervall erstreckt sich von 0 bis 500 cm. Es zeigt sich, daß die erste Fitgerade, die den gesamten ²³⁰Th_{ex} Bereich (0 -800 cm) umfaßt, die Alterseinteilung besser widerspiegelt. Demzufolge ist der exakten zeitlichen Einteilung von Sedimentkernen anhand des radioaktiven Zerfalls von ²³⁰Th_{ex} mit großer Vorsicht zu begegnen, wobei eine grobe Abschätzung der mittleren Sedimentationsrate dennoch möglich ist.

Abb. 67: Vergleich der Isotopenstadieneinteilung anhand zweier Fitgeraden an die $^{230}Th_{ex}$ Aktivitäten des Sedimentkernes 23235-3 mit der $\delta^{18}O$ Stratigraphie

5.2.2.3 ²³⁰Th_{es}/¹⁰Be Verhältnisse

e L

n

thält

Diese

nd 9

auch tiefe The

> idien, en zu raden

nfasst

t sich

:h (0 -

akten

Analog zum Verlauf der ²³⁰Th_{ex}/¹⁰Be Verhältnisse vom Sedimentkern 23059-3 zeichnen sich auch hier (Abb. 68) die Glazialstadien im Vergleich zu Interglazialstadien durch erhöhte ²³⁰Th_{ex}/¹⁰Be Verhältnisse aus. Es ist ein deutlicher radioaktiver Zerfall zu erkennen mit einer mittleren Sedimentationsrate von 2,80 cm ka⁻¹.

5.2.2.4 "Constant-Flux" Model

Bei dem in Abbildung 69 präsentierten zerfallskorrigierten ²³⁰Th_{ex} Aktivitätsprofil soll hervorgehoben werden, daß sich wie beim Sedimentkern 23059-3 das Stadium 5 d (110 ka) durch die höchsten ²³⁰Th_{ex z.k.} Aktivitäten auszeichnet. Der Sedimentkern 23235-3 weist im Vergleich zum 23059-3 allerdings eine höhere zeitliche Auflösung auf.

Abb. 69: Zerfallskorrigierte²³⁰Th_{ex} Aktivitäten des Sedimentkernes 23235-3 gegen die Alterskala

5.2.2.5 Altersprofil der ¹⁰Be-Konzentrationen

In Abbildung 70 sind die zerfallskorrigierten ¹⁰Be Konzentrationen gegen die aus dem "Constant-Flux" Modell erhaltenen Alter aufgetragen. Der in Abbildung 70 gewählte Bereich ist an den bisher bekannten Altersbereich des SUMMIT und des VOSTOK Eisbohrkernes angepaßt. Die ¹⁰Be Konzentrationen weisen nur höhere Werte im Altersintervall von 32 bis 42 ka auf. Dieses Altersintervall ist, wie in Abschnitt 3.2.2 gezeigt, mit den erhöhten ¹⁰Be Konzentrationen ("Raisbeck Peak") in den Eisbohrkernen identisch.

5.3 Datierungen von Sedimentkernen aus dem Kontinentalhangbereich der Barents- und der Laptev See und dem Yermak Plateau

Die Betrachtung der Hanggebiete im Arktischen Ozean ist von wesentlicher Bedeutung, weil sich diese Regionen im Vergleich zu den Tiefseebecken des Nordpolarmeeres, durch hohe Akkumulationsraten auszeichnen. Weiterhin führen sich ändernde Klimabedingungen zu drastischen Variationen in den Sedimentablagerungsbedingungen in diesen Regionen. In Abbildung 71 sind die geographischen Lokationen der Sedimentkerne PS1533-3, PS2138-1, PS2456-3, PS2471-4, PS2474-3 und PS2757-8 eingezeichnet und im Anhang A.1 aufgelistet.

Abb. 71: Lokationen der Sedimentkerne PS2138-1, PS2456-3, PS2471-4, PS2474-3 und PS2757-8

5.3.1 Datierung des Sedimentkernes PS1533-3 (Yermak Plateau)

Dieser Sedimentkern wurde 1992 in der Diplomarbeit von G. Hentzschel (10 Be, 230 Th) bearbeitet und von Eisenhauer et al. [1994] veröffentlicht. Die stratigraphische Einteilung erfolgte anhand der δ^{18} O-Stratigraphie, Magnetostratigraphie, 14 C-Alter, 230 Th_{ex} und 10 Be Profile.

5.3.1.1 δ¹⁸O-Stratigraphie

h

Зе

营

胞

C. C. March

Der Vergleich der δ^{18} O-Stratigraphie [Köhler, 1991] des Sedimentkernes PS1533-3 mit der generalisierten δ^{18} O-Stratigraphie von Martinson et al. [1984] (Abb. 72) verdeutlicht die Schwierigkeiten bei der Festlegung der einzelnen Isotopenstadien. Der unterschiedliche Verlauf der δ^{18} O Werte ist im Gebiet hoher nördlicher Breiten oft dadurch bedingt, daß das eigentliche klimatische Signal von Schmelzwassersignalen überlagert wurde. Diese lokalen Schmelzwasserereignisse führen dazu, daß die in der Wassersäule lebenden Foraminiferen ein isotopisch zu leichtes Sauerstoffsignal archivieren.

5.3.1.2 ¹⁴C-Alter

Die von ermittelten ¹⁴C Alter [Eisenhauer et al., 1994] ermöglichen eine genauere Zuordnung des Holozäns und des letzten Glazialstadiums (Tab. 20).

Kernbereich [cm]	mittl. Kerntiefe	¹⁴ C-Alter [ka]
15-16	15,5	6,16 ± 0,08
84 - 85	84,5	17,87 ± 0,18
92 -93	92,5	18,16 ± 0,13
110-111	110,5	$22,79 \pm 0,20$

Tab. 20: ¹⁴C Alter des Sedimentkernes PS1533-3 (aus Eisenhauer et al [1994])

5.3.1.3 ²³⁰Th. ¹⁰Be

Vergleicht man die ¹⁰Be und ²³⁰Th_{ex} Profile des PS1533-3 (Abb. 73) mit den Profilen vom 23059-3, so erkennt man, daß auch bei diesem Sedimentkern auf dem Yermak-Plateau höhere ¹⁰Be Konzentrationen in den Isotopenstadien 1 und 5 und deutlich niedrigere Konzentrationen in den Stadien 2 - 4 vorliegen. Das ²³⁰Th_{ex} Profil weist, wie beim Kern 23059-3, die markanten Aktivitätsänderungen an den Übergängen 2/1 und 6/5 auf.

Abb. 73: ¹⁰Be und ²³⁰Thex Profil des Sedimentkernes PS1533-3 gegen Kerntiefe

5.3.1.4 ²³⁰Thes/¹⁰Be Verhältnis

Im Gegensatz zu den ²³⁰Th_{ex}/¹⁰Be Verhältnissen der Sedimentkerne 23059-3 und 23235-3 ist bei dem in Abbildung 74 dargestellten Profil zwar eine Abnahme zu erkennen, es kann jedoch keine eindeutige Fitgerade bestimmt werden. Aus diesem Profil kann demzufolge keine zeitliche Einteilung dieses Sedimentkernes vorgenommen werden.

Abb. 74: 230 Thex, 10 Be Verhältnisse des Sedimentkernes PS1533-3 gegen die Kerntiefe

5.3.1.5 "Constant Flux" Modell

om

nere

die

Die ²³⁰Th_{ex z.k} Aktivitäten sind gegenüber den aus dem "Constant Flux" Modell berechneten Altern in Abbildung 75 dargestellt. Hohe ²³⁰Th_{ex} Aktivitäten sind von 0 - 10 ka (Holozän) und bei etwa 15, 20 (Glazial 2), 25, 30, 40, 50 (Interglazial 3), 80, 100 und 110 ka (Interglazial 5) aufzufinden. Ein Vergleich mit dem Profil der δ^{18} O Werte vom GRIP Eisbohrkern zeigt einen nahezu identischen Verlauf der beiden Profile.

Abb. 75: Zerfallskorrigierte²³⁰Th_{ex} Aktivitäten des Sedimentkernes 23235-3 gegen die Alterskala

5.3.1.6 Altersprofil der ¹⁰Be Konzentrationen

Während das ²³⁰Th_{ex}-Profil ein Maximum bei etwa 110 ka aufweist, liegt beim ¹⁰Be-Profil (Abb. 76) der maximale Wert bei etwa 120 ka. Dies deutet darauf hin, daß dieser Peak als Folge der abschmelzenden Eismassen entstanden sein könnte. Der Raisbeck-Peak ist bei etwa 37 ka erkennbar, wenn auch nicht so ausgeprägt wie in den Eisbohrkernen.

Contry &

Abb. 76: Zerfallskorrigierte ¹⁰Be Konzentrationen des Sedimentkernes PS1533-3 gegen Alter

5.3.1.7 Sedimentologische Untersuchungen

Mn/Al- Verhältnisse

Im Gegensatz zum Mn/Al-Profil des Sedimentkernes 23059-3 (Abb. 63) sind an den Klimaübergängen 2/1 und 6/5 des Sedimentkernes PS1533-3 (Abb. 77) keine Anreicherungen aufzufinden. Das Profil weist nur in den Kernabschnitten von 160 bis 145 cm und von 50 cm bis 0 cm deutlich höhere Werte als das terrigene Mn/Al-Verhältnis von 0,0044 auf. Es zeigt sich, daß bei diesem Sedimentkern die in vielen Sedimentprofilen vorgefundene Mangananreicherung an der Isotopenstadiengrenze 6/5 [Frank, 1996] nicht archiviert wurde. Ursachen für die mögliche Nichterhaltung des Mn/Al-Peaks an diesem Klimaübergang muß durch Modellierungen der geochemischen Prozesse in der Sedimentsäule (Durchlüftungstiefe, Mikrobakterieller Abbau, usw.) geklärt werden.

Abb. 77: Mn/Al Profil des Sedimentkernes PS1533-3 gegen Kerntiefe

Paläoproduktivität

Als Tracer für Paläoproduktivität sind an diesem Kern die Konzentrationsprofile von Kalziumkarbonat (Abb. 78) und biogenem Barium (Abb. 79) bestimmt worden. Die beider Tracer deuten auf einen biogenen Anteil im Holozän und Glazialstadium 2 hin, währendkeine Produktivität in den Isotopenstadien 3, 4 und 5 vorlag. Aus diesen Untersuchungen kann gefolgert werden, daß sich die geochemischen Abläufe in diesem Randgebiet de

Arktischen Ozeans von den Prozessen in der Tiefseeebene (z.B. 23059-3) des Europäischen Nordmeeres unterscheiden. Anhand des Verlaufs des Kalziumkarbonat bzw. biogenen Barium Profils ist es demzufolge in den Kontinentalhanggebieten des Arktischen Ozeans nicht möglich Tiefenbereiche erhöhter Produktivität mit bestimmten Isotopenstadien in Relation zu setzten.

Kalziumkarbonat

/OD

den end gen des

Abb. 78: Kalziumkarbonat Profil des Sedimentkernes PS1533-3

5.3.2 Datierung des Sedimentkernes PS2138-1 (Kontinentalhang der Barents See)

An diesem Sedimentkern wurden ¹⁴C-Alter (Tab.21) und δ^{18} O Werte (Abb. 80) gemessen [Knies et al., subm.]. Basierend auf diesen Untersuchungen konnte dieser Sedimentkern von Knies in die Klimastadien 1 - 6 eingeteilt werden.

5.3.2.1 δ¹⁸O-Stratigraphie

Abb. 80: $\delta^{18}O$ Stratigraphie des Sedimentkernes PS2138-1 (nach Knies et al. [subm.])

In Abbildung 80 sind die Stadiengrenzen eingezeichnet, die anhand der δ^{18} O-Werte und der ¹⁴C-Alter festgelegt wurden. Die Einteilung der Isotopenstadien wurde bei Schulz [1997] ausführlich diskutiert.

Kerntiefe [cm]	Untersuchtes Material	korrigiertes ¹⁴ C-Alter [ka]
50	Muschelschalen	13,02 ± 0,11
80	Muschelschalen	12,60 ± 0,14
130	verschiedene Foraminiferenarten	15,41 ± 0,13
160	N. pachyderma sin.	16,23 ± 0,21
300	N. pachyderma sin.	20,04 ± 0,33
380	verschiedene Foraminiferenarten	34,90 ± 0,13

5.3.2.2 ¹⁴C Alter

Tab. 21: ¹⁴C Alter des Sedimentkernes PS2138-1 [Knies et al., subm.]

5.3.2.3 230 Th, 10 Be

Die ²³⁰Th_{ex} und ¹⁰Be-Profile (Abb. 81) sind im Glazialstadium 2 durch niedrige Aktivitäten bzw. Konzentrationen gekennzeichnet. Diese niedrigen Gehalte sind aufgrund der hohen Akkumulationsraten in diesem Zeitraum durch Verdünnungseffekte verursacht worden. Weiterhin zeigt sich der charakteristische Verlauf im ¹⁰Be-Profil mit hohen Konzentrationen in den Isotopenstadien 1 und 5 und niedrigeren Konzentrationen in den Stadien 2 - 4. Im Sedimentkern PS2138-1 können anhand des ²³⁰Th_{ex} und ¹⁰Be-Profils zwei weitere Zeitmarker gesetzt werden. Dabei wird einerseits in der Kerntiefe von 400 cm die erhöhte ¹⁰Be-Konzentration im Isotopenstadium 3 dem Raisbeck-Peak (37 ka) zugeordnet und andererseits in 510 cm Tiefe die maximale ²³⁰Th_{ex z.k}. Aktivität mit dem Alter von 110 ka (Vergleich mit dem ²³⁰Th_{ex z.k}. Profil des Sedimentkerns 23235-3) gleichgesetzt.

Abb. 81: ¹⁰Be und ²³⁰Thex Profil des Sedimentkernes PS2138-1 gegen Kerntiefe

5.3.2.4 ²³⁰Th_{ex}/¹⁰Be-Verhältnis

ser

3e-

mit

Wie beim ²³⁰Th_{ex}/¹⁰Be-Profil vom Sedimentkern PS1533-3 ist auch anhand des in Abbildung 82 dargestellten Profils keine Datierung dieses Sedimentkernes möglich.

Abb. 82: 230 Thex 10 Be Verhältnisse des Sedimentkernes PS2138-1 gegen die Kerntiefe

5.3.3 Datierung des Sedimentkernes PS2456-2/-3 (Laptev See)

Um die Akkumulationsbedingungen im Kontinentalhangbereich der Laptev See zu erfassen, wurden an vier Sedimentkernen²³⁰Th_{ex} und ¹⁰Be-Profile aufgenommen. Die Sedimentkerne

PS2474-3 und PS2471-4 spiegeln die Verhältnisse in der westlichen Laptev See wider, während sich die Sedimentkerne PS2456-2/3 und PS2757-8 im Einflußbereich der östlichen Laptev See befinden. Die Lokationen der Sedimentkerne und das Profil des Kontinentalhanges sind in Abbildung 83 dargestellt.

Abb. 83: Lokationen der Sedimentkerne PS2456-2/3, PS2471-4, PS2474-3 und PS2757-8 im Bereich der Laptev See

5.3.3.1 ²³⁰Th, ¹⁰Be

Schulz [1997] bestimmte Radionukliddaten (230 Th, 10 Be) und nahm eine Einteilung der Isotopenstadien anhand der 230 Th_{ex}- und 10 Be-Profile (Abb. 84) vor. Aus dem 10 Be-Profil erkennt man, daß in dem bearbeiteten Sedimentbereich das Isotopenstadium 5 (hohe 10 Be Konzentrationen) noch nicht abgelagert wurde. Unsicher ist allerdings der Klimaübergang 3/2. Bisher deuten nur die hohen 230 Th_{ex}-Aktivitäten im Tiefenbereich zwischen 210 und 405 cm auf das Klimstadium 3 hin. Ein weiteres Indiz wäre das Auffinden des Raisbeck-Peaks in diesem Tiefenabschnitt. Das 10 Be-Profil zeigt zwischen 40 und 400 cm einheitliche Konzentrationen von etwa 0,4 \cdot 10⁹ at g⁻¹. Jedoch wurden im Rahmen der Diplomarbeit von Schulz [1997] nur einzelne Stichproben gemessen, so daß eine noch dichtere Beprobung notwendig wäre, die Aufschluß über die Existenz eines möglichen 10 Be-Peak geben kann.

Abb. 84: ¹⁰Be und ²³⁰Thex Profil des Sedimentkernes PS2456-2/3 gegen Kerntiefe

5.3.3.2 "Constant Flux" Modell

16.14

Geht man von der oben dargestellten Datierung aus, kann mit Hilfe des Constant Flux Models eine Altersmodell erstellt werden. Man erkennt in Abbildung 85, daß hohe Aktivitäten bei 20 ka, 25 - 30 ka, 40 ka und 50 ka vorliegen. Diese Abfolge ist in Übereinstimmung zu den erzielten Ergebnissen vom Sedimentkern PS1533-3.

5.3.4 Datierung des Sedimentkernes PS 2474-3

230 Th

Anhand des Vergleichs des ²³⁰Th_{ex} Profils des PS2474-3 (Abb. 86) mit den Profilen vom PS2456-2/3 und PS1533-3 kann der Sedimentkern in die Isotopenstadien 1 - 4 eingeteilt werden. Der Übergang 2/1 ließe sich dabei durch den deutlichen Gradienten an ²³⁰Th_{ex} Aktivitäten in der Kerntiefe von 90 cm festlegen. Die sich anschließenden niedrigen Aktivitäten deuten auf hohe Akkumulationsraten hin und werden mit dem Glazialstadium 2 in Verbindung gebracht. Diese Abfolge im ²³⁰Th_{ex} Profil ist auch beim Sedimentkern PS2138-1 zu erkennen. Der Sedimentkern PS2138-1 weist allerdings deutlich niedrigere ²³⁰Th_{ex} Aktivitäten als der PS2474-3 im Glazialstadium 2 auf. Hierfür kann entweder eine größere Akkumulationsrate (Verdünnung) des PS2138-1 oder höhere ²³⁰Th_{ex} Depositionsflußdichten des PS2474-3 verantwortlich sein. Desweiteren wurde analog zum PS2456-1/2 der Bereichmit hohen ²³⁰Th_{ex} Aktivitäten (360 cm bis 550 cm) als Isotopenstadium 3 identifiziert.

Abb. 86: 230 Thex Aktivitäten des Sedimentkernes PS2474-3 gegen Kerntiefe

Die geringe Beprobungsdichte der ²³⁰Th_{ex} Aktivitäten entlang dieses Sedimentkernes ermöglicht keine Bestimmung eines Altersmodelles basiernd auf dem "Constant Flux" Modell in den jeweiligen Isotopenstadien. Grob abgeschätzt könnten jedoch die hohen ²³⁰Th_{ex} Aktivitäten im Tiefenbereich von 370 - 520 cm mit den Altern von 30, 40 und 50 ka in Beziehung gesetzt werden.

5.3.5 Datierung des Sedimentkernes PS 2471-4

Die Datierung dieses Sedimentkernes ist ebenfalls mit großen Schwierigkeiten verbunden. Es existieren bis auf die von uns durchgeführten Radionukliduntersuchungen und der Verteilung von Nannoplankton [Nürnberg et al., 1995] keine zusätzlichen Zeitinformationen. Weiterhin führen die drei Turbiditlagen (170 - 220 cm; 270 - 320 cm; 350 - 390 cm) dazu, daß die Diskussion bezüglich der Datierung mit großer Sorgfalt durchgeführt werden muß. Nürnberget al.[1995] zeigten anhand von Smear-Slide Analysen, daß in den obersten 400 cm die Coccolithenarten Emiliania huxleyi und Geophyrocapsa spp. abgelagert wurden, die einen Indikator für Interglazialstadien im Nordpolarmeer darstellen [Gard, 1988]. Anreicherungen sind in den obersten 50 cm, zwischen 200 und 300 cm und bei etwa 380 cm anzutreffen. Der-Kernbereich zwischen 0 und 50 cm wurde von Nürnberg et al. [1995] mit dem Holozän und den Kernbereich zwischen 200 und 300 cm (Coccolithenart Geophyrocapsa spp.) mit dem

Interglazialstadium 5 in Beziehung gesetzt. Jedoch wurde die Coccolithenart Geophyrocapsa spp. in Sedimentprofilen des Nansen Beckens auch im Interglazialstadium 3 vorgefunden [Baumann, 1990].

-

Es

ng in

tie maie en ser men

Abb. 87: ¹⁰Be und ²³⁰Thex Profile des Sedimentkernes PS2471-4 gegen Kerntiefe

Bei der Betrachtung der Radionuklidprofile (Abb. 87) zeigt sich, daß die Kernabschnitte von 100 - 150 cm und von 220 - 260 cm starke Abweichungen vom erwarteten radioaktiven Zerfallsverlauf aufweisen. Die <u>hohen</u> ²³⁰Th_{ex} <u>Aktivitäten</u> <u>deuten</u> <u>auf</u> niedrige Sedimentationsraten in diesen Kernbereichen hin und könnten, aufgrund der erwarteten höheren Sedimentationsraten während den Glazialen im Vergleich zu den Interglazialen, in den Isotopenstadien 3 und 5 abgelagert worden sein. Der Einbruch der ²³⁰Th_{ex} Aktivitäten in der Kerntiefe von 260 cm kann entweder als Indiz für den Übergang 6/5 gesehen werden oder seine Ursache in den Turbiditlagen haben.

Abb. 88: ¹⁰Be Profile der Sedimentkerne PS2471-4 und PS1533-3 gegen Kerntiefe

Weiterhin weist das ¹⁰Be-Konzentrationsprofil (Abb. 88) einen ähnlichen Verlauf, wie bei den Sedimentkernen 23059-3, PS1533-2, PS2138-1 auf. Die Isotopenstadien 2 - 4 sind hierbei durch geringere ¹⁰Be-Konzentrationen gekennzeichnet, während im Stadium 5 höhere ¹⁰Be-Konzentrationen aufzufinden sind. Zur genaueren Einteilung des Isotopenübergangs 2/1 müssen die Radionuklide 230 Th und 10 Be im obersten Teil dieses Sedimentkernes noch bestimmt werden. Ein weiterer wichtiger Indikator für die Isotopenstadieneinteilung stellt der Raisbeck-Peak dar. Analog z.B. zum PS2138-1 ist, basierend auf unserer Einteilung der Isotopenstadien, in einer Kerntiefe von 115 cm ein ¹⁰Be Maximum zu erkennen. Diese Tatsache unterstützt die Bestimmung des Isotopenstadiums 3. Die sich anschließende Turbiditlage ist durch niedrige ²³⁰Thex-Aktivitäten und ¹⁰Be-Konzentrationen gekennzeichnet. Sedimentologische Untersuchungen in der westlichen Laptev See von Weiel [1997] haben gezeigt, daß die Turbiditlagen mit Glazialstadien korrelieren. Speziell findet man im Glazialstadium 4 ausgeprägte Sedimentschichten, die einen Sedimenteintrag in die Laptev See repräsentieren, der durch ein mächtiges Eisschild auf der Taimyr Halbinsel angetrieben wurde [Niessen, 1997]. Zu diesen Zeiten erhöhte sich der Eintrag von terrigenem Material drastisch und würde die niedrigen 230 Thex und 10 Be Konzentrationen im Kernbereich von 170 -220 cm erklären. Die zeitliche Einteilung dieses Sedimentkernes anhand des ²³⁰Th_{ex}/¹⁰Be-Verhältnisses ist wie auch bei den anderen Sedimentkernen von den Ozeanrändern nicht möglich.

Vergleich der Suszeptibilitätskurven vom PS2471-4 und PS2474-3

An den Sedimentkernen PM9471-4, PM9472-4, PM9473-4, PM9474-3, PM9475-3, PM9476-4 und PM9477-4 vom Kontinentalhang der Laptev See wurden Suszeptibilitätsprofile [Nürnberg et al. 1995] aufgenommen, die in Abbildung 89 dargestellt sind. Hierdurch können die Sedimentkerne miteinander korreliert werden, und zusammen mit den Datierungen der Sedimentkerne PM9471-4 und PM9474-3 ein Altersprofil entlang des Kontinentalhangs erstellt werden. Dabei zeigt sich eine deutliche Erhöhung der Sedimentationsraten vom Schelfbereich der Laptev See bis zur Tiefseeebene des Nansen Beckens. Die Kerne in unmittelbarer Nähe zum Schelfgebiet der Laptev See (PS2477-4, PS2476-4) weisen eine etwa 12 fach höhere Sedimentationsrate als der Sedimentkern PS2471-4 auf.

Abb. 89: Suszeptibilitätsprofile von Sedimentkernen aus dem Kontinentalhanggebiet der Laptev See (aus Nürnberg et al. [1995])

5.3.6 Datierung des Sedimentkernes PS 2757-8

i e

le

七四四

٤V

20

al

) ie-:ht Die Aufnahme der Radionukliddaten (²³⁰Th, ¹⁰Be) wurde in der Diplomarbeit von Heller [1997] durchgeführt. Das in dieser Arbeit aufgestellte Altersmodell ist in Abbildung 90 dargestellt.

Abb. 90: 10 Be und 230 Thex Profile des Sedimentkernes PS2757-8 gegen Kerntiefe

5.3.6.1 ²³⁰Th_{ex}/¹⁰Be-Verhältnis

Aufgrund der im Vergleich zu den Ozeanrändern ruhigeren Akkumulationsbedingungen am Lomonosov Rücken wurde bei diesem Sedimentkern das ²³⁰Th_{ex}/¹⁰Be-Verhältnis bestimmt. Wie aus Abbildung 91 hervorgeht, zeigt sich eine deutliche Abnahme des Verhältnisses mit der Tiefe. Die horizontalen blauen Linien repräsentieren, mit einem im Interstadial 3 angenommenen ²³⁰Th_{ex}/¹⁰Be Verhältnis von 3, die erwarteten Werte in den Interglazialstadien 5, 7, 9 und 11. Aus dem exponentiellen Abfall des ²³⁰Th_{ex}/¹⁰Be-Verhältnisses mit der Tiefe kann eine mittlere Sedimentationsrate von 1,59 cm ka⁻¹ bestimmt werden. Geht man von dieser Rate bis zu einer Kerntiefe von 500 cm aus, so enthält man für diesen Tiefenbereich ein Alter von 315 ka (Isotopenstadium 9). Dies bestätigt das Altersmodell von Heller [1997].

Im folgenden werden alle Indikatoren, die für die Datierung dieses Sedimentkernes von Bedeutung sind, kurz zusammengefaßt. Hierbei konnten die Klimaübergange 2/1 und 6/5 anhand des ²³⁰Th_{ex}-Profils in den Kerntiefen von 20 cm und 200 cm festgesetzt werden. Ein weiterer Indikator für diese Einteilungen ist der Verlauf des Manganprofils (Abb. 92), indem wie z.B. beim Sedimentkern 23059-3 an den Klimaübergängen 2/1 und 6/5 hohe Mn/Al-Verhältnisse aufzufinden sind. Beim Sedimentkern PS2757-8 wurden die Mangankonzentrationen auf den terrigenen Indikator ²³²Th normiert. Die Mn/²³²Th Verhältnisse weisen in den obersten 300 cm zwei deutlich erhöhte Werte in unmittelbarer Nähe der Klimaübergänger 2/1 und 6/5 auf.

Abb. 92: Mnv²³²Th Verhältnisse des Sedimentkernes PS2757-8 gegen Kerntiefe

Das als Zeitindikator dienende 230 Thex/10 Be-Verhältnis zeigt bei diesem Kern einen anderen Verlauf als die 230 Ther/10 Be Verhältnisse der Sedimentkerne 23059-3 und 23235-5. Während sich bei den Norwegischen Kernen die Glazialstadien durch höhere Werte als in den Interglazialstadien auszeichnen, erkennt man beim PS2757-8 niedrige Verhältnisse im Glazialstadium 2 und im Übergangsbereich 6/5. Dies kann darauf zurückgeführt werden, daß sich durch die Meeresspiegelsenkung in den Isotopenstadien 2, 5 d und im Glazial 6 um mehr als 50 m [Chapell und Shackelton, 1986] der Eintrag von kontinentalem ¹⁰Be mit den Flüssen weiter an die Schelfkante der Laptev See vorverlagert haben könnte und sich somit zu diesen Zeiten am Sedimentkern PS2757-8 die 10 Be-Depositionsflußdichte erhöhten. Im Europäischen Nordmeer hingegen erniedrigen sich die ¹⁰Be-Depositionsflußdichten in den Glazialstadien im Vergleich zu den Interglazialen aufgrund der sich ausbreiteten Eismassen. Der Kernabschnitt von 210 bis 275 cm enthält bei konstanter Sedimentationsrate von 1,59 cm ka⁻¹ ein Alter von etwa 40 ka, welches die Annahme des Klimaübergangs 6/7 in der Kerntiefe von 275 cm nahezu bestätigt. Für die Einteilung des Isotopenstadiums 7 sprechen auch die hohen ²³⁰The-Aktivitäten und ¹⁰Be Konzentrationen im Kernbereich von 275 bis 325 cm. Die weitere zeitliche Einteilung ist mit großen Unsicherheiten verbunden. Heller korreliert in seinem Altersmodell die hohen ¹⁰Be Konzentrationen von 475 bis 525 cm mit dem Interglazialstadium 9. Auf der Grundlage des radioaktiven Abfalls des 230 Ther/10 Be Verhältnisses könnten im Bereich zwischen 325 und 525 cm aber auch die Isotopenstadien 8 bis 11 beinhaltet sein. Im Kernbereich zwischen 325 cm und 525 cm finden sich keine markanten Einbrüche wie im Glazial 2 und im Übergangsbereich 6/5 in den 230 Thex/10 Be Werten. Dies unterstützt die zeitliche Einteilung des Sedimentkernes anhand des 230 Thes/10 Be Verhältnisses. Speziell in diesem Kern sollten weitere Datierungsmethodiken (z.B. ESR) zur Absicherung des Altersmodells hinzugezogen werden.

5.3.6.2 "Constant Flux" Modell

Ein Vergleich der ²³⁰Th_{ex z.k.} Profile der Sedimentkerne PS2757-8 und 23235-3 (Abb. 93) zeigt einen nahezu identischen Verlauf. In beiden Sedimentkernen erkennt man hohe Aktivitäten bei 30 - 50 ka, 90 ka, 110 - 120 ka und bei 200 - 220 ka. Dieser Vergleich unterstützt die zeitliche Einteilung des Sedimentkernes PS2757-8 bis zum Isotopenstadium 7.

Abb. 93 Zerfallskorrigierte²³⁰Th_{ex} Aktivitäten der Sedimentkerne PS2757-8 und 23235-3 gegen Alter

Abertherum des Altersmodelle himug-zogelfelerant

5.4 Datierung von Sedimentkernen aus dem Nordpolarmeer

12

Analog zu den erzielten Ergebnissen im Europäischen Nordmeer sollen mit Hilfe der Radionuklidprofile (¹⁰Be, ²³⁰Th_{ex}) die Sedimentkerne PS1521-15, PS1524-3, PS2185-3/6, PS2178-5 und PS2200-5 aus dem Nordpolarmeer datiert werden. Ein besonderes Augenmerk liegt dabei auf den Kastenlotkernen PS2185-3/6 und PS2200-5, die aufgrund der geringen Sedimentationsraten im Nordpolarmeer Klimaaufzeichnungen der letzten 1 Million Jahre enthalten könnten. In Abbildung 94 sind die geographischen Lokationen der Sedimentkerne PS1521-15, PS1524-3, PS2185-3/6, PS2178-5 und PS2200-5 eingezeichnet und im Anhang A aufgelistet.

Abb. 94: Lokationen der Sedimentkerne PS1524-2, PS1521-15, PS2178-5, PS2185-3/6 und PS2200-5

5.4.1 Datierung des Sedimentkernes PS1521-15 (Nansen Basin)

Die ²³⁰Th_{ex} und ¹⁰Be-Profile wurden von Eisenhauer gemessen. Die stratigraphische Einteilung erfolgte anhand der Biostratigraphie [Nowaczyk und Baumann, 1992] und der Verteilung der Grobfraktionsanteile (> $63 \mu m$).

5.4.1.1 Biostratigraphie

Untersuchungen der Artenzusammensetzung der Coccolithen im Sedimentkern PS1521-15 (Abb. 95) wurden von Nowaczyk und Baumann [1992] durchgeführt und mit der Vergesellschaftung der Coccolithen des datierten Sedimentkernes PS1535-8 (Abschnitt 5.1.3) verglichen.

Abb. 95: Coccolithenvergesellschaftungen des Sedimentkernes PS1521-15 (aus Nowaczyk und Baumann [1992])

5.4.1.2 63µm Fraktion

Aus dem Vergleich des Verlaufs der Grobfraktionsanteile des datierten Kernes PS1533-3 [Eisenhauer et al., 1994] mit der Grobfraktion vom PS1521-15 [Kassens, pers. Mitt.] kann ebenfalls eine Einteilung der Isotopenstadien vorgenommen werden, welche in Abbildung 96dargestellt ist.

Abb. 96: 63µm Fraktion der Sedimentkerne PS1533-3 und PS1521-15

5.4.1.3 ²³⁰Th, ¹⁰Be

Die biostratigraphische Einteilung dieses Sedimentkernes wurde durch die ²³⁰Th_{ex} und ¹⁰P₋ Profile (Abb. 97) bestätigt. Das ¹⁰Be-Profil weist deutlich höhere ¹⁰Be-Konzentrationen

während Interglazialstadien im Vergleich zu den Glazialstadien auf. Im Gegensatz zu den ¹⁰Be-Profilen der Sedimentkerne. 23059-2 und PS1533-2 ist das Klimastadium 5 allerdings nicht durch maximale ¹⁰Be Konzentrationen gekennzeichnet. Der ¹⁰Be-Peak im Isotopenstadium 3 liegt bei etwa 37 ka ("Constant Flux" Modell) und dürfte somit dem Raisbeck-Peak entsprechen.

Abb. 97: ¹⁰Be und ²³⁰Thex Profile des Sedimentkernes PS1521-15 gegen Kerntiefe

5.4.2 Datierung des Sedimentkernes PS1524-2 (Gakkel Rücken)

5.4.2.1 Biostratigraphie

Be

en

Untersuchungen der Artenzusammensetzung der Coccolithen im Sedimentkern PS1524-2 (Abb. 98) wurden von Nowaczyk und Baumann [1992] durchgeführt und mit der Vergesellschaftung der Coccolithen des datierten Sedimentkernes PS1535-8 verglichen.

5.4.2.2 230Th, 10Be

Die ¹⁰Be Konzentrationen bzw. ²³⁰Th_{ex} Aktivitäten dieses Sedimentkernes (Abb. 99) sind in Eisenhauer et al. [1994] veröffentlicht. Das ²³⁰Th_{ex} Aktivitätsprofil zeigt hohe Konzentrationen im Interglazial 3 und aufgrund des radioaktiven Zerfalles niedrigere Aktivitäten im Interglazialstadium 5. In 75 cm Tiefe ist ein deutlicher Aktivitätsgradient aufzufinden, der mit dem Übergang 6/5 in Einklang gebracht werden kann. Ergänzend zu diesen Daten wurden in dieser Arbeit ¹⁰Be Konzentrationen im Kernbereich zwischen 200 -420 cm ermittelt. Das ¹⁰Be-Konzentrationsprofil zeigt hohe Konzentrationen im Interglazialstadium 5 und ebenfalls einen deutlichen Konzentrationsgradienten in 75 cm Kerntiefe. Im Kernbereich zwischen 75 und 400 cm sind weder ¹⁰Be Konzentrationen noch ²³⁰Th_{ex} Aktivitäten nachzuweisen, so daß dies einen Hinweis für hohe Sedimentationsraten in diesem Kernbereich darstellt. Vergleicht man die ¹⁰Be und ²³⁰Th_{ex} Profile vom PS1524-2 mit den Profilen vom Sedimentkern PS2471-4 (Abschnitt 5.3.5) so zeigt sich ein ähnlicher Verlauf, wodurch die vorgenommene zeitliche Einteilung vom PS2471-4 unterstützt wird.

Abb. 99: ¹⁰Be und ²³⁰Thex Profile des Sedimentkernes PS1524-2 gegen Kerntiefe

5.4.3 Datierung der Sedimentkerne PS2185-3/6, PS2200-5 und PS2178-5

An drei Sedimentkernen (PS2178-5, PS2185-3/6 und PS2200-5) aus dem zentralen Arktischen Ozeans wurden Radionkliduntersuchungen durchgeführt. Ziel dieser Untersuchungen ist die Rekonstruktion der paläoklimatischen Bedingungen in diesem Gebiet. Im folgenden werden zunächst der Sedimentkern PS2185-3/6 vom Lomonosov Rücken und der Sedimentkern PS2200-5 vom Morris Jesup Plateau näher betrachtet. An diesen Sedimentkernen wurden bereits im Rahmen des vom BMBF geförderten Projektes "Signalanalyse" von anderen Instituten (z.B Geomar Kiel, AWI Bremerhaven) verschiedene Parameter (Magnetosuszeptibilität, δ^{18} O Werte, Elementkonzentrationen, usw.) bestimmt Wesentlich für die Interpretationen der ermittelten Profile ist die zeitliche Einordnung dieset-Kerne, die mit Hilfe der δ^{18} O Stratigraphie und der Magnetostratigraphie erfolgen sollte.

5.4.3.1 δ¹⁸O Stratigraphie

Am Sedimentkern PS2185-3/6 konnte, aufgrund des fehlenden biogenen Karbonats, in bestimmten Kernabschnitten kein kontinuierliches δ^{18} O Profil erstellt werden. Der Sedimentkern PS2200-5 zeichnet sich zwar durch ein kontinuerliches δ^{18} O Profil [Vogt, 1997] aus, doch ist auch hier eine Bestimmung der Isotopenstadien durch den Vergleich mit der generalisierten δ^{18} O-Stratigraphie von Imbrie et al. [1984] wie in Abbildung 100 dargestellt nicht möglich.

Abb. 100: $\delta^{18}O$ Profil des Sedimentkernes PS2200-5 und die generalisierte $\delta^{18}O$ Stratigraphie von Imbrie et al. [1984]

5.4.3.2 Magnetostratigraphie

1

d

ns

e

Weiterhin existieren von Frederichs [1995] zwei mögliche Datierungsmodelle für den Sedimentkern PS2185-3/6, die auf magnetostratigraphischen Grundlagen basieren. Das erste Modell fordert, daß die gesamte bearbeitete Kernlänge (765 cm) in der Bruhnes Chron (≈780.000 a) abgelagert wurde, während das zweite Altersmodell das Kernende der Gilbert Chron (5.500.000 a) zuschreibt. Wie in Abbildung 101 gezeigt, konnten bestimmte Kernbereiche der Sedimentkerne anhand der Inklinationsprofile [Frederichs 1995] korreliert werden. Einen wichtigen Beitrag zur Klärung dieser Diskrepanz in der Alterseinteilung sollen die ²³⁰Th_{ex} und ¹⁰Be Profile liefern.

Abb. 101: Inklinationsprofile der Sedimentkerne PS2185-6 und PS2200-5 gegen Kerntiefe (aus Frederichs [1995])

5.4.3.3 ¹⁴C-Alter

Die Datierungen der Sedimentkerne PS2185-3 and PS2200-2 [Nørgaard-Pedersen, 1996; Spielhagen et al., 1997] sind in Abbildung 102 gegen die Kerntiefe geplottet. Ebenfalls sind ESR Alter (SO₃⁻ Signal) eingezeichnet, auf die in Abschnitt 5.4.3.6 näher eingegangen wird.

Abb. 102: ¹⁴C Alter und ESR Alter der Sedimentkerne PS2185-3 und PS2200-2 gegen Kerntiefe

Die mittlere Sedimentationsrate im Altersbereich der letzten 30 ka liegt bei etwa 0,55 cm ka⁻¹ für den Kern PS2185-3 und bei 0,35 cm ka⁻¹ für den Kern PS2200-2. Diese Sedimentationsraten weisen eine recht gute Übereinstimmung mit den in früheren Arbeiten abgeschätzen Raten für den Arktischen Ozean auf [Linkova, 1969; Finkel and Krishnaswami, 1977; Clark et al., 1984/85; Morris et al., 1985; Aksu and Mudie, 1985; Zahn et al., 1985; Clark et al., 1986; Herman, 1989; Darby et al., 1989; Mienert et al, 1990; Nowaczyk, 1991; Nowaczyk and Baumann, 1992; Nowaczyk et al., 1994; Stein et al., 1994 b; Henrich and Baumann, 1994; Ishman et al., 1996]. Die ebenfalls in Abbildung 101 eingezeichneten ESR Alter stimmen mit den ¹⁴C Datierungen überein.

5.4.3.4 ²³⁰Th, ¹⁰Be

Die ²³⁰Th_{ex}-Aktivitätsprofile (Abb. 108) der beiden Sedimentkerne weisen nur in den oberen 15 (PS2200-5) bzw. 30 cm (PS2185-3/6) (Abb. 103; Bereich a) hohe Aktivitäten auf. In den tieferen Kernbereichen sind ²³⁰Th_{ex} Aktivitäten, die sich vom Aktivitätsgleichgewichtszustand unterscheiden, in beiden Sedimentkernen in den Bereich c und e aufzufinden. Am ²³⁰Th_{ex} Profil vom PS2185-3/6 erkennt man, aufgrund der im Vergleich zum PS2200-5 kontinuierlicheren Beprobung, noch signifikante ²³⁰Th_{ex} Aktivitäten bei 180 cm und zwischen 250 und 300 cm.

Abb. 103: 230 Thex Aktivitäten der Sedimentkerne PS2185-3/6 und PS2200-5 gegen Kerntiefe

Die beiden ¹⁰Be-Profile (Abb. 104) zeigen längs der Kerntiefe starke Variabilitäten. Die Profile konnten miteinander korreliert werden und wurden in die Bereiche I bis V eingeteilt. Auffällig sind vorallem die Bereiche II und IV, in denen äußerst geringe ¹⁰Be-Konzentrationen aufzufinden sind.

Abb. 104: ¹⁰Be Konzentrationen der Sedimentkerne PS2185-3/6 und PS2200-5 gegen Kerntiefe

5.4.3.5 63µm Fraktion

Die Grobfraktionsanalysen wurden von Washner (AWI Bremerhaven), Spielhagen und Kassens (GEOMAR Kiel) an den Sedimentkernen PS2185-3/6 und PS2200-5 durchgeführt. Der Verlauf der Grobfraktionen der beiden Kerne (Abb. 105) bestätigt die Einteilung der Sedimentkerne in die Bereiche I bis IV. Hierbei ist zu erkennen, daß starke Einbrüche in den ¹⁰Be-Konzentrationen (Kernbereiche II, IV) mit hohen Anteilen an Grobfraktion korrelieren. Dies deutet darauf hin, daß in diesen Abschnitten der Verlauf der ¹⁰Be-Konzentration entweder durch geringe Affinität zu grobkörnigen Partikeln oder aufgrund von Verdünnungseffekten bedingt sein kann.

1897-

1111

5.4.3.6 ESR-Alter

In Tabelle 22 sind die mit der ESR Methode (SO₃⁻ Signal) berechneten Alter der Foraminiferen in den entsprechenden Kernabschnitten aufgelistet. Die ermittelten ESR Alter, größer als 30 ka, wurden aufgrund der Korrelation der beiden Sedimentkerne (¹⁰Be, 63 μ m) in die entsprechenden Kerntiefen des anderen Sedimentkernes übertragen. Die ¹⁰Be Profile und die zugeordneten ESR Alter sind in Abbildung 106 dargestellt.

Lokation	Tiefe [cm]	ESR-Alter [ka]	unteres Alter [ka]	oberes Alter [ka]	Autoren
的政治政治	and a the man of a	and a second second		1947 (Service Marker 201-41)	CONTRACTOR CONTRACTOR
PS2200-2	0	8,5	7,4	9,9	Molnar [1995]
PS2200-2	11	27,2	23,9	31,2	Molnar [1995]
PS2200-5	90	182	126	243	Molnar [1995]
PS2200-5	92	186	158	220	Molnar [1995]
Section of grant a	Merel Sciller	And A Party of Street,		and a support of the	antro de insistente
PS2185-3	0	2,2	1.9	2,6	Molnar [1995]
PS2185-3	17.5	69	45	99	Molnar [1995]
PS2185-6	231	393	327	467	Molnar [1995]

Abb. 106: ¹⁰Be Konzentrationen und ermittelte ESR Alter der Sedimentkerne PS2185-3/6 und PS2200-5 gegen Kerntiefe; die bestimmten ESR Alter wurden den entsprechenden Kerntiefen im anderen Sedimentkern zugeordnet

Problematik der ESR Datierung an Foraminiferen im Arktischen Ozean

Im Arktischen Ozean stellt die ESR-Methode ein wichtiges Hilfsmittel zur Sedimentdatierung dar, da die in anderen Ozeangebieten etablierten Methoden hier nur bedingt anwendbar sind. Notwendig sind detaillierte Untersuchungen, ob mit der ESR Methode zuverlässige Altersbestimmungen durchgeführt werden können. Vergleiche von ESR und δ^{18} O Altern am Sedimentkern RC17-177 aus dem westlichen äquatorialen Pazifik zeigten, daß diese Methode in einem Altersbereich von etwa 800 ka zuverlässige Altersbestimmungen liefert [Mudelsee et al., 1992].

Bei der Berechnung des ESR-Alters muß berücksichtigt werden, daß die initialen ²³⁰Th_{ex} Aktivitäten in den bearbeiten Kerntiefen oftmals nicht genau bekannt sind. Diese ²³⁰Th_{ex zk} Aktivitäten sind ein wesentlicher Faktor zur Bestimmung der natürlichen Dosisrate (D), der die Foraminiferen ausgesetzt waren. Dieser Punkt ist besonders wichtig für den Kernbereich 231 cm des Sedimentkerns PS2185-3/6, da hier im Gegensatz zu den anderen bearbeiteten Tiefen keine ²³⁰Th_{ex} Aktivitäten meßbar sind. Basierend auf der ¹⁴C Datierung der obersten 20 cm und den in dem Bereich gemessenen ²³⁰Th_{ex} Aktivitäten, erhält man eine Abschätzung der initialen ²³⁰Th_{ex} Aktivität, die zwischen 8 und 15 dpm g⁻¹ liegt. Unter Berücksichtigung dieser Abschätzung wurden ESR Alter für verschiedene ²³⁰Th_{ex zk}. Aktivitäten für diesen Kernbereich ermittelt. Die initialen ²³⁰Th_{ex} Aktivitäten, die akkumulierte Dosis D_E und die ermittelten Alter sind in Tabelle 23 aufgelistet. Die Berechnungen wurden von Molnar [1995] und Woda [1997, pers. Mitt] durchgeführt.

D _E [Gy]	²³⁰ Th _{ex} [dpm g ⁻¹]	ESR Alter [ka]
ALC: MERINE	r before K	1051 Miller 1051 I
809 ± 70	7	443 [385 - 520]
809 ± 70	9	430 [363 - 505]
809 ± 70	10	417 [351 - 492]
809 ± 70	11	405 [339 - 480]
809 ± 70	12	393 [327 - 467]
809 ± 70	14	369 [305 - 442]

Tab. 23: Akkumulierte Dosis, initiale ²³⁰Th_{ex} Aktivitäten und die daraus berechneten ESR Alter

Man sieht, daß die ermittelten ESR Alter trotz dieser Unsicherheit auf eine Deposition der untersuchten Foraminiferen im Isotopenstadium 11 hinweisen.

k

d

Z 1(

Molnar [1995] berichtet in seiner Diplomarbeit von Foraminiferenproben bestimmter Tiefen, die bei zusätzlicher künstlicher Bestrahlung keinen weiteren Anstieg des zur Datierung verwendeten SO₃ Signal (g = 2,0036) zeigen (Abb. 107). Die Ursachen für diesen Effekt konnten bis dato nicht geklärt werden.

Abb. 107: SO₃ Bestrahlungskurve von Foraminiferen aus 183 cm des Sedimentkerns PS2200-5; mit a.u. = arbitary unit (aus Molnar [1995])

Eine weitere Möglichkeit der ESR-Datierung von Foraminiferen bietet die Verwendung des CO_2 Signals. Die Intensitätsbestimmung dieses Signales ist aber mit großen Schwierigkeiten verbunden, da sich bei Foraminiferen aufgrund der künstlichen Bestrahlung ein relativ kurzlebiges Störsignal bildet, welches das eigentliche Meßsignal überlagert. Untersuchungen zu dieser Problemstellung werden momentan in der Diplomarbeit von Hoffmann [in prep.] am Sedimentkern PS1535-8 aus der Framstraße durchgeführt. Ziel dieser Arbeit ist die Etablierung des CO_2 Signals als Datierungstool.

5.4.3.7 Stratigraphische Einteilung der Sedimentkerne PS2185-3/6 und PS2200-5 anhand der ²³⁰Th_{ex} und ¹⁰Be Profile und den ESR Altern

Isotopenstadien 1 - 5

Der Vergleich der ²³⁰Th_{ex} und ¹⁰Be Profile vom PS2185-3/6 mit den Radionuklidprofilen vom PS1524-2 läßt vermuten, daß die ersten fünf Klimastadien im Sedimentkern PS2185-3/6 in den obersten 25 cm enthalten sind. Für diese Einteilung spricht, daß der Klimaübergang 6/5 durch einen deutlichen ²³⁰Th_{ex} Aktivitätsanstieg von Aktivitäten nahe Null zu Aktivitäten von 8 - 10 dpm g⁻¹ gekennzeichnet ist. Hohe ²³⁰Th_{ex} Aktivitäten im Isotopenstadium 3 und hohe ¹⁰Be-Konzentrationen im Isotopenstadium 5, wie sie beim PS1524-2 ersichtlich sind, können auch beim Kern PS2185-3/6 (Bereich a) ausgemacht werden. Es kann jedoch keine genauere Einteilung der einzelnen Stadien vorgenommen werden, da die zeitliche Auflösung (128 ka in etwa 20 cm) zu gering ist. Das ESR-Alter, das in der Kerntiefe von 17 - 18 cm des Sedimentkernes PS2185-3 bestimmt wurde, weist ein Alter von 63 ka [37 ka- 99 ka] auf und kann in den Isotopenstadien 3 - 5 angesiedelt werden.

Isotopenstadium 6

ng

kt

Wie beim PS1524-2 können die Kernabschnitte von 25 - 120 cm (PS2185-3/6) und 20 - 90 cm (PS2200-5), die durch niedrige Konzentrationen an ¹⁰Be (Bereich II) gekennzeichnet sind, mit dem Isotopenstadium 6 in Verbindung gebracht werden. Ein besonderes Charakteristikum für dieses Isotopenstadium stellt ein kleiner Peak an ²³⁰Th_{ex} und ¹⁰Be dar. Dieser Peak könnte das Unterstadium 6.3 (146 ka) repräsentieren.

Isotopenstadium 7 - 11

Nach der Einteilung der Isotopenstadien des Sedimentkerns 23235-2 (Abschnitt 5.2.2.1) zeichnet sich das Interglazialstadium 7 durch eine erkennbare Aktivität an ²³⁰Th_{ex} und hohe ¹⁰Be-Konzentrationen aus. Gleiche Bedingungen sind in den Sedimentkernen PS2185-3/6 und

PS2200-5 im Bereich e vorzufinden. Zusätzlich wurde ein ESR-Alter an planktischen Foraminiferen in der Kerntiefe von 90 cm am Sedimentkern PS2200-5 bestimmt. Das Alter von 182 ka [126 ka - 246 ka] bekräftigt die stratigraphische Einteilung, die anhand der Radionuklidprofile erstellt wurde. Ein weiteres ESR Alter wurde am Sedimentkern PS2185-6 in einer Tiefe von 231 cm bestimmt [Molnar, 1995]. Eingerahmt von diesen Zeitmarken wurden Kernbereiche mit hohen Grobfraktionsanteilen (Abb. 105) Glazialstadien zugeordnet. Beim Sedimentkern PS2185-3/6 wurden hierbei (Abb. 108) die Bereiche von 30 - 125 cm dem Glazialstadium 6, von 160 - 170 cm dem Glazialstadium 8, von 190 - 200 cm dem Glazialstadium 10 und von 250 bis 315 cm dem Glazialstadium 12 zugeordnet.

Abb. 108: ¹⁰Be und 63µm Profile des Sedimentkernes PS2185-3/6; hohe ¹⁰Be Konzentrationen wurden mit Interglazialstadien und hohe 63µm Fraktionen mit Glazialstadien in Verbindung gebracht

Zusammenfassend sind in Abbildung 109 die ¹⁰Be Profile der Sedimentkerne PS2185-3/6 und PS2200-5, die ESR Alter und die Einteilung der Tiefenbereiche der jeweiligen Isotopenstadien, die auf den oben angeführten Interpretationen basiert, dargestellt.

Ċ

F

d

K

1.11.1 1 (1):15

Abb. 109: ¹⁰Be Konzentrationen, ESR Alter und Einteilung der Isotopenstadien der Sedimentkerne PS2185-3/6 und PS2200-5 nach dem in diesem Abschnitt erstellten Altersmodell

5.4.3.8 Sedimentologische Untersuchungen

Da die Radionukliddeposition in die Sedimente in entscheidender Weise von Produktivität in der Wassersäule beeinflußt wird (siehe Abschnitt 2.2.1.3), könnten die maximalen ¹⁰Be Konzentrationen in den betrachteten Sedimentkernen auf erhöhte Produktivität hinweisen. Tracer für die Paläoproduktivität stellen, wie bereits in Abschnitt 5.2.1.5 erwähnt, die Elemente Kalziumkarbonat und biogenes Barium dar. Die Ba/Al Verhältnisse des Sedimentkernes PS2185-3/6 spiegeln das terrigene Ba/Al Verhältnis [Nürnberg, pers. Mitt.] wider. Dies deutet darauf hin, daß im betrachteten Zeitraum die Paläoproduktivität äußerst gering war.

Kalziumkarbonat

Die Kalziumkarbonatkonzentrationen wurden nach einem chemischen Vollaufschluß mit dem AAS gemessen. Hohe Karbonatkonzentrationen (Abb. 110) liegen, basierend auf dem in diesem Abschnitt entwickelten Altersmodell, in den Stadien 1-5 und im Isotopenstadium 11 vor. In den anderen Isotopenstadien sind nur sehr geringe Konzentrationen an Kalziumkarbonat vorzufinden. Dies deutet ebenfalls auf eine geringe biogene Beeinflussung dieses Sedimentkernes hin.

Abb. 110: Kalziumkarbonatprofil des Sedimentkernes PS2185-3/6

5.4.3.9 Datierung des Sedimentkernes PS2178-5 (Makarov Becken)

Der Sedimentkern PS2178-5, der aus dem Makarov Becken und aus einer Wassertiefe von 4008 m stammt, wurde bereits in der Diplomarbeit von Schäper [1994] bearbeitet und mit dem Sedimentkern PS2185-3/6 in Beziehung gesetzt. Anhand der Grobfraktionsanteile der beiden Sedimentkerne (Abb. 111), die uns von Wahsner und Spielhagen zur Verfügung gestellt wurden, konnten Kernbereiche, die denselben Zeitbereich überdecken, ermittelt werden. Diese Korrelation ermöglicht eine Datierung des Sedimentkernes PS2178-5.

Abb. 111: Korrelation der 63 µm Fraktionen der Sedimentkerne PS2185-3/6 und PS2178-5

Ausgehend von den Grobfraktionsanalysen der beiden Sedimentkerne wird deutlich, daß ein wesentlicher Unterschied in beiden Profilen darin besteht, daß der Beckenkern PS2178-5 mächtige Tonschichten aufweist, während diese beim PS2185-3/6 fehlen. Ein Indiz, daß im PS2185-3/6 keine Rutschung oder Hiatus vorliegt, was aufgrund der exponierten Lage nicht auszuschließen ist, stellt die Tatsache dar, daß allen Sedimentschichten im Sedimentkern PS2185-3/6 äquivalente Schichten im Kern PS2178-5 zugeordnet werden können. Deshalb kann man davon ausgehen, daß im Sedimentkern PS2185-3/6 eine weitestgehend lückenlose und kontinuierliche Sedimentabfolge vorliegt. Aus den ermittelten Alters-/Tiefenprofilen lassen sich die mittleren Sedimentationsraten der bearbeiteten Sedimentkerne PS2185-3/6 und PS2178-5 bestimmen. Die mittleren Sedimentationsraten und die Verhältnisse der Sedimentationsraten (Sps2185-3/6/Sps2178-5) sind in Tabelle 24 aufgelistet.

Klimastadien	PS2185-3/6	PS2178-5	Sps2185-3/6/Sps2178-5
6	1,75	0,98	1,78
- 7	0,56	0,85	0,66
8	0,21	0,17	1,24
9	0,27	0,42	0,64
10	0,87	0,65	1,34
11	0,82	2,2	0,37
12	1,11	0,73	1,52

 Tab. 24: Vergleich der Sedimentationsraten der Sedimentkerne PS2185-3/6 und PS2178-5 in den jeweiligen Isotopenstadien

Die berechneten Sedimentationsraten und Verhältnisse zeigen, daß in Warmzeiten die Raten im Makarov Becken (PS2178-5) etwa um 50% größer sind als am Lomonosov Rücken (PS2185-3/6), während entgegengesetzte Bedingungen in den Kaltzeiten vorliegen. Die höheren Sedimentationsraten im Makarov Becken in den Interglazialstadien könnten durch einer erhöhte Zufuhr von Tonpartikeln verursacht werden oder in einer erhöhten Produktivität begründet sein. Untersuchungen der Ba/Al Verhältnisse im Holozān von Nürnberg [1996] weisen ein höheres Produktivitätssignal im Makarov Becken als am Lomonosov Rücken auf. Die ¹⁰Be Konzentrationsprofile sind in Abbildung 112 dargestellt. Im Gegensatz zum ¹⁰Be-Profil vom PS2185-3/6 liegen beim PS2178-5 in den Klimastadien 1 - 5, 9 und 11 Bereiche homogener ¹⁰Be Konzentration vor, die auf hohe Sedimentationsraten hindeuten.

Abb. 112: Korrelation der ¹⁰Be Konzentrationen der Sedimentkerne PS2185-3/6 und PS2178-5

Die Profile der ²³⁰Th_{ex} Aktivitäten der beiden Sedimentkerne (Abb. 113), die mit Gleichung 5 berechnet wurden, sind im Isotopenstadium 7 durch deutlich über der Nachweisgrenze liegende Aktivitäten gekennzeichnet. Neben diesem Tiefenbereich ist im weiteren Verlauf der ²³⁰Th_{ex} Aktivitäten nur noch in der Kerntiefe von 275 cm (PS2185-3/6) und von 435 cm (PS2178-5) eine ²³⁰Th_{ex} Aktivät vorzufinden.

Abb. 113: Berechnete ²³⁰Th_{ex} (²³⁰Th_{gesamt} - ²³⁴Uran) Aktivitäten der Sedimentkerne PS2185-3/6 und PS2178-5

Berechnet man die ²³⁰Th_{ex}-Aktivitäten mit Gleichung 5 (²³⁰Th_{exs} = ²³⁰Th_{gesamt} - (0,75 · ²³²Th_{gesamt})), um einen möglichen Beitrag von authigenem Uran zu berücksichtigen, so erhält man den in Abbildung 114 präsentierten Verlauf. Die ²³⁰Th_{ex}-Aktivitätsprofile des Sedimentkernes PS2185-3/6 und PS2178-5 weisen deutlich erkennbare Aktivitäten im Isotopenstadium 12 auf. Die in diesem Zeitbereich [423 - 478 ka] bestimmten Aktivitäten müssen allerdings näher betrachtet werden (Abschnitt 5.4.3.11), da in Kernbereichen älter als 350 ka eigentlich kein ²³⁰Th_{ex} mehr nachzuweisen sein sollte. Beim Sedimentkern PS2200-5 wurden in dem korrespondierenden Kernabschnitt keine ²³⁰Th und ²³⁴U Aktivitäten gemessen. Er kann demzufolge keinen Beitrag zu dieser Diskussion liefern.

Abb. 114: Berechnete ²³⁰Th_{ex} (²³⁰Th_{gesamt} - (0,75 • ²³²Th_{gesamt})) Aktivitäten der Sedimentkerne PS2185-3/6 und PS2178-5

5.4.3.10 Alternatives Datierungsmodell des Sedimentkernes PS2185-3/6 von Spielhagen et al. [1997]

Neben dem in dieser Arbeit dargestellten Altersmodell existiert ein alternatives stratigraphisches Modell für den Sedimentkern PS2185-3/6 von Spielhagen et al. [1997], daß auf der zeitlichen Festsetzung der B/M Grenze und der Zuordnung jedes ¹⁰Be-Peaks mit einem Interglazialstadium basiert. In Abbildung 115 sind die Grobfraktionsanteile, die Inklinationen und die ¹⁰Be-Konzentrationen des PS2185-3/6 mit den entsprechenden Isotopenstadien dargestellt.

Abb. 115: 10 Be, 63 µm und Inklinationsprofile des Sedimentkernes PS2185-3/6; die eingezeichneten Isotopenstadien spiegeln das Altersmodell von Spielhagen et al., [1997] wider

5.4.3.11 Bewertung der beiden Altersmodelle

In diesem Abschnitt erfolgt ein Vergleich und eine Bewertung der beiden Altersmodelle. Hierbei werden die 230 They Aktivitäten und die 230 They/10 Be-Verhältnisse näher betrachtet werden.

230 The Aktivitäten

Geht man davon aus, daß die 230 Thex Aktivitäten in den Kernabschnitten von 250 -310 cm des Sedimentkerns PS2185-3/6 und von 440 - 510 cm des Sedimentkerns PS2178-5 nicht aus dem Zerfall von authigenem Uran in der Sedimentsäule entstanden sind, so können anhand der beiden Altersmodelle initiale ²³⁰Th_{ex}-Aktivitäten berechnet werden. Aus den durchschnittlichen ermittelten ²³⁰Th_{ex} Aktivitäten, den zugeordneten Altersbereichen ((Isotopenstadium 12 (Strobl, Molnar), 16 (Spielhagen)) werden die initialen 230 Thex Aktivitäten mit Gleichung 29 (Tab. 25) bestimmt.

30
Th_{ex}(0) = 230 Th_{ex}(t) • exp($\lambda \cdot t$)

(29)

mit

 $\begin{array}{l} \overset{230}{} \mathrm{Th}_{\mathrm{ex}}(0) &= \mathrm{initiale} \ ^{230} \mathrm{Th}_{\mathrm{ex}} \ \mathrm{Aktivit} \\ \mathrm{aten} \ [\mathrm{dpm} \ \mathrm{g}^{-1}] \\ \lambda &= \mathrm{Zerfallskonstante} \ \mathrm{von} \ ^{230} \mathrm{Th} \ [9,22 \ \cdot 10^{-6} \ \mathrm{a}^{-1}] \end{array}$

Klimastadien	PS2185-3/6	PS2185-3/6	PS2178-5	PS2178-5
1995年3月17日1日日日	230 Th _{ex} (t)	230 Th _{ex} (0)	²³⁰ Th _{ex} (t)	²³⁰ Th _{ex} (0)
	dpm g ⁻¹	dpm g ⁻¹	dpm g ⁻¹	dpm g ⁻¹
12	0,2-0,3	13-19	0,5-1,0	30-65
14	0,2-0,3	29-44	0,5-1,0	73-145
16	0,2-0,3	73-110	0,5-1,0	180-360

Tab. 25: Berechnung der initialen ²³⁰Th_{ex} Aktivitäten unter Berücksichtigung der angenommenen Isotopenstadien 12, 14 und 16

Die auf diese Weise ermittelten initialen ²³⁰Th_{ex} Aktivitäten deuten auf die Zuordnung der oben angeführten Kernabschnitte mit dem Isotopenstadium 12 hin. Die ²³⁰Th_{ex} (0) Aktivität von (12 - 19) dpm g⁻¹ des Sedimentkernes PS2185-3/6 liegt in derselben Größenordnung wie die Anfangsaktivitäten im Stadium 1 - 5 von ungefähr 9 - 16 dpm g⁻¹. Die in den obersten Kernbereichen aufgefundenen ²³⁰Th_{ex}(0) Aktivitäten beim PS2178-5 liegen bei 30 dpm g⁻¹ und sprechen ebenfalls für eine Zuordnung des Isotopenstadiums 12. Jedoch wurde bisher nicht berücksichtigt, daß im Glazial 12 höhere ²³⁰Th_{ex} Aktivitäten vorliegen sollen als im Interglazialstadium 11. Dies erscheint jedoch nicht realistisch, da sich die Interglazialstadien 1, 5, 7, 9 in den Sedimentkernen aus hohen nördlichen Breiten (z.B. 23235-3) immer durch höhere ²³⁰Th_{ex} Aktivitäten auszeichnen als die Glazialstadien 6, 8, 10. Ein möglicher Grund für die ermittelten ²³⁰Th_{ex} Aktivitäten könnte die Produktion von ²³⁰Th in diesen Sedimentabschnitten aus authigenem ²³⁴U darstellen. Die authigenen ²³⁴U Anteile wurden mit Gleichung 30 berechnet und sind in Abbildung 116 dargestellt. Der Faktor 0,65 spiegelt das terrigene Verhältnis der Partikel im Schelfgebiet der Laptev See (Abschnitt 4.2)wider.

$$^{238}U_{authigen} = ^{238}U_{gesamt} (0.65 \cdot ^{232}Th_{gesamt})$$
 (30)

Hierbei zeigt sich, daß nach beiden Altersmodellen die Glazialstadien durch authigene ²³⁸U Aktivitäten gekennzeichnet sind. Unter den Annahmen, daß sich einerseits der Anteil an authigenem ²³⁸U im Sediment außer durch den radioaktiven Zerfall nicht geändert hat und andererseits die Aktivitäten in den Kerntiefen von 250 - 325 cm beim PS2185-3/6 und von 440 - 485 cm beim PS2178-5 die authigenen ²³⁰Th Aktivitäten widerspiegeln, könnte man nach Gleichung 31 das Alter für diese Sedimentabschnitte berechnen.

²³⁰Th_{authigen} ~ ²³⁴U_{authigen} (1- exp (- λ (²³⁰Th) • t) (31)

Vergleicht man die Profile der authigenen ²³⁸U Aktivitäten mit den ²³⁰Th_{ex} Aktivitäten (Abb. 117) so befinden sich die beiden Radionuklide in den oben angeführten Kernabschnitten nahezu im Aktivitätsgleichgewicht. Für die Altersberechnung bedeutet dies, wie in Abbildung 118 dargestellt, daß diese Kernabschnitte älter als 250 ka sein müssen.

Abb. 117: Berechnete²³⁸U_{authigen} Aktivitäten und²³⁰Th_{ex} Aktivitäten der Sedimentkerne PS2185-3/6 und PS2178-5

Abb. 118: Aktivitäten von authigenem Uran und Thorium, aufgetragen gegen die Zeit nach dem Einbau ins Sediment

Aus diesem Grund scheint die Berechnung der in Tabelle 26 aufgeführten ²³⁰Th_{ex} (0) Aktivitäten und die daraus folgenden Interpretationen aufgrund der Vernachlässigung der authigenen Komponente nicht korrekt zu sein. Allerdings ist in einer Kerntiefe von 445 cm beim Sedimentkern PS2178-5 eine ²³⁰Th_{ex} Aktivität von etwa 1,5 dpm g⁻¹ aufzufinden. Der authigene Anteil von etwa 0,6 dpm g⁻¹ kompensiert die berechnete ²³⁰Th_{ex} Aktivität nicht, weshalb man von einer "wahren" ²³⁰Th_{ex} Aktivität von etwa 0,9 dpm g⁻¹ ausgehen kann. Geht man bei der Berechnung der initialen ²³⁰Th_{ex} Aktivität vom Isotopenstadiums 11 aus, errechnet sich eine Aktivität von etwa 40 dpm g⁻¹, während man für das von Spielhagen et al. [1997] geforderte Isotopenstadium 15 eine ²³⁰Th_{ex} (0) Aktivität von etwa 250 dpm g⁻¹ erhält. Dieses Ergebnis unterstützt das in dieser Arbeit erstellte Altersmodell.

230 Th/10 Be-Verhältnisse

Wie bei den Sedimentkernen 23059-3, 23235-3, PS2757-8 wird im folgenden das ²³⁰Th_{ex}/¹⁰Be-Profil des Sedimentkernes PS2185-3/6 (Abb. 119) betrachtet. Aus dem exponentiellen Fit (rot) läßt sich eine mittlere Sedimentationsrate von 0,58 cm ka⁻¹ in den obersten 250 cm bestimmen. Die obersten 250 cm wären demnach in 430 ka (Isotopenstadium 11) abgelagert worden. Das von Spielhagen et al. [1997] geforderte Alter

von 620 ka (Stadienübergang 16/15) wird durch die schwarze Fitgerade (Abb. 119) repräsentiert. In Abbildung 120, in dem das von uns erstellte Altersmodell eingezeichnet wurde, spiegelt die rote Fitgerade die Verhältnisse, wie sie in der Norwegen See (23059-3) und Fram Straße (23235-3) anzutreffen sind, am besten wider. Hierbei zeichnen sich Glazialstadien gegenüber Interglazialstadien durch erhöhte ²³⁰Th_{ex}/¹⁰Be Verhältnisse aus.

Abb. 119: ²³⁰Th_{ex}¹⁰Be Verhältnisse des Sedimentkernes PS2185-3/6 mit Fitgeraden die das in dieser Arbeit erstellte Altersmodell (rote Linie) und das Altersmodell von Spielhagen et al. [1997] (schwarze Linie) repräsentieren

Schlußfolgerung

Die mit Hilfe der ²³⁰Th_{ex} Aktivitäten und der ²³⁰Th_{ex}/¹⁰Be Aktivitätsverhältnisse ermittelten Ergebnisse führen zu keiner endgültigen Klärung der Datierungproblematik. Aufgrund der in den vorherigen Abschnitten aufgeführten Argumente wird das in dieser Arbeit dargestellte Altersmodell bevorzugt. Zur eindeutigen Klärung der realistischeren Datierung müssen weitere Datierungsmethoden hinzugezogen werden.

5.4.3.12 Datierung des Sedimentkernes PS2185-3/6 im Zeitbereich älter als 500.000 Jahre

Entgegen den Verhältnissen in den obersten 305 cm des PS2185-3/6 zeichnet sich das Tiefenintervall von 305 bis 765 cm (Abb. 120) durch eine homogenere Sedimentzusammensetzung und eine deutlich geringere Variation der Trägerphase für ¹⁰Be (Ton) aus.

F

Aus diesem Grund scheint es möglich zu sein eine mittlere Sedimentationsrate im Tiefenbereich zwischen 305 und 765 cm anhand eines exponentiellen Fits (Abb. 121) zu Termitteln. Die maximalen ¹⁰Be Konzentrationen $0.8 \cdot 10^9$ Atome g⁻¹ (305 cm) nehmen dabei bis zu einer Kerntiefe von 765 cm auf einen Wert von $0.3 \cdot 10^9$ Atome g⁻¹ ab. Aus dem xponentiellen Zerfall ergibt sich eine Sedimentationsrate von 0.23 ± 0.05 cm ka⁻¹ und liefert Tein Alter von 2.5 ± 0.5 ka am Kernende dieses Sedimentkernes, wenn man von einem Alter -yon 478 ka (Isotopenübergang 13/12) in der Kerntiefe von 305 cm ausgeht.

bb. 121: ¹⁰Be Konzentrationen des Sedimentkernes PS2185-3/6 in logarithmischer Darstellung gegen die Kerntiefe aufgetragen

Eine weitere Möglichkeit der Altersdatierung stellt das "Constant Flux" Modell für ¹⁰Be dar. Die Alters-Tiefenbeziehungen für den Kernbereich von 305 - 765 cm wurden mit den ¹⁰Belußdichten von 0,2, 0,3, 0,4, 0,5 und 0,6 • 10⁶ at cm⁻² a⁻¹ (Abb. 125) berechnet. Die Größenordnung dieser ¹⁰Be-Flußdichten spiegeln den rezenten atmosphärischen Input, der im grönlandischen Eisschild von Stanzick [1996] bestimmt wurde und die ¹⁰Be

Depositionsflußdichte eines Sedimentkernesaus dem zentralen Arktischen Ozean von 0,3 . 10^6 at cm⁻² a⁻¹ [Finkel and Krishnaswami, 1977] wider. Ferner wurde das ¹⁰Be-Profil mit der Sauerstoffisotopenstratigraphie vom ODP806B [Berger et al., 1993], die im Vergleich zu Imbrie et al.[1984] einen längeren Datierunszeitraum (2,2 Ma) aufweist, verglichen. Dieser Vergleich wurde durchgeführt, weil in den Isotopenstadien 5 bis 11 des PS2185-3/6 eine klare Korrelation (Abb. 122) zwischen dem Verlauf der ¹⁰Be Konzentrationen mit dem δ^{18} O Profil von Imbrie et al. [1984] vorliegt. Die Isotopenstadien 5 - 21 und die datierten Ereignisse [a] bis [d] konnten im Kern PS2185-3/6 (Abb. 123) entsprechenden Kernbereichen zugeordnet werden.

Abb. 122: Vergleich des ¹⁰Be Profils mit dem Verlauf der δ ¹⁸O Stratigrahie von Imbrie et al. [1984]

Abb. 123: Vergleich des ¹⁰Be Profils mit dem Verlauf der 8¹⁸O Stratigrahie des ODP806B

gat

In Abbildung 124 sind die Alters-Tiefenbeziehungen ab einer Kerntiefe von 305 cm (Fixalter von 478 ka) dargestellt, die einerseits aus dem "Constant Flux" Modell (Linien) und anderseits aus dem Vergleich des ¹⁰Be Profils mit der δ^{18} O Stratigraphie vom ODP806B (Punkte) ermittelt wurden. Anhand der beiden Methoden wird eine ¹⁰Be Depositionsflußdichte von 0,3 \cdot 10⁶ at cm⁻² a⁻¹ für diesen Tiefenbereich bestimmt.

Abb. 124: Berechnete Alters-Tiefenbeziehungen des Sedimentkernes PS2185-3/6 anhand der Berechnung mit dem "Constant Flux" Modell

In Abbildung 125 sind die Inklinationswerte [Frederichs, 1995] des Sedimentkernes PS2185-6 gegenüber der aus dem "Constant Flux" Modell mit einer ¹⁰Be Depositionsflußdichte von 0,3 • 10⁶ at cm⁻² a⁻¹ ermittelten Altersskala aufgetragen. Zusätzlich wurden die geomagnetischen Ereignisse und ihre erwarteten Altersbereiche [Wagner, 1995] in Abbildung 125 eingezeichnet. In dieser Abbildung ist deutlich zu erkennen, daß die magnetischen Anomalien auch anhand unseres Altersmodells zeitlich korrekt eingeordnet werden können.

Abb. 125: Inklinationsprofil des Sedimentkernes PS2185-3/6 [Frederichs, 1995] aufgetragen gegen das in dieser Arbeit ermittelte Altersmodell

5.4.3.13 Datierung des Sedimentkernes PS2200-5 im Zeitbereich älter als 500.000 Jahre Basierned auf der Datierung des Sedimentkerns PS2185-3/6 soll im nachfolgenden auch ein Altersmodell für den Tiefenbereich von 345 cm bis 700 cm des Sedimentkernes PS2200-5 erstellt werden. Dabei werden zunächst die ¹⁰Be-Profile (Abb. 126) der beiden Sedimentkerne näher betrachtet. Durch eine visuelle Korrelation der ¹⁰Be-Profile konnten bestimmte Zeitmarker beim Sedimentkern PS2200-5 gesetzt werden.

Abb. 126: Vergleich des Verlaufs der ¹⁰Be Konzentrationen der Sedimentkerne PS2185-3/6 und PS2200-5

Geht man allerdings von der Korrelation der Inklinationen der beiden Sedimentkerne (Abb. 103) aus, so ergibt sich die in Abbildung 127 dargestellte Zuordnung der Isotopenstadien. Diese Korrelation der Inklinationen von Frederichs [1995] ist in Tabelle 26 aufgelistet.

	Kerntiefe	Kerntiefe	Kerntiefe	Kerntiefe	
	cm	cm	cm	cm	
PS2185-3/6	380	450	630	720	
PS2200-5	350	400	530	600	

Tab. 26: Korrespondierende Tiefen der Sedimentkerne PS2185-3/6 und PS2200-5 anhand des Inklinationsprofils [Frederichs, 1995]

Abb. 127: Zuordnung der am Sedimentkern PS2185-3/6 ermittelten Isotopenstadien auf den Sedimentkern PS2200-5 anhand der Korrelation der Inklinationsprofile

Die beiden Alterseinteilungen weisen klare Unterschiede auf. Dabei wird bei der Korrelation der Inklinationen eine kleinere Sedimentationsrate (S₂) gefordert als bei der Korrelation der ¹⁰Be-Profile (S₁). Die Sedimentationsrate (S₂) wäre im betrachteten Kernbereich sogar kleiner als beim Sedimentkern PS2185-3/6. Diese Annahme erscheint jedoch aufgrund der hohen Grobfraktionsanteile im Tiefenbereich zwischen 400 und 550 cm des Sedimentkerns PS2200-5 (Abb. 107), verglichen mit dem Tiefenbereich 305 cm bis 765 cm des PS2185-3/6 als nicht gerechtfertigt.

5.5 Datierung von Sedimentkernen aus der Antarktis

Arktis und Antarktis unterscheiden sich im wesentlichen dadurch, daß die Arktis von Schelfgebieten umgeben ist und sich durch einen hohen Eintrag an Flußwasser auszeichnet, während die Antarktis ein Bindeglied im Austausch von Wassermassen und Wärme zwischen den Ozeanwassermassen (Atlantischer-, Pazifischer- und Indischer Ozean) bildet. Beiden Gebieten gemeinsam ist die saisonale und/oder permanente Eisbedeckung, die biogene Produktivität im Oberflächenwasser einschränkt oder komplett verhindert. Der geringe oder nicht vorhandene Anteil an biogenem Karbonat in den Sedimenten aus der Antarktis hat wie in der Arktis zur Folge, daß sich die Erstellung von vertrauenswürdigen δ¹⁸O Stratigraphien zur Datierung der Sedimentkerne recht schwierig gestaltet. Wie bisher dargestellt, kann die zeitliche Einteilung der bearbeiteten Sedimentkerne unter diesen Begebenheiten nur durch hochaufgelöste ¹⁰Be- und ²³⁰Th_{ex}-Profile in Ergänzung zu den magnetischen Parametern erzielt werden. Im folgenden werden die ²³⁰Th_{ex} und ¹⁰Be des Sedimentkernes PS1388-3 und ²³⁰Th_{ex} Profile vom Kontinentalhang der Ross See den Profilen aus dem Arktischen Ozean gegenübergestellt. Die Lokationen sind in Abbildung 128 abgebildet.

5.5.1 Datierung des Sedimentkernes PS1388-3

An diesem Sedimentkern wurde eine δ^{18} O-Stratigraphie erstellt [Grobe et al., 1990] und ¹⁰Be und ²³⁰Th_{ex} Profile [Frank et al., 1993] aufgenommen. Ausgehend vom δ^{18} O-Profil (Abb. 129), das deutliche Abweichungen vom generalisierten Martinson Profil [1987] aufweist, wurde eine erste Klimaeinteilung vorgenommen, die durch die Radionuklidprofile bestätigt und verfeinert werden sollten.

5.5.1.1 δ¹⁸O Stratigraphie

Abb. 129: δ¹⁸O Stratigraphie des Sedimentkernes PS1388-3 [Grobe et al., 1990]

5.5.1.2 ²³⁰Th, ¹⁰Be

Anhand des ²³⁰Th_{ex} Profils (Abb. 130) wurden die Klimaübergänge 6/5 und 2/1 in Kerntiefen festgelegt, in denen die ²³⁰Th_{ex}-Aktivitäten den größten Gradienten aufweisen. Diese Einteilung stimmt mit den Ergebnissen überein, die aus der Betrachtung des Verlaufs der δ^{18} O Werte erzielt wurden.

Abb. 130: 230 Thex Aktivitäten des Sedimentkernes PS1388-3 gegen die Kerntiefe

Die Einteilung der Klimastadien in Abb. 131 erfolgte mit Hilfe der "¹⁰Be-Stratigraphie", die eine wesentliche Rolle bei der Datierung von Sedimentkernen aus hohen nördlichen Breiten spielt. Hierbei zeichnen sich die Interglaziale 1 und 5 durch erhöhte ¹⁰Be Konzentrationen und die Klimastadien 2 - 4 durch niedrigere Konzentrationen aus. Die hohen ¹⁰Be Konzentrationen im Kernbereich zwischen 200 - 230 cm spiegeln demzufolge das Interglazialstadiums 5 wider.

Abb. 131: ¹⁰Be Aktivitäten des Sedimentkernes PS1388-3 gegen die Kerntiefe

5.5.1.3 "Constant Flux" Modell

Die Datierung dieses Sedimentkernes in den jeweiligen Klimastadien wurde mit dem "Constant Flux Modell" von ²³⁰Th_{ex} bestimmt. In Abbildung 132 sind die initialen ²³⁰Th_{ex} Aktivitäten gegen die Altersskala aufgetragen. Vergleicht man den Verlauf der initialen ²³⁰Th_{ex} Aktivitäten mit den initialen ²³⁰Th_{ex}Aktivitäten des Sedimentkernes 23235-3 (Abschnitt 5.2.2.1), so zeigt sich eine deutliche Übereinstimmung der beiden Profile. Wie in Abbildung 132 dargestellt, sind hohe initiale ²³⁰Th_{ex} Aktivitäten in den ersten 10 ka, von 80 - 90 ka, von 100 - 110 ka und von 180 - 240 ka zu sehen.

Abb. 132: Zerfallskorrigierte²³⁰Th_{ex} Aktivitäten des Sedimentkernes PS1388-3 gegen die Kerntiefe

5.5.2 Datierung des Sedimentkernes ANTA91-8 (Kontinentalhang der Ross See) Ceccaroni et al. [1995] bestimmten an drei Sedimentkernen vom Kontinentalhang der Ross See die ²³⁰Th_{ex} Aktivitäten. Die beiden Sedimentkerne ANTA91-2 (69°59'S, 177°47'E, Wassertiefe 3360 m), ANTA91-4 (71°11'S 178°28'E, Wassertiefe 2815 m) liegen in einem Canyon der den Kontinentalhang schneidet, wohingegen der Sedimentkern ANTA91-8 (70°47'S 172°50'E, Wassertiefe 2383 m) durch eine steilere Inklination gekennzeichnet ist. Besondere Aufmerksamkeit bei der Betrachtung dieser Kerne galt dabei dem Sedimentkern ANTA91-8. Eine zeitliche Einteilung des Sedimentkernes ANTA91-8 wurde von Ceccaroni et al. [1995], basierend auf dem Verlauf der ²³⁰Th_{ex} Aktivitäten vorgenommen und ist in Abb.133 dargestellt.

Abb. 133: ²³⁰Thex Aktivitäten des Sedimentkernes ANTA91-8 gegen die Kerntiefe

Vergleicht man dieses ²³⁰Th_{ex} Profil mit dem Aktivitätsprofil des PS2471-4 vom Kontinentalhang der Laptev See (Arktis) im Altersbereich von 12 ka bis 128 ka, so läßt sich ein ähnlicher Verlauf erkennen. In Abbildung 134 wurden deshalb die ²³⁰Th_{ex} Aktivitätsprofile der beiden Sedimentkerne mit der Isotopenstadieneinteilung vom PS2471-4 einander gegenübergestellt.

Abb. 134: ²³⁰Th_{ex} Aktivitäten der Sedimentkerne PS2471-4 (Arktis) und ANTA91-8 (Antarktis) gegen die Kerntiefe mit der Isotopenstadieneinteilung des PS2471-4, die auf den Sedimentkern ANTA91-8 übertragen wurde

Die durch diesen Vergleich erhaltene Einteilung der Isotopenstadien unterscheidet sich deutlich von der Einteilung von Ceccaroni et al. [1995]. Identisch ist die Festlegung der Klimaübergänge 6/5 und 2/1, die sich, wie in der Arktis, durch klare Gradienten in der ²³⁰Th_{ex} Aktivität auszeichnen. Um diese Diskrepanz der Datierung zu lösen, ist es notwendig im Rahmen weiterer Arbeiten die zeitliche Einteilung durch zusätzliche Datierungsmöglichkeiten (¹⁰Be, ESR) zu überprüfen.

5.5.3 Datierung des Sedimentkernes ANTA91-4 (Kontinentalhang der Ross See)

Die Datierung des Sedimentkerne ANTA91-4 erfolgte nach Ceccaroni et al. [1995] durch die Korrelation der magnetischen Suszeptibilitäten der Sedimentkerne ANTA91-4 und ANTA91-8. Hierbei wurde festgelegt, daß die obersten 150 cm vom ANTA91-4 mit den obersten 400 cm beim Sedimentkern ANTA91-8 in Beziehung gesetzt werden können. Der Sedimentkern ANTA91-4 weist demzufolge eine 2 - 3 fach geringere Akkumulationsrate auf. Analog zum ANTA91-8 wurde dem Sedimentkern ANTA91-4 der Sedimentkern PS2138-1 vom Kontinentalhang der Barents See gegenübergestellt. Die ²³⁰Th_{ex} Aktivitäten mit der Isotopenstadieneinteilung vom PS2138-1 sind in Abb. 135 dargestellt.

Abb. 135: ²³⁰Th_{ex} Aktivitäten der Sedimentkerne PS2138-1 (Arktis) und ANTA91-4 (Antarktis) gegen die Kerntiefe mit der Isotopenstadieneinteilung des PS2138-1, die auf den Sedimentkern ANTA91-4 übertragen wurde

Auch hier zeigt sich ein identischer Verlauf der beiden Profile, welche der Datierung nach Ceccaroni et al. [1995] widerspricht. Die in Abbildung 135 dargestellte zeitliche Einteilung wird durch die ²³⁰Th_{ex} Gradienten bei 20 cm (2/1) und bei 505 cm (6/5) unterstützt. Analog zum ANTA91-8 müssen zur Klärung der vorhandenen Diskrepanzen andere Datierungsmethodiken hinzugezogen werden.

5.5.4 ¹⁰Be-Profil des Sedimentkernes ANTA91-19 (Kontinentalhang der Ross See)

Von Giglio [1996] wurden ¹⁰Be-Konzentrationen am Sedimentkern ANTA91-19 (74°26,04'S 173°46,14'E, 552 m), vom Kontinentalhang der Ross See in einigen Kerntiefen aufgenommen. Hierbei wurde aus dem Altersbereich der letzten 9 ka eine durchschnittlicher ¹⁰Be-Depositionsflußdichte von 12 •10⁶ at cm⁻² a⁻¹ und aus dem Altersbereich von 9 - 18 ka von 5 •10⁶ at cm⁻² a⁻¹ ermittelt. Diese ¹⁰Be-Flußdichten liegen eindeutig über dem rezenten atmosphärischen Eintrag in der Antarktis, der am Vostok Eisbohrkern zu 0,3 •10⁶ at cm⁻² a⁻¹ [Raisbeck et al., 1992] bestimmt wurde. Auf die Gründe dieser hohen Flußdichten kann in dieser Arbeit nicht eingegangen werden, wird aber Bestandteil weiterer Untersuchungen in der Antarktis sein.

Bestimmung von ¹⁰Be- und ²³⁰Th_{ex} Depositionsflußdichten

In diesem Abschnitt werden die ¹⁰Be- und ²³⁰Th_{ex} Depositionsflußdichten der in Kapitel 5 datierten Sedimentkerne aus dem Europäischen Nordmeer und Nordpolarmeer bestimmt. Dadurch wird ermöglicht, daß die Depositionsflußdichten an den verschiedenen Lokationen in den jeweiligen Isotopenstadien miteinander in Beziehung gesetzt werden können. Die ¹⁰Be und ²³⁰Th_{ex} Depositionsflußdichten wurden nach Gleichung 14 berechnet:

$$F_A(x) = C_x(0) \cdot \rho(x) \cdot S(x)$$

mit

 $F_A(x) = Depositions flußdichte [dpm cm⁻² a⁻¹] für ²³⁰Th_{ex} bzw. [at cm⁻² a⁻¹] für ¹⁰Be$

 $C_x(0) = Zerfallskorrigierte^{230}Th_{ex}$ Aktivität [dpm g⁻¹] bzw. ¹⁰Be Konzentration [at g⁻¹]

S(x) = Sedimentationsrate [cm ka⁻¹]

 $\rho(x) = \text{Trockenraumdichten} [g \text{ cm}^{-3}]$

x = Kerntiefe [cm]

Die Datierungen der betrachteten Sedimentkerne, mit Ausnahme der Sedimentkerne 17728, 23065, 23259 [Scholten et al., 1994], die anhand von ¹⁴C-Altern, δ^{18} O-Stratigraphien, ²³⁰Th_{ex} Methode und ¹⁰Be-Stratigraphie erstellt wurden sind in Kapitel 5 ausführlich beschrieben. Für die jeweiligen Isotopenstadien war es demzufolge möglich, die ¹⁰Be- und ²³⁰Th_{ex} Depositionsflußdichten nach Gleichung 14 zu bestimmen. Die Trockenraumdichten der bearbeiteten Sedimentkerne wurden uns von Wahsner, Spielhagen und Kassens zur Verfügung gestellt.

6.1 Vertikale ¹⁰Be Depositionsflußdichten

Aus dem Vergleich der ²³⁰Th_{ex} Depositionsflußdichten (F_A) mit der aus der Wassersäule erwarteten Produktion (F_P) können, wenn Scavenging Prozesse vernachlässigbar sind, Aussagen über Sedimentumlagerungen (Focusing, Winnowing) getroffen werden. Diese Prozesse sind ausführlich in Abschnitt 2.4.3.2 dargestellt. Weiterhin wurden die ¹⁰Be Depositionsflußdichten auf Sedimentumlagerungsprozesse korrigiert. Diese vertikalen Flußdichten konnten nach Gleichung 32 berechnet werden.

$$F_V(^{10}Be) = \frac{F(^{10}Be)}{\frac{F_A}{F_P}(^{230}Th)}$$

6.1.1 Vertikale ¹⁰Be-Flußdichten der Sedimentkerne 23059-3 und PS1533-3 Es ist aufgrund der großen Unsicherheiten in den Sedimentationsraten nicht möglich, für jeden ¹⁰Be Meßpunkt eine ¹⁰Be Depositionsflußdichte zu bestimmen. Nur anhand der Gleichung 32 können für jeden Meßpunkt vertikale ¹⁰Be-Flußdichten ermittelt werden.

(32)

Grundvoraussetzung dieser Berechnung ist, daß Scavenging Prozesse für ²³⁰Th_{ex} zu vernachlässigen sind. Die vertikalen ¹⁰Be Depositionsflußdichten wurden für die Sedimentkerne 23059-3 und PS1533-3 berechnet und in Abbildung 136 dargestellt.

Abb. 136: Vertikale ¹⁰Be Flußdichten der Sedimentkerne 23059-3 und PS1533-3 gegen das Alter

6.1.2 Vergleich der vertikalen ¹⁰Be Depositionsflußdichten mit dem Inklinationsprofil des PS1533-3

0

en

Der Vergleich der vertikalen ¹⁰Be-Flußdichten (Abb. 136) mit den Inklinationsänderungen [Nowaczyk, 1991] (Abb. 137) zeigt einen deutlichen Zusammenhang. Hierbei zeichnen sich Zeiten erhöhter vertikaler ¹⁰Be-Flußdichten (20 - 40 ka, 80 ka) durch drastische Änderungen in der Inklination) aus. Der Inklinationswechsel bei 120 ka ist beim Sedimentkern PS1533-3 jedoch nicht deutlich erkennbar, während der Sedimentkern 23059-3 auch in diesem Altersbereich erhöhte vertikale ¹⁰Be-Flußdichten aufweist. Diese Korelation deutet daraufhin, daß zur Zeiten eines Inklinationswechsel (angenommene Schwächung des Erdmagnetfeldes) eine erhöhte Produktion an ¹⁰Be in der Erdatmosphäre stattgefunden hat.

¹⁰Be und ²³⁰The Depositionsflußdichten

6.1.3 Komponenten der vertikalen ¹⁰Be Depositionsflußdichten

Die Größenordnungen der berechneten vertikalen ¹⁰Be-Flußdichten werden bei den Sedimentkernen von drei Faktoren, dem atmosphärischen Eintrag (Produktion), der Paläoproduktivität und Scavenging Prozesse gesteuert. Bei den Sedimentkernen 23059-3 und PS1533-3 liegt mit Ausnahme der Altersbereiche von 12 - 0 ka und von 120 - 100 ka beim Sedimentkern 23059-3 und von 30 - 12 ka beim Sedimentkern PS1533-3 keine Paläoproduktivität (siehe Abschnitt 5.3.1.7) vor. Bei der Betrachtung der Abbildung 136 ¹⁰Be daß in den angeführten Zeitabschnitten die vertikalen erkennt man. Depositionsflußdichten deutlich höher als die über den gesamten Kern gemittelten ¹⁰Be Depositionsflußdichten sind. Beim Sedimentkern PS1533-3 können deshalb die hohen vertikalen ¹⁰Be Depositions-flußdichten im Altersabschnitt von 12 ka bis 30 ka sowohl durch Änderungen in der ¹⁰Be Produktion (Geomagnetfeld) als auch durch erhöhte Paläoproduktivität verursacht worden sein.

6.1.3.1 Produktionskurve von ¹⁰Be in der Erdatmosphäre

Die Intensität des Erdmagnetfeldes unterlag im Laufe der Erdgeschichte deutlichen Schwankungen. Dabei variiert die ¹⁰Be-Produktion in der Erdatmosphäre annähernd mit

(33)

(34)

$$\frac{1}{\sqrt{\text{geomag. Feld}}}$$
 [Lal, 1987]

Änderungen im Erdmagnetfeld der letzten 140 ka wurden von Meynadier et al. [1992] und Tric et al. [1992] anhand der Paläodiplofelder in Sedimentkernen und von Mazaud et al. [1994] durch die Bestimmung der ¹⁰Be Konzentrationen im Vostok Eisbohrkern rekonstruiert. Für den Altersbereich von 200 - 140 ka wurden die Paläodipolfelder an Sedimentkernen aus dem westlichen Pazifik von Yamazaki und Ioka [1995] ermittelt und mit der Gleichung 34 in eine relative synthetische ¹⁰Be-Produktionsrate umgesetzt.

$$\frac{Q_{M}}{Q_{M_{o}}} = \sqrt{\frac{M_{o}}{M}}$$

¹⁰Be und ²³⁰Thex Depositionsflußdichten

Die in Abbildung 138 dargestellte ¹⁰Be Produktionsrate ist eine Kombination der relativen synthetischen ¹⁰Be-Produktionsrate aus den Arbeiten von Mazaud [1994] und Yamazaki und Ioka [1995].

Abb. 138: Relative Produktionsraten nach Mazaud [1994] und Yamazaki und Ioka [1995] gegen Alter

6.1.3.2 Bestimmung der Paläoproduktivität von den Kernen 23059-3 und PS1533-3

Die Korrektur der vertikalen ¹⁰Be-Depositionsflußdichten auf geomagnetische Schwankungen läßt Rückschlüße auf Änderungen in der Paläoproduktivität zu. In der Abbildung 139 sind die vertikalen ¹⁰Be Depositionsflußdichten der beiden Sedimentkerne eingezeichnet und der anhand der relativen Produktionsraten, mit einer angenommenen rezenten atmosphärischen ¹⁰Be Flußdichte von 0,5 · 10⁶ at cm⁻² a⁻¹, ermittelten atmosphärischen ¹⁰Be Eintrag im Europäischen Nordmeer während den letzten 200 ka. Gegenüber dem atmosphärischen Eintrag erhöhte vertikale ¹⁰Be-Flußdichten werden hierbei, unter der Voraussetzung, daß keine Änderungen in den ¹⁰Be Svavenging Prozessen im betrachteten Zeitraum vorliegen, mit erhöhter Paläoproduktivität in Verbindung gebracht. Beim Sedimentkern 23059-3 zeichnet sich das Isotopenstadium 5 und beim PS1533-3 die Altersbereiche von 90 - 74 ka und von 40 - 20 ka durch erhöhte vertikale ¹⁰Be Depositionsflußdichten aus. Die Kalziumkarbonat und Ba/Al Profile dieser Sedimentkerne deuten ebenfalls in den oben angeführten Zeitabschnitten auf erhöhte Paläoproduktivität hin.

Abb. 139: Vertikale ¹⁰Be Depositionsflußdichten der Sedimentkerne 23059-3 und PS1533-3 sowie der erwartete atmosphärische Eintrag (rote Linie); blaue Fläche kennzeichnen ¹⁰Be Flußdichten, die deutlich über dem atmosphärischen Eintrag liegen

6.2 ¹⁰Be und ²³⁰Th_{ex} Depositionsflußdichten im Europäischen Nordmeer und im Nordpolarmeer

In den folgenden Tabellen sind die über den gesamten Kern gemittelten ¹⁰Be und ²³⁰Ther Depositionsflußdichten, wie die FA/FP (230Th) Verhältnisse und die vertikalen 10Be Depositionsflußdichten aufgelistet. Die angeführten Parameter sind desweiteren für jedes Isotopenstadium der untersuchten Sedimentkerne im Anhang C dargestellt.

Norwegen- und Grönland See				
Lokation	F _A (²³⁰ Th) [dpm cm ⁻² ka ⁻¹]	F_A/F_P (²³⁰ Th)	F (¹⁶ Be) [10 ⁶ at cm ⁻² a ⁻¹]	F _v (¹⁰ Bc) - [10 ⁶ at cm ⁻² s
23059-3	6,35 ± 1,50	1,05 ± 0,25	$1,09 \pm 0,23$	$1,15 \pm 0,46$
23065	6,35 ± 2,15	0,86 ± 0,29	Million and and and	and a loss of
17728	4,75 ± 1,18	$0,72 \pm 0,18$	t lind mit der Gie	
23259	11,10 ± 4,50	1,68 ± 0,37		

¹⁰Be und ²³⁰Thex Depositionsflußdichten

Lokation	F _A (²³⁸ Th) [dpm cm ⁻² ka ⁻¹]	F _A /F _P (²³⁰ Th)	F (¹⁸ Be) [10 ⁶ at cm ⁻² a ⁻¹]	F _y (¹⁸ Be) [10 ⁶ at cm ⁻² a ⁻¹]
23235-3	6,44 ± 1,81	0,99 ± 0,28	1,28 ± 0,34	$1,26 \pm 0,60$
PS1533-3	8,00 ± 2,35	$1,50 \pm 0,45$	$2,44 \pm 0,55$	1,80 ± 0,75

Framstraße und Yermak Plateau

Kontinentalhänge der Barents See und Laptev See

Lokation	FA (²⁵ Th) (dpm cm ² ka ⁻¹)	F _A /F _P (¹³⁶ Th)	B("Be) [10" st.cm s"]	F _y (¹⁶ Be) [10 ⁶ at cm ⁻² a ⁻¹]
PS2138-1	6,60 ± 2,50	2,50 ± 1,10	1,90 ± 0,65	0,85 ± 0,40
PS2456-3	14,45 ± 5,15	$2,25 \pm 0,80$	$4,10 \pm 0,60$	1,80 ± 0,65
PS2471-4	12,76 ± 4,90	$1,60 \pm 0,60$	$3,40 \pm 1,00$	2,00 ± 1,09
PS2474-3	$16,35 \pm 3,60$	4,16±0,92		

Zentraler Arktischer Ozean

Sedimentkern	F _A (²³⁶ Th) [dpm cm ⁻² ka ⁻¹]	F_A/F_P (²³⁰ Th)	F (¹⁰ Be) [10 ⁶ at cm ⁻² a ⁻¹]	F _v (¹⁶ Be) [10 ⁶ at cm ⁻² a ⁻¹]
PS1524-2	5,12 ± 1,24	$0,53 \pm 0,13$	$0,40 \pm 0,10$	0,80 ± 0,34
PS1521-15	5,73 ± 1,95	$0,57 \pm 0,20$	$0,65 \pm 0,27$	1,20 ± 0,65
PS2757-8	$4,02 \pm 1,94$	$1,25 \pm 0,60$	$0,83 \pm 0,18$	0,72 ± 0,35
PS2185-3/6			$0,32 \pm 0,08$	
PS2178-5		00	$0,69 \pm 0,36$	"BqDe
PS2200-5			0,27 ± 0,08	

Betrachtet man die berechneten F_A/F_P (²³⁰Th) Verhältnisse, so erkennt man, daß sich die Kontinentalhanggebiete durch hohe Werte (1,60 - 4,16) auszeichnen, während im zentralen Arktischen Ozean Verhältnisse von etwa 0,50 vorlagen. Dies läßt vermuten, daß neben Focusing bzw. Winnowing auch Scavenging vorliegen kann. In der Norwegen See ist die Akkumulationsflußdichte an ²³⁰Th_{ex} gleich der Produktion in der Wassersäule. Die ¹⁰Be-Depositionsflußdichten weisen eine ähnliche Tendenz mit hohen Werten in den Kontinentalhanggebieten und deutlich niedrigeren ¹⁰Be-Flußdichten im zentralen Arktischen Ozean auf.

6.2.1 ¹⁰Be und ²³⁰Th_{ex} Depositionsflußdichten im Europäischen Nordmeer und im Nordpolarmeer in den jeweiligen Isotopenstadien

Interglazialstadium 1 F_A/F_P Verhältnisse

¹⁰Be Depositionsflußdichten

Glazialstadium 2 F_A/F_P Verhältnisse

¹⁰Be Depositionsflußdichten

and the second

and the second second second

"Be Dependentions Hubdichton

the state

Interstadial 3 F_A/F_P Verhältnisse

¹⁰Be Depositionsflußdichten

Glazialstadium 4 F_A/F_P Verhältnisse

¹⁰Be Depositionsflußdichten

"Re Depentional full de Inten

Interglazialstadium 5 F_A/F_P Verhältnisse

Ĩ

5

L

L

T

¹⁰Be Depositionsflußdichten

Glazialstadium 6 F_A/F_P Verhältnisse

¹⁰Be Depositionsflußdichten

6.2.2 Vergleich der rezenten ¹⁰Be Depositionsflußdichten in hohen nördlichen Breiten

In der Laptev See, im unmittelbaren Ausflußgebiet der Lena, wurden an Sedimentkernen ¹⁰Be Flußdichten von etwa $(140 \pm 30) \cdot 10^6$ at a⁻¹ cm⁻² ermittelt. Die ¹⁰Be Depositionsflußdichten (Abb. 140) zeigen einen deutlichen Rückgang mit anwachsender Entfernung vom Ausflußgebiet und weisen in einer Distanz von etwa 200 km nur noch Werte von $(20 \pm 5) \cdot$ 10^6 at a⁻¹ cm⁻² auf. Vergleicht man diese Flußdichten mit dem atmosphärischen Input von $(0,2) \cdot 0,5) \cdot 10^6$ at a⁻¹ cm⁻², der von Stanzick [1996] in Grönland bestimmt wurde, läßt sich hieraus ein deutlicher Eintrag von kontinentalem ¹⁰Be mit den sibirischen Flüssen ableiten. Die im Kontinentalhanggebiet der Laptev See bestimmten ¹⁰Be-Flußdichten liegen im Bereich von $(2 - 7) \cdot 10^6$ at a⁻¹ cm⁻². Diese Flußdichten sind gegenüber dem atmosphärischen Input zwar erhöht, scheinen jedoch vor allem Scavenging Prozesse widerzuspiegeln, während der Eintrag von kontinentalem ¹⁰Be praktisch zu vernachlässigen ist.

Abb. 140: ¹⁰Be Depositionsflußdichten im Schelf- und Hanggebiet der Laptev See, dem zentralen Arktischen Ozean und der Norwegen See

Im zentralen Arktischen Ozean liegen die ¹⁰Be Flußdichten im Bereich zwischen (0,2 - 0,6) • 10⁶ at a⁻¹ cm⁻² und entsprechen dem rezenten atmosphärischen ¹⁰Be Eintrag in Grönland. Aus diesen Untersuchungen kann gefolgert werden, daß die sibirischen Flußsysteme (wie Lena, Yana, Khatanga, Ob) große Mengen an kontinentalem ¹⁰Be aus dem sibirischen Hinterland in den Arktischen Ozean transportieren, dieses jedoch zumindest heutzutage zum überwiegenden Teil direkt im Mündungsbereich wieder abgelagert wird. Die Sedimentkerne aus dem Kontinentalhanggebiet zeichnen sich hingegen nur durch eine geringe Beeinflussung durch kontinentales ¹⁰Be aus, während die Sedimentation an ¹⁰Be im zentralen Arktischen Ozean ausschließlich durch den atmosphärischen Eintrag bestimmt wird.

7¹⁰Be Konzentrationen in Wasserproben

Im folgenden werden ¹⁰Be Konzentrationen in Wasserproben aus dem Europäischen Nordmeer, dem zentralen Arktischen Ozean und aus dem Schelfgebiet der Laptev See diskutiert. Die Bestimmung der ¹⁰Be Konzentrationen in den oben angeführten Regionen ist eine unverzichtbare Grundlage, zur Rekonstruktion der rezenten ¹⁰Be Transportwege in hohen nördlichen Breiten (Kapitel 8).

7.1 Europäisches Nordmeer

Während der Expedition ARK VII/1 [Thiede und Hempel, 1991] wurden von Eisenhauer und Billen Wasserproben für die Bestimmung der ¹⁰Be-Konzentrationen genommen. Die chemische Aufbereitung und die Messung der Proben wurden von Frank und Rutsch durchgeführt.

Das Europäische Normeer wird in den Oberflächenströmungen durch den nordwärtsgerichten Norwegenstroms, ein nördlicher Ausläufer des warmen Nordatlantikstromes und dem südwärts gerichteten Ostgrönlandstrom geprägt. Der Norwegenstrom spaltet sich etwa auf der Höhe des Nordkaps in den Westspitzbergenstrom und den Nordkapstrom auf. In Abbildung 140 sind die Probenlokationen dargestellt und im Anhang A.1 aufgelistet.

Abb. 140: Lokationen der bearbeiteten Wasserproben aus dem Europäischen Nordmeer; die rot gekennzeichneten Lokationen befinden sich im Einflußbereich des Nordatlantikstroms, während die blau gekennzeichneten Lokationen hauptsächlich von Wassermassen des Ostgrönlandstroms dominiert werden

Abb. 141: ¹⁰Be Konzentrationen von Wasserproben aus dem Europäischen Nordmeer

Vergleicht man die Wasserprofile (Abb. 141), so zeigt sich, daß die von arktischen Wassermassen beeinflußten Lokationen ¹⁰Be Konzentrationen von etwa 500 at g⁻¹ und die Lokationen im Einflußbereich atlantischer Wassermassen ¹⁰Be Konzentrationen von etwa 1.000 at g⁻¹ aufweisen. Die bestimmten ¹⁰Be-Konzentrationen im Norwegenstrom spiegeln die Verhältnisse im Nordatlantik wider. Ein ¹⁰Be-Tiefenprofil [Ku et al., 1990] aus dem Nordatlantik (Ausgangspunkt des Golfstroms) weist eine mittlere Konzentration von etwa 800 at g⁻¹ auf.

7.2 Zentraler Arktischer Ozean

Bis dato liegen keine Untersuchungen der ¹⁰Be-Konzentrationen in Wasserprofilen im Arktischen Ozean vor. Das in dieser Arbeit untersuchte Probenmaterial wurde uns von Scholten und Rutgers van der Loeff dankenswerter Weise zur Verfügung gestellt. Die Lokationen der drei bearbeiten Tiefenprofile sind in Abbildung 142 dargestellt und im Anhang A.1 aufgelistet.

Abb. 142: Lokationen der Wasserprofile aus dem zentralen Arktischen Ozean
Die ¹⁰Be-Konzentrationen an den bearbeiteten Lokationen weisen ¹⁰Be-Konzentrationen von 500 at g⁻¹ auf. Es ist keine Tiefenabhängigkeit in den ¹⁰Be Konzentrationen aufzufinden, sondern es zeigt sich eine homogenes Tiefenprofil. Diese vorgefunden Verhältnisse setzten sich, wie in Abb. 143 gezeigt, auch in den Profilen des Ostgrönlandstroms fort.

7.3 Laptev See

Der Arktische Ozean ist zu 2/3 von Schelfgebieten (Laptev See, Kara See, Barents See, Ostsibirische See) umgeben. Die Laptev See und die Kara See zeichnen sich dabei durch hohe Flußeinträge durch die Flüsse wie Lena, Yana, Khatanga, Olenek, Ob aus. Ein wesentliches Ziel war es den Eintrag von kontinentalem ¹⁰Be mit den Flußsystemen in das Schelfgebiet der Laptev See zu untersuchen. Es wurden während den Expeditionen Transdrift II [Kassens, 1994] und Transdrift III [Kassens, 1995] Wasserproben entnommen. Hierbei wurde Probenmaterial zur Bestimmung der Gesamtkonzentration, der partikulären sowie gelösten ¹⁰Be Konzentrationen gewonnen. Die ¹⁰Be Gesamtkonzentrationen (Tab. 27) konnten mit den Wasserproben im Europäischen Nordmeer und aus dem zentralen Arktischen Ozean in Beziehung gesetzt werden. Die Probenlokationen im Schelfgebiet der Laptev See sind in Abb. 144 dargestellt und im Anhang A.1 aufgelistet.

Abb. 144: Lokationen der Wasserprofile aus dem Schelfgebiet der Laptev See

Lokation	Wassertiefe	¹⁰ Be	Salinität
the Bernstein at ler	[m]	[Atome g]	[700]
PM9472-3	2	5740 ± 600	5,2
PM9463-1	2	2150 ± 300	21,0
PM9463-1	30	3135 ± 520	31,5
KD9561-1	0	1970 ± 150	?
	D needla reliante	.now.EXLam sta	and a state
KD9529-16	0	2430 ± 125	12,6
RANG SHARES	and the trit offer me	international acov	ectri Bintra
KD9523-4	5	1610 ± 200	17,0
KD9523-4	10	1750 ± 200	19,0
KD9523-4	20	1880 ± 200	20,0
KD9517-7	0	2460 ± 130	?
KD9502-8	5	1910 ± 200	20,20

Mündungsbereich der Lena

Tab. 27: Totale ¹⁰Be Konzentrationen der bearbeiteten Wasserproben aus dem Mündungsbereich der Lena

:138

in the

Im Übergangsbereich Delta/Schelfgebeit ist die größe totale ¹⁰Be-Konzentrationen aufzufinden. Mit zunehmender Distanz zum Mündungsgebiet werden die ¹⁰Be-Konzentrationen kleiner, weisen aber bis zum Übergangsbereich Schelf/Kontinentalhang noch Konzentrationen zwischen 2.000 und 3.000 at g⁻¹ auf. Diese ¹⁰Be-Konzentrationen liegen deutlich über den in den anderen Untersuchungsgebieten bestimmten Konzentrationen und deuten auf eine Zufuhr von kontinentalem ¹⁰Be mit den Flüssen Lena und Yana hin.

Mündungsbereich des Oleneks und Kathangas

Die Wasserproben aus dem Mündungsbereich des Khatangas und Oleneks (Tab. 28) sind ebenfalls, wie im Mündungsbereich der Lena, durch hohe ¹⁰Be Konzentrationen gekennzeichnet.

Lokation	Wassertiefe [m]	¹⁹ Be [Atome g ⁻¹]
a state		the stand of a
KD9564-4	0	725 ± 50
KD9564-4	10	1600 ± 100
KD9564-4	20	2050 ± 120
ter and an arrival	alite on the state	Address More average
PM9494-3	2 .	895 ± 200
1		
KD9568-9	0	650 ± 75
KD9568-9	25	1800 ± 200

Tab. 28: Totale ¹⁰Be Konzentrationen der bearbeiteten Wasserproben aus dem Mündungsbereich des Oleneks und Kathangas

Partikuläre und gelöste ¹⁰Be Konzentrationen im Schelfgebiet der Laptev See

Lokation	Wassertiefe [m]	¹⁰ Be [Atome g ⁻¹]	Salinitāt [‰]
	n Schelfgebie 4	alonter Phone I	tetilich in g
KD9531-2 (gelöst)	0		11,1
KD9531-2 (partikulär)	0	580 ± 100	11,1
28), so dested click+a	tergen (Tab	esseriefs and	annder W
KD9533- 9 (gelöst)	0	2530 ± 130	10,0

Wassertiefe	¹⁰ Be	Salinität
	[Atome g ^{-1]}	[‰]
0	320 ± 50	10,0
mit bestime.	ner deutsa	in his an all
5 - 10	2250 ± 125	10,9
5 - 10	360 ± 50	10,9
	the state of the state of the	ni sini alla
0	3300 ± 150	9,6
0	2410 ± 200	9,6
den Schultur	meter toping	12
17	1100 ± 70	28,0
17		28,0
05 14	and the second	
0	1450 ± 80	25,5
0	520 ± 100	25,5
	14.5%	
10	1110 ± 60	26,1
10		26,1
20	790 ± 80	33,0
20		33,0
	Wassertiefe [m] 0 5 - 10 5 - 10 0 0 0 17 17 17 17 17 17 17 17 17 20 20 20	Wassertiefe 1^{9} Be [m] [Atome g ^{-1]} 0 320 ± 50 5 - 10 2250 ± 125 5 - 10 360 ± 50 5 - 10 360 ± 50 0 3300 ± 150 0 2410 ± 200 10 1100 ± 70 17 1100 ± 70 17 1100 ± 70 17 1100 ± 70 10 1450 ± 80 0 520 ± 100 10 1110 ± 60 10 1110 ± 60 10 20 20 790 ± 80

Tab. 29: Partikuläre und gelöste ¹⁰Be Konzentrationen der bearbeiteten Wasserproben aus dem Schelfgebiet der Laptev See

Aus diesen Untersuchungen folgt, daß ¹⁰Be in den Oberflächenproben (Tab. 29) hauptsächlich in gelöster Phase im Schelfgebiet der Laptev See vorliegt. Nur in unmittelbarer Nähe zum Mündungsbereich (KD9541-14) ist das Verhältnis gelöst zu partikulär nahezu eins, während ansonsten der gelöste Anteil an ¹⁰Be bei etwa 80% liegt. Beim Wasserprofil KD9548-7 ist eine Abnahme der gelösten ¹⁰Be-Konzentrationen mit zunehmender Wassertiefe zu sehen. Geht man davon aus, daß die totalen ¹⁰Be-Konzentrationen mit zunehmender Konzentrationen an partikulärem ¹⁰Be mit der Tiefe hin. Dies kann auf eine Zunahme der Partikelkonzentrationen mit der Wassertiefe zurückgeführt werden [Antonov 1994].

7.4 Vergleich der ¹⁰Be-Konzentrationen mit dem Mündungsgebiet des Kongos (Afrika)

Die ¹⁰Be-Konzentrationen im Mündungsgebiet des Kongos (Tab. 30) sind aus der Arbeit von Nagel [1990] entnommen. Die ¹⁰Be Konzentrationen liegen, konkordant zur Laptev See, im Bereich von 2.000 bis 3.500 at g⁻¹. Die hohen Konzentrationen deuten demzufolge in beiden Gebieten auf die Zufuhr von kontinentalem ¹⁰Be mit den Flüssen Lena bzw. Kongo hin.

Tiefe [m]	1026	Fehler	1037	Fehler	1047	Fehler
11-12-64						
100			aller all			
500	1927	332	2244	280		
2000				Sectioner 1	2168	170
3000				- DEFICITE L	1383	680
- 3500	3532	611		A BASE RADING	2055	224

Tab. 30): Totale	¹⁰ Be Konzentrationen de	r bearbeiteten	Wasserproben aus	dem Mündungs-
	bereich	des Kongos (aus Nagel	[1990])		and an and the state of the

7.5 Bestimmung der Verweilzeiten von ¹⁰Be in den Untersuchungsgebieten Der Verweilzeiten der betrachteten Radionuklide (hier ¹⁰Be) hängen im allgemeinen von der Wassertiefe, den Partikelkonzentrationen und den Adsorptionszeiten der gelösten Phase an die Partikeln ab. Die Verweilzeiten von ¹⁰Be in der Wassersäule lassen sich aus dem Inventar an ¹⁰Be und den Depositionsflußdichten bestimmen. Sie wird definiert als:

$$\tau = \frac{I_t(h)}{F_{Pr oduktion}}$$

mit

$$I_t(h) = \int_0^h (C(h) \cdot \rho(h) \cdot h) \cdot dh$$

 τ λ_s It h C(h) $\rho(h)$ Fproduktion

= Verweilzeit in der Wassersäule ($\tau = 1/\lambda_s$) [a]

= Sedimentationskonstante [a⁻¹]

= totales Inventar [Atome] für ¹⁰Be

= Wassertiefe [m]

= ¹⁰Be Konzentration in der Tiefe h [Atome g-1]

= Dichte in der Tiefe h

= Atmosphärische¹⁰Be Flußdichte [Atome cm⁻² a^{-1}]

Geht man davon aus, daß die Deposition gleich der Produktion ist, so läßt sich Gleichung 35 wie folgt umformen:

(35)

$$\tau = \frac{I_t(h)}{F_{\text{Deposition}}}$$

In dieser Arbeit konnten die Verweilzeiten von ¹⁰Be in der Norwegen See, dem zentralen Arktischen Ozean und dem Schelfgebiet der Laptev See mit Gleichung 36 bestimmt werden. Hierbei wurden zur Berechnung die rezenten Depositionsflußdichten (Tab. 31) an den entsprechenden Lokationen verwendet.

Lokation	Sediment- kerne	Wasser- profile	¹⁶ Be-Depositions- flußdichten	Verweilzeiten
- Marine Alexandrica		10.224	10^6 at cm ⁻² a ⁻¹	[a]
Norwegen See	23059-3	8	(1,1 ± 0,2)	200 ± 70
Z. Arktischer Ozean	PS2185-3	173	(0,4 ± 0,2)	560 ± 200
Kontinentalhangbereich	PS2471-4	?	(2,8 ± 0,8)	170 ± 70
Lena Delta	PM9463-8	PM9463-1	(60,0 ± 13,0)	1±1

Tab. 31: Berechnete ¹⁰Be Verweilzeiten in den oben angeführten Regionen

Schwierigkeiten bei den oben angeführten Berechnungen treten bei den Profilen im zentralen Arktischen Ozean auf, weil die ermittelten ¹⁰Be Depositionsflußdichten aus einer Wassertiefe von etwa 1.000 m bestimmt wurden während die Wasserprofile an Lokationen mit Wassertiefen von bis zu 4.500 m genommen wurden. Zur Bestimmung der exakten ¹⁰Be Verweilzeit im Arktischen Ozean ist demzufolge die Kenntnis der rezenten ¹⁰Be-Depositionsflußdichte in 4.500 m erforderlich. Der von Stanzick [1996] ermittelte Input an ¹⁰Be in Grönland von (0,2 - 0,5) 10⁶ at cm⁻² a⁻¹ unterstützt allerdings die für den Arktischen Bereich angesetzte ¹⁰Be-Depositionsflußdichte. Am Kontinentalhangbereich wurde eine ¹⁰Be-Konzentration von 2.000 at g⁻¹ angenommen. Da bisher in diesem Gebiet keine ¹⁰Be-Konzentrationen gemessen wurden, kann dies nur eine grobe Abschätzung darstellen.

(36)

8 Rekonstruktion der paläoklimatischen Bedingungen in hohen nördlichen Breiten

Ziel der Radionukliduntersuchungen im Europäischen Nordmeer und im Nordpolarmeer ist die Datierung von Sedimentkernen, sowie die Rekonstruktion der paläoklimatischen Bedingungen. Hierzu ist es notwendig, daß zunächst die rezenten Transportwege der Radionuklide ¹⁰Be, ²³⁰Th_{ex} und ²³¹Pa_{ex} verstanden sind und anhand eines numerischen Boxmodelles reproduziert werden können. Aus den Änderungen der Transportwege (Quellen, Senken) kann man auf die vorherschenden paläoklimatischen Bedingungen schließen. Im speziellen wird bei der Modellierung der rezenten Bedingungen in hohen nördlichen Breiten das Hauptaugenmerk auf das Radioisotop ¹⁰Be gelegt, da hier ein umfassender Datensatz über den atmosphärischen Fluß, Depositionsflußdichten und Wasserkonzentrationen (siehe Kapitel 3, 6 und 7) vorliegt.

8.1 Modellierung der Transportwege der Radionuklide ¹⁰Be, ²³⁰Th_{ex} und ²³¹Pa_{ex} in hohen nördlichen Breiten

Im ersten Ansatz unserer Modellierung wurden die hohen nördlichen Breiten in 4 Boxen (Abb. 145) eingeteilt.

- 1) Norwegen- und Grönland See
- 2) Zentraler Arktischer Ozean
 - 3) Kontinentalhang der Laptev See
 - 4) Schelfgebiet der Laptev See

Abb. 145: Europäisches Nordmeer und Nordpolarmeer mit der für die Modellierung gewählten Einteilung der vier Regionen

8.1.1 Boxmodell

Im folgenden werden die Rahmenbedingungen unseres Boxmodells, die mathematische Struktur und die betrachteten Radionuklide dargestellt.

8.1.1.1 Radionuklide

Bei den Radionukliden ¹⁰Be, ²³⁰Th_{ex} und ²³¹Pa_{ex} liegen die wesentlichen Unterschiede in den Produktionsgebieten und in den Verweilzeiten in der Wassersäule.

Produktion:

¹⁰ Be	Atmosphäre	
²³⁰ Th , ²³¹ Pa	Wassersäule	

Verweilzeiten in der Wassersäule

Im zentralen Arktischen Ozean wurden Verweilzeiten von ²³⁰Th_{ex} auf 25 Jahre [Scholten et al. 1995], von ²³¹Pa_{ex} auf 125 Jahre [Scholten et al. 1995] und von ¹⁰Be auf 500 Jahre (Kapitel 7) bestimmt.

8.1.1.2 Mathematisches Boxmodell

Die mathematischen Grundlagen des hier programmierten Boxmodells wird durch die Gleichung 37 beschrieben. Hierbei werden, wie in Abbildung 146 dargestellt, für die jeweiligen Radionuklide (in jeder Box) folgende Terme berücksichtigt:

10 Be

Quelle atmosphärischer Eintrag und Eintrag von kontinentalem ¹⁰Be mit den Flüssen Senken Sedimentation und radioaktiver Zerfall

230 Thex

Quelle	Produktion in der Wassersäule
Senke	Sedimentation und radioaktiver Zerfal

231 Paex

Quelle Produktion in der Wassersäule Senke Sedimentation und radioaktiver Zerfall

Weiterhin werden die Wassermassenaustauschraten zwischen den einzelnen Boxen in unserem Boxmodell berücksichtigt.

3h

Sedimentation

Abb. 146: Quellen und Senken der bei der Modellierung betrachteten Radionuklide

$\partial I_{\text{Box i}} / \partial t =$		[F _{atmBox i} * Fläche _{Box i}]	Atmosphärischer Eintrag
	+	[P _{Box} i]	Produktion in der Wassersäule
	+	[F _R • Fläche _{BoxR}]	Eintrag durch die sibirische Flüsse
	+	[A _{Box i Box j} *I _{Box i}]	Wassermassenaustausch
	-	[A _{Box j Box i} *I _{Box j}]	Wassermassenaustausch
	-	[λ* Ι _{Βοχ i}]	Radioaktiver Zerfall
	-	$[\lambda_{sBox i} * I_{Box i}]$	Sedimentation

(37)

mit	
I	= Inventar einer Box in [dpm] für ²³⁰ Th _{ex} ²³¹ Pa _{ex} und in [Atome] für ¹⁰ Be
∂ I _{Box i} /∂ t	= Änderung des Inventars pro Zeiteinheit
FlächeBOX	= Fläche der jeweiligen Boxen [cm ²]
FATM	= Atmosphärische ¹⁰ Be Flußdichte [Atome cm ⁻² a ⁻¹]
P	= ²³⁰ Th _{ex} bzw. ²³¹ Pa _{ex} Produktionsrate [dpm cm ⁻² ka ⁻¹]
F _R	= Eintrag von ¹⁰ Be mit den Flußsystemen [Atome cm ⁻² a ⁻¹]
ABOX iBOX i	= Wassermassenaustauschkoeffizient von Box j nach Box i [a ⁻¹]
λ	= Zerfallskonstante [a ⁻¹]
λ_{s}	= Sedimentationskonstante [a ⁻¹]
τ	= Verweilzeit in der Wassersäule($\tau = 1/\lambda_s$) [a]

Berechnung der Konzentrationen bzw. Aktivitäten der untersuchten Radionuklide

$$I = I_0 + \sum_{t=0}^{t} dI$$

$$C_{BOX i} = \frac{I_{BOX i}}{V_{POX i}}$$
(38)
(39)

(40)

mit

- I = Inventar einer Box in [dpm] für ²³⁰Th_{ex}, ²³¹Pa_{ex} und in [Atome] für ¹⁰Be
- V = Volumen der jeweiligen Boxen [cm³]
- $C = {}^{230}Th_{ex}, {}^{231}Pa_{ex}$ Aktivität [dpm 1⁻¹] und {}^{10}Be Konzentration [Atome g⁻¹]

Berechnung der Depositionsflußdichten

$$F_{OUTBOX i} = \frac{(I_{BOX} \cdot \lambda_S)}{Fläche_{BOX i}}$$

FOUTBOX	²³⁰ Th _{ex} , ²³¹ Pa _{ex} Depositionsflußdichten [dpm cm ⁻² ka ⁻¹] und für ¹⁰ Be
	[Atome cm ⁻² a ⁻¹] in den jeweiligen Boxen
Fläche	Fläche der jeweiligen Boxen [cm ²]
λ_s	Sedimentationskonstante [a ⁻¹]

Konstanten, die bei der Modellierung benutzt werden

A) Volumen und mittlere Wassertiefen der einzelnen Boxen

	Volumen [cm ³]	Wassertiefe [cm]
for the second second second second	france the	
Sibirische Flüsse	1,0 E21	5,0 E2
Schelf	2,3 E19	5,0 E3
Kontinentalhang	1,9 E20	2,0 E5
Zentraler Arktischer Ozean	5,9 E21	4,5 E5
Norwegen- und Grönland See	4,1 E21	3,5 E5

B) Produktion von ²³⁰Th und ²³¹Pa in der Wassersäule

$$P(^{230}Th) = 2,63*V_{Box} \cdot 10^{-8}$$
 [dpm a⁻¹]

 $P(^{231}Pa) = 0,26*V_{Box} \cdot 10^{-8}$ [dpm a⁻¹]

C) Radioaktive Zerfallskonstanten der untersuchten Radionuklide

λ (¹⁰ Be) = 4,62 • 10 ⁻⁷	[a ⁻¹]
λ (²³⁰ Th) = 9,22 • 10 ⁻⁶	[a ⁻¹]
$\lambda(^{231}\text{Pa}) = 2,15 \cdot 10^{-5}$	[a ⁻¹]

D) Atmosphärische ¹⁰Be Flußdichte in alle Boxen

$$F_{ATM} = 0.50 \cdot 10^6$$
 [Atome cm⁻² a⁻¹]

E) Wasseraustauschraten der einzelnen Boxen

Der rezente Volumentransport an Wassermassen im Europäischen Nordmeer und im Nordpolarmeer sind aus der Arbeit von Falk [1995] entnommen.

[a]	Schelf	Kontinental- hang	Zentrale Arktis	Norwegen- Grönland See	Atlantik
Schelf		1,2			
Kontinental- hang	12,0	and Department	12,0	a Managana ang	a ogti prodo
Zentrale Arktis	CHERRY AN	375,0	ille 32 durgent	46,8	i dan jeweidig
Norwegen Grönland See	the st	and and production	43,4	(h) Verhähnin	50,0
Atlantik	Digiti cu tra			250,0	

8.1.2 Vergleich der Modellergebnisse mit den gemessenen ¹⁰Be Datensätzen

In diesem Boxmodell stellen die Verweilzeiten der Radionuklide in der Wassersäule und die Wassermassenaustauschkoeffizienten zwischen den Boxen veränderliche Variablen dar. Im Rahmen dieser Arbeit wurden zur Berechnung der Konzentrationen der Radionuklide in der Wassersäule und der Depositionsflußdichten nur Änderungen in den Verweilzeiten berücksichtigt.

Mit den in Tabelle 31 (Kapitel 7) angeführten ¹⁰Be Verweilzeiten, die im Einklang mit den aus den Wasserprofilen ermittelten Verweilzeiten (Kapitel 7) stehen, wurden ¹⁰Be Wasserkonzentrationen und Depositionsflußdichten in den jeweiligen Boxen berechnet. In Abbildung 147 werden die vorliegenden ¹⁰Be Datensätze aus dem Europäischen Nordmeer und dem Nordpolarmeer präsentiert

Abb. 147: Atmosphärischer ¹⁰Be Eintrag, ¹⁰Be Konzentrationen in Wasserproben, ¹⁰Be Depositionsfluβdichten in der Norwegen See, dem zentralen Arktischen Ozean und dem Schelf- und Kontinentalhanggebiet der Laptev See

Neben den angenommenen Verweilzeiten (Kapitel 7) sind die mit Hilfe des Modells gewonnen und die gemessenen ¹⁰Be Wasserkonzentrationen und ¹⁰Be Depositionsflußdichten in den jeweiligen Boxen in Tabelle 32 dargestellt.

	Schelf	Kontinentalhang	Zentrale Arktis	Norwegen- und Grönland See
¹⁰ Be-Verweilzeiten [a]	1	125	500	200

¹⁰ Be-Wasserkonze	ntrationen [at g ⁻¹]			
Messungen	2000 - 5000	???	400 - 600	300 - 1000
Modell	4300	2500	450	550

¹⁰ Be Depositionsflußdichten 10 ⁶ [at cm ⁻² a ⁻¹]					
Messungen	20,00	2,40	0,40	1,00	
Modell	21,60	4,00	0,35	0,69	

Tab. 32: Bei der Modellierung angenommene ¹⁰Be Verweilzeiten und die mit dem Modell berechneten und die gemessenen ¹⁰Be Wasserkonzentrationen und Depositionsfluβdichten in den jeweiligen Boxen

Der Vergleich zwischen den Messungen der ¹⁰Be Wasserkonzentrationen und Depositionsflußdichten mit den Modellergebnissen weist eine sehr gute Übereinstimmung auf und deutet darauf hin, daß die rezenten ¹⁰Be Transportwege mit diesem numerischen Modell reproduziert werden können.

8.1.3 Modellierung der ²³⁰Th_{ex} und ²³¹Pa_{ex} Transportwege

Analog zu diesen Berechnungen wurden die rezenten 230 They und 231 Pary Depositionsflußdichten in den einzelnen Boxen bestimmt. Die Verweilzeiten dieser Radionuklide sind an die ¹⁰Be Verweilzeiten angepaßt worden. Hierbei wurden aus dem bekannten Verhältnis der ¹⁰Be und ²³⁰Thex Verweilzeiten im zentralen Arktischen Ozean, die anderen ²³⁰Thex Verweilzeiten abgeleitet.

8.1.3.1 Modellberechnungen ²³⁰Th_{ex} In Tabelle 33 sind die ²³⁰Th_{ex} Verweilzeiten, die modellierten und gemessenen ²³⁰Th_{ex} Depositionsflußdichten und die daraus resultierenden FA/FP Verhältnisse aufgelistet.

Boxen	Verweilzeit [a]	Flußdichten [dpm cm ⁻² ka ⁻¹]	F _A /F _P Modell	Lokationen	F _A /F _P Messung
	NU PY IN IS	154 (N	inging the	E. (****) 3	N 50
Schelf	0,05	6,40	50,00	PM9463-8	??
Kontinentalhang	5	11,40	2,15	PS2456-2/-3	2,40
Z. Arktischer Ozean	25	8,80	0,74	PS1524-2	0,64
Norwegen- und Grönland See	10	10,29	1,10	17728	0,68

Tab. 33: 230 Thex Verweilzeiten, die modellierten und gemessenen 230 Thex Depositionsflußdichten und die F_A/F_P (²³⁰Th) Verhältnisse

Vergleicht man die aus dem Modell erhaltenen FA/FP (230Th) Verhältnisse mit den aus Messungen ermittelteten F_A/F_P (²³⁰Th) Verhältnissen so zeigt sich auch hier eine sehr gute Übereinstimmung zwischen Modell- und Meßergebnissen. Schelf- und Kontinentalhangbereiche zeichnen sich hierbei durch höhere ²³⁰Thex Depositionsflußdichten (Tab. 33), wie aus der Produktion erwartet, aus. Im zentralen Arktischen Ozean hingegen werden mit diesem Modell F_A/F_P (²³⁰Th) Verhältnisse kleiner als 1 berechnet. Während nach Abschnitt 2.4.3 F_A/F_P (²³⁰Th) Verhältnisse kleiner oder größer 1 mit Sedimentumlagerungsprozessen (Focusing, Winnowing) in Verbindung gebracht werden, so wird aus den Modellrechnungen ersichtlich, daß im Arktischen Ozean diese Verhältnisse auch durch Scavengingprozesse verursacht werden können. Eine eindeutige Trennung der Prozesse ist allerdings nicht möglich. Messungen von 230 Th Wasserprofilen aus dem Nansen Becken von Cochran et al. [1995] haben gezeigt, daß sich die Randgebiete des Nansen Beckens im Vergleich zum inneren Beckenbereich durch deutlich erhöhte Scavengingprozesse auszeichnen. Diese Untersuchungen stützen die berechneten Modellergebnisse.

8.1.3.2 Modellrechnungen ²³¹Paex

Boxen	Verweilzeit [a]	Flußdichten [dpm cm ⁻² ka ⁻¹]	F _A /F _P
i an an the stand you a	AND ROLLINGS	UT UTILITY IS A	1.00
Schelf	0,25	0,58	45,00
Kontinentalbang	25	1,60	3,00
Z. Arktischer Ozean	125	0,50	0,40
Norwegen- und Grönland See	50	0,78	0,85

Tab. 34: ²³¹Pa_{ex} Verweilzeiten, die modellierten ²³¹Pa_{ex} Depositionsflußdichten und die F_{A}/F_{P} (²³¹Pa) Verhältnisse

Die F_A/F_P (²³¹Pa) Verhältnisse (Tab. 34) weisen im Vergleich zu ²³⁰Th_{ex} im zentralen Arktischen Ozean deutlichere Scavengingprozesse auf. Über 50% des im zentralen Arktischen Ozean produzierten ²³¹Pa_{ex} wird hierbei, wie aufgrund der längeren Verweilzeit von ²³¹Pa_{ex} gegenüber ²³⁰Th_{ex} erwartet, an die umliegenden Randgebiete transferriert.

8.1.3.3 Einfluß der Verweilzeiten auf die Depositionsflußdichten

In diesem Abschnitt soll gezeigt werden, wie die ²³⁰Th_{ex} und ²³¹Pa_{ex} Depositionsflußdichten von den vorliegenden Verweilzeiten in den jeweiligen Boxen bestimmt werden. Drei realistische Szenarien werden im Folgenden näher betrachtet.

Szenario 1

Man geht von den rezenten Verweilzeiten aus und ändert, wie in Tabelle 35 dargestellt, nur die Verweilzeiten in der Kontinentalhangbox. In diesem Fall erniedrigen sich die Partikelkonzentrationen (Erhöhung der Verweilzeit) in der Kontinentalhangbox durch äußere Bedingungnen (z.B. keine Zufuhr von Partikeln durch Flußsysteme, abgeschlossene Eisbedeckung).

230 Thex

	Schelf	Kontinental- bang	Z. Arktischer Ozean	Norwegen- und Grönland See
Verweilzeiten	0,05	5	25	10
[a]	0,05	15	25	10
	0,05	20	25	10

Tab. 35: Bei der Modellierung der ²³⁰Th_{ex} Depositionsflußdichten eingesetzte Verweilzeiten in den jeweiligen Boxen C. I

1 I

1

In Abbildung 148 sind die mit Hilfe des Modells berechneten F_A/F_P (²³⁰Th) Verhältnisse für die in Tabelle 35 angeführten Verweilzeiten in den jeweiligen Boxen abgebildet. Die F_A/F_P (²³⁰Th) Verhältnisse der Kontinentalhangbox, der Zentralen Arktisbox und der Norwegenbox wurden in Abbildung 149 vergrößert aufgetragen.

Abb. 148: Modellierte F_A/F_P (²³⁰Th) Verhältnisse in den jeweiligen Boxen, für die in Tabelle 35 vorgegebenen ²³⁰Th Verweilzeiten in der Wassersäule

Abb. 149: Vergrößerter Ausschnitt der modellierten F_A/F_P (²³⁰Th) Verhältnisse in den jeweiligen Boxen, für die in Tabelle 35 vorgegebenen ²³⁰Th Verweilzeiten in der Wassersäule

Es zeigt sich, daß sich bei einer Erhöhung der Verweilzeiten in der Kontinentalhangbox die ²³⁰Th_{ex} Depositionsflußdichten in dieser Box verringern, während in der Schelfbox eine deutliche Erhöhung auftritt. In der zentralen Arktischen und in der Norwegen Box sind keine Änderugen zu erkennen.

231 Paex

 appendix i appendix i 	Schelf	Kontinental- hang	Z. Arktischer Ozean	Norwegen- und Grönland See
Verweilzeiten	0,25	10	125	50
[2]	0,25	50	125	50
	0,25	25	125	50

Tab. 36: Bei der Modellierung der ²³¹Pa_{ex} Depositionsfluβdichten eingesetzte Verweilzeiten in den jeweiligen Boxen

Wie in den Abbildungen 150 und 151 dargestellt führt eine Verlängerung der Verweilzeit an $^{231}Pa_{ex}$ in der Kontinentalhangbox zu erhöhten Depositionsflußdichten in der Schelfbox. Im zentralen Arktischen Ozean und in der Norwegen See treten keine Änderungen im $F_A/F_P(^{231}Pa)$ Verhältnis auf.

Abb. 150: Modellierte F_A/F_P (²³¹Pa) Verhältnisse in den jeweiligen Boxen, für die in Tabelle 35 vorgegebenen ²³¹Pa Verweilzeiten in der Wassersäule

Abb. 151: Vergrößerter Ausschnitt der modellierten F_A/F_P (²³¹Pa) Verhältnisse in den jeweiligen Boxen, für die in Tabelle 35 vorgegebenen ²³¹Pa Verweilzeiten in der Wassersäule

Szenario 2

Bei diesem Modellansatz geht man davon aus, daß zu bestimmten Zeiten (z.B. Glazialstadien) der Schelfbereich der Laptev See aufgrund von Meeresspiegelschwankungen [Chappel und Shackelton, 1986] zeitweise trocken gelegen hat. Weiter wird angenommen, daß dem Hangbereich Partikel zugeführt werden können, während im zentralen Arktischen Ozean nur sehr geringe Partikelkonzentration (z.B. permanente Eisbedeckung) vorliegen. Den äußerst geringen Partikelkonzentrationen im zentralen Arktischen Ozean wurde durch eine Verdopplung der Verweilzeit in dieser Box (Tab. 37) Rechnung getragen. In der Norwegen Box wird ebenfalls durch eine zunehmende Eisbedeckung und somit einer verringerten Partikelkonzentration die Verweilzeit erhöht.

1

230 Thes

		Kontinental- hang	Z. Arktischer Ozean	Norwegen- und Grönland See
Verweilzeiten		1	50	30
[a]		5	50	30
· 大学 (1) 医马尔克		5	100	30
1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -		10	50	30
$(-\tau_{ij}) \in [0, 1]$	0,05	5	25	10

Tab. 37: Bei der Modellierung der ²³⁰Th_{ex} Depositionsfluβdichten eingesetzte Verweilzeiten in den jeweiligen Boxen; die braun (fett) markierten Werte spiegeln die rezenten ²³⁰Th Verweilzeiten wider

Abb. 152: Modellierte F_A/F_P (²³⁰Th) Verhältnisse in den jeweiligen Boxen, für die in Tabelle 37 vorgegebenen ²³⁰Th Verweilzeiten in der Wassersäule

Die F_A/F_P (²³⁰Th) Verhältnisse sind in der Kontinentalhangbox gegenüber den rezenten Verhältnissen (braune Linie) erhöht. Höhere Verhältnisse in dieser Box lassen sich nach diesem Modell bestimmen, wenn man die Differenz der Verweilzeiten in der Hangbox und der Arktisbox (z.B. grüne Linie) vergrößert. In der zentralen Arktis und in der Norwegen See sind kaum Unterschiede im Vergleich zu den rezenten Verhältnissen auszumachen.

231Paex

	Schelf	Kontinental- hang	Z. Arktischer Ozean	Norwegen- and Grönland See
Verweitzeiten	George and service of	5	250	150
[2]		10	250	150
		10	250	100
		10	250	50
	0,25	25	125	50

Tab. 38: Bei der Modellierung der ²³¹Pa_{ex} Depositionsfluβdichten eingesetzte Verweilzeiten in den jeweiligen Boxen; die braun (fett) markierten Werte spiegeln die rezenten ²³¹Pa Verweilzeiten wider

Wie bei den ²³⁰Th_{ex} Depositionsflußdichten erhöhen sich in der Kontinentalhangbox die Depositionsflußdichten (Abb. 153), während sie sich in der Norwegen Box leicht erniedrigen.

-

-

Szenario 3

Bei diesem Modell geht man davon aus, daß sich der gesamte Arktische Ozean unter einer Meereisdecke befindet, während die Norwegen Box eisfrei ist. Diese kompakte Meereisbedeckung im Nordpolarmeer soll zu einer extrem niedrigen Partikelkonzentrationen im gesamten Arktischen Ozean führen. Der Schelfbereich liegt bei diesem Szenario oberhalb des Meeresspiegels.

230 Thex

Die Verweilzeiten, die diese Situation simulieren sind in Tabelle 39 aufgelistet.

ra shekara	Schelf	Kontinental- hang	Z. Arktischer Ozean	Norwegen- und Grönland See
Verweilzeiten		50	50	20
	and a local fraction of the state	50	50	10
		50	25	20
		50	25	10
		100	100	20
24	0,05	5	25	10

Tab. 39: Bei der Modellierung der ²³⁰Th_{ex} Depositionsfluβdichten eingesetzte Verweilzeiten in den jeweiligen Boxen; die braun (fett) markierten Werte spiegeln die rezenten ²³⁰Th Verweilzeiten wider

Abb. 154: Modellierte F_A/F_P (²³⁰Th) Verhältnisse in den jeweiligen Boxen, für die in Tabelle 39 vorgegebenen ²³⁰Th Verweilzeiten in der Wassersäule

Bei diesen Berechnungen titt eine geringfügige Verringerung der F_A/F_P (²³⁰Th) Verhältnisse in der Kontinentalhangbox (Abb. 154) im Vergleich zu den rezenten Bedingungen auf. Im zentralen Arktischen Ozean und in der Norwegen Box sind ebenfalls nur geringe Änderungen zu erkennen.

231 Paes

Based Based

territer at	Schelf	Kontinental- hang	Z. Arktischer Ozean	Norwegen- und Grönland See
Verweilzeiten	A state of the state of the	250	250	150
[a]		250	250	100
		250	250	50
alere Cherald		500	500	50
and the second	0,25	25	125	50

Tab. 40: Bei der Modellierung der ²³¹Pa_{ex} Depositionsfluβdichten eingesetzte Verweilzeiten in den jeweiligen Boxen; die braun (fett) markierten Werte spiegeln die rezenten ²³¹Pa Verweilzeiten wider

Abb. 155: Modellierte F_A/F_P (²³¹Pa) Verhältnisse in den jeweiligen Boxen, für die in Tabelle 40 vorgegebenen ²³¹Pa Verweilzeiten in der Wassersäule

Unter diesen äußeren Bedingungen werden die Kontinentalhangbox und der zentrale Arktische Ozean an ²³¹Pa_{ex} abgereichert. Die Verhältnisse in der Norwegen Box liege nahe der Produktion.

8.1.4 ²³⁰Th_{ex}/²³¹Pa_{ex} Verhältnisse

Da es im Europäischen Normeer und im Nordpolarmeer oftmals nicht möglich ist genaue Datierungen vorzunehmen, sind die Depositionsflußdichten dementsprechend mit großen Unsicherheiten versehen. Um dennoch Aussagen über die vorherrschenden Klimabedingungen treffen zu können, werden die ²³⁰Th_{ex}/²³¹Pa_{ex} Verrhältnisse betrachtet. Die anhand unseres Modells ermittelten rezenten ²³⁰Th_{ex} und ²³¹Pa_{ex} Depositionsflußdichten und die daraus resultierenden ²³⁰Th_{ex}/²³¹Pa_{ex} Aktivitätsverhältnisse sind in Tabelle 41 dargestellt und werden mit den vorliegenden Meßergebnissen in Beziehung gesetzt.

Interglazialstadium 1

14. 1.11

Boxen	²³⁶ Th _{et} Flußdichten [dpm cm ⁻² ka ⁻¹]	²³¹ Pa _{er} Flußdichten [dpm cm ⁻² ka ⁻¹]	F (²³⁶ Tb/ ²³¹ Pa)
New Bear Company and the second second second second	m. dainland V.m.	(141)	
Schelf	6,40	0,58	11,00
Kontinentalhang	11,40	1,60	7,20
Z. Arktischer Ozean	8,80	0,50	17,60
Norwegen- und Grönland See	10,29	0,78	13,20

Tab. 41: Die mit dem Modell ermittelten rezenten²³⁰Th_{ex} und ²³¹Pa_{ex} Depositionsfluβdichten und die daraus resultierenden²³⁰Th_{ex},²³¹Pa_{ex} Aktivitätsverhältnisse

Messungen

Messungen der rezenten ²³⁰Th_{ex}/²³¹Pa_{ex} Verhältnisse an Sediment Oberflächenproben liegen aus dem dem zentralen Arktischen Ozean und der Norwegen- und Grönland See vor. Die gemessenen Werte sind im Folgenden aufgelistet.

Zentraler Arktischer Ozean

	²³⁰ Th/ ²³¹ Pa		
 Nansen Basin	(10,7 - 18,3)	Scholten et al. (1995)	
Gakkel Rücken	(12,8 - 13,2)	Scholten et al. (1995)	
Amundsen Basin	(11,2 - 16,4)	Scholten et al. (1995)	
Lomonosov Ridge	(20,2)	Scholten et al. (1995)	
Makarov Basin	(14,4)	Scholten et al. (1995)	

Norwegen- und Grönland See	ter DATE Demail	
den reweiligen Docen	²³⁰ Th/ ²³¹ Pa	North Fort Streth In ream
Grönland See	(9,9 - 13,1)	Scholten et al. (1995)
Norwegen See	(6,9 - 13,8)	Scholten et al. (1995)
Norwegen- und C	Grönland See	and the second second second
attigen Bouen, für die in	(9,0 - 14,3)	Yu et al. (1995)

Die modellierten und gemessenen Aktivitätsverhältnisse zeigen eine gute Übereinstimmung im Europäischen Nordmeer und im Nordpolarmeer auf. Demzufolge ist es möglich die Transportwege von ²³⁰Th_{ex} und ²³¹Pa_{ex} in hohen nördlichen Breiten zu rekonstruieren. Leider

F 1

liegen bis dato noch keine Werte aus dem Schelf- und Kontinentalhangbereich der Laptev See für das Isotopenstadium 1 vor.

Glazialstadium 2

Analog zum Interglazialstadium 1 wurden die ²³⁰Th_{ex} und ²³¹Pa_{ex} Depositionsflußdichten (Tab. 43) für das Glazialstadium 2 bestimmt und den Meßergebnissen gegenübergestellt. Zur Modellierung der Depositionsflußdichten in diesem Isotopenstadium wurden die in Tabelle 42 aufgelisteten Verweilzeiten eingesetzt.

e des tradis and and a second	Radionuklide	Schelf	Kontinental-	Z. Arktischer Ozean	Norwegen- und Grönland See
Verweilzeiten	²³⁰ Th		5	50	10
(a) (****	²³¹ Pa	Constant of the	25	250	50

Tab. 42: Bei der Modellierung der ²³¹Pa_{ex} und ²³⁰Th_{ex} Depositionsfluβdichten eingesetzte Verweilzeiten in den jeweiligen Boxen

Boxen	²³⁶ Th _{ex} Flußdichten [dpm cm ⁻² ka ⁻¹]	²³¹ Pa _{ex} Flußdichten [dpm cm ⁻² ka ⁻¹]	F (²³⁰ Th/ ²³¹ Pa)	
Schelf	and an and a second	int des Sintrois von la		
Kontinentalhang	15,90	2,90	5,50	
Z. Arktischer Ozean	6,60	0,32	20,70	
Norwegen- und Grönland See	12,00	0,80	15,00	

Tab. 43: Die mit dem Modell ermittelten ²³⁰Th_{ex} und ²³¹Pa_{ex} Depositionsfluβdichten und die daraus resultierenden ²³⁰Th_{ex}, ²³¹Pa_{ex} Aktivitätsverhältnisse

Messungen

Vom Kontinentalhanbereich der Laptev See und der Norwegen und Grönland See wurden die ²³⁰Th_{ex}/²³¹Pa_{ex} Verhältnisse im Glazialstadium 2 bestimmt.

	²³⁰ Th/ ²³¹ Pa	at any Response Ma
Laptev See	(2,0 - 4,6)	Schulz (1997)
lorwegen- und Grönland See	s renetador donte	ab. 45: An deal oben angogilarton Sa
forwegen- und Grönland See	²³⁰ Th/ ²³¹ Pa	nb. 45. An den oben angeglährten Sin den je veligen formsenninfi
Norwegen- und Grönland See	²³⁰ Th/ ²³¹ Pa	ab. 45: An den oben angegährten Sa den yeketigen forme ensentit

Die ²³⁰Th/²³¹Pa aus der Norwegen See und dem Kontinentalhang der Laptev See bestätigen die Modellergebnisse. Im Gegensatz zum Interglazialstadium 1 findet man erhöhte Verhältnisse im Glazialstadium 2 im zentralen Arktischen Ozean und in der Norwegen See, während sich die Verhältnisse im Kontinentalhanggebiet der Laptev See erniedrigen.

8.2 Rekonstruktion der paläoklimatischen Bedingungen im Arktischen Ozean

Die anhand der Sedimentkerne aus dem Europäischen Nordmeer und dem Nordpolarmeer ermittelten F_A/F_P (²³⁰Th) Verhältnisse und ¹⁰Be Depositionsflußdichten (Kapitel 6) in den jeweiligen Isotopenstadien sind in den Tabellen 44 und 45 aufgelistet.

FA/FP (230	Th) Verhältniss	e	the many set	none dia tanja		-115
	Norwegen- und Grönland See	Fram- strasse	Z. Arktischer Ozean	er Kontinentalhang Lapi See		Schelf
Stadium	23059-3	23235-3	PS1524-2	PS2471-4	PS2474-3	
1	?	?	?	?	5,30	?
2	1,16	1,55	0,64	2,98	7,32	2.
3	1,46	1,10	0,62	1,48	3,20	?
4	0,45	0,55	0,34	0,67	0,82	. ?
5	1,22	1,41	0,53	1,24	?	?
6	0,94	0,30	?	2 2 2	?	2
7	1,08	1,07	?	?	?	?

Tab. 44: An den oben angeführten Sedimentkernen ermittelte F_A/F_P (²³⁰Th) Verhältnisse in den jeweiligen Isotopenstadien

and some set	Norwegen-	und Grönland See	Z. Arktischer Ozean	Kontinentalhang Laptev See PS2471	
Stadium	23059	23235	PS1524		
at cm ⁻² a ⁻¹	•10 ⁶	•10 ⁶	•10 ⁶	•10 ⁶	
2	1.20	1.23	0.35	6.93	
3	1.57	0.68	0.32	2.72	
4	0.35	0.74	0.35	1.08	
5	1.44	2.49	0.57	2.75	
6	0.72	0.54	9	2	
7	1.45	2.03	?	?	

Tab. 45: An den oben angeführten Sedimentkernen ermittelte 10Be Depositionsflußdichten in den jeweiligen Isotopenstadien

Anhand dieser Modellrechnungen sollen die vorgefundenen F_A/F_P (²³⁰Th) Verhältnisse in den jeweiligen Boxen und Isotopenstadien reproduziert werden. Die ermittelten Verweilzeiten für ²³⁰Th_{ex} wurden in ¹⁰Be Verweilzeiten übergeführt und die mit Hilfe des Modells berechneten ¹⁰Be Depositionsflußdichten mit den gemessenen Werten verglichen. Hierzu werden die Isotopenstadien einzeln betrachtet.

8.2.1 Isotopenstadium 2

230 Th

Die hohen F_A/F_P Verhältnisse im Hangbereich der Laptev See deuten auf eine Zufuhr von Partikeln (z.B. Eintrag durch die Flußsysteme Lena, Yana und keine permanent geschlossene Eisbedeckung) zum Kontinentalhangbereich der Laptev See hin. Da das Schelfgebiet nach der Meeresspiegelkurve nach Chappel und Shackelton [1986] in diesem Zeitbereich trocken gelegen haben muß, könnte sich das Deltagebiet an den heutigen Übergangsbereich Schelf/Hang vorverlagert haben. In der Norwegen- und Grönland See sind Depositionsflußdichten vorzufinden, welche die Produktion widerspiegeln. Die F_A/F_P (²³⁰Th) Verhältnis am Übergangsbereich Norwegen See / Schelfgebiet der Barents See von etwa 3 (23259) deuten in diesem Zeitraum auf sehr hohe Partikelkonzentrationen in der Wassersäule hin. Die ²³⁰Th Verweilzeiten, welche die in Tabelle 44 angeführten F_A/F_P (²³⁰Th) Verhältnisse im Glazialstadium 2 am besten widerspiegeln, sind in Tabelle 46 aufgelistet.

	Radionuklid	Schelf	Kontinental- hang	Z. Arktischer Ozean	Norwegen- und Grönland See	FR
Verweilzeiten	230 They	N.	5	50	10	
····· [2] ******	¹⁰ Be(1)	040	100	1000	400	50000
$p_{1} = \cdots = p_{1} p_{1}^{(1)} + p_{2} p_{1}^{(2)} + p_{3} p_{3}^{(2)} + p_{3} p_{3} p_{3}^{(2)} + p_{3} p_{3} p_{3}^{(2)} + $	¹⁰ Be (2)	0061	100	1000	400	5000
a works in First	¹⁰ Be (3)	0004	100	1000	400	0

Tab. 46: ²³⁰Th_{ex} und die korrespondierenden ¹⁰Be Verweilzeiten in den jeweiligen Boxen; bei der Berechnung der ¹⁰Be Depositionsfluβdichten wird der Eintrag von kontinentalem ¹⁰Be variiert

10Be

and and and and

Die ¹⁰Be Verweilzeiten sind ebenfalls in Tabelle 46 aufgelistet. Zusätzlich wurden bei dieser Modellierung die ¹⁰Be Depositionsflußdichten für die jeweiligen Boxen unter Variation des Flußeintrages berechnet. Setzt man den rezenten Flußeintrag ein, so errechnet sich für den Kontinentalhangbereich eine Depositionsflußdichte von 48.10⁶ at cm⁻² a⁻¹. Dieser Wert ist nicht in Übereinstimmung mit der am Sedimentkern PS2471-4 bestimmten Flußdichte von 6,93 · 10⁶ at cm⁻² a⁻¹. In Abbildung 156 sind die mit diesem Modell berechneten ¹⁰Be-Flußdichten sowohl für einen um 10 fach geringeren Eintrag als auch für keinen Eintrag an ¹⁰Be mit den sibirischen Flüssen eingezeichnet.

Abb. 156: Modellierte ¹⁰Be Depositionsflußdichten in den jeweiligen Boxen, für die in Tabelle 46 vorgegebenen ¹⁰Be Verweilzeiten in der Wassersäule und dem Eintrag von kontinentalem ¹⁰Be

Der Vergleich der Modellergebnisse mit den Meßergebnissen führt zu der Annahme, daß die sibirischen Fußsysteme im Glazial 2 zwar aktiv waren, aber im Vergleich zu den rezenten Bedingungen ein deutlich geringer Partikeltransport (Modell ¹⁰Be (2)) stattgefunden hat. Im zentralen Arktischen werden durch diese Rahmenbedingungen die gemessenen Verhältnisse (Tab. 45) reproduziert, während in der Norwegen Box eine geringfügig zu niedrige Flußdichte bestimmt wird. Auf diesen Sachverhalt wird später eingegangen.

8.2.2 Isotopenstadium 3 und 5

230Th

Im Vergleich zum Isotopenstadium 2 zeigt sich in den F_A/F_P Verhältnissen (Tab. 47) nur im Kontinentalhangbereich der Laptev See ein unterschiedliches Verhalten. Die geringeren Werte in dieser Box deuten auf einen weiteren Rückgang der Trägerphase (z.B. durch vollkommene Unterbindung der in die Laptev See mündenden Flüsse) hin.

and the second	Radionuklid	Schelf	Kontinental- hang	Z. Arktischer Ozean	Norwegen- und Grönland See	FR.
Verweilzeiten	230 Thex	Des 27	15	50	10	The state
[a]	¹⁰ Be(1)	(hhat)	300	1000	400	5000
	¹⁰ Be (2)		300	1000	400	500
	¹⁰ Be (3)	1. 1.	300	1000	400	0

Tab. 47: ²³⁰Th_{ex} und die korrespondierenden ¹⁰Be Verweilzeiten in den jeweiligen Boxen; bei der Berechnung der ¹⁰Be Depositionsfluβdichten wird der Eintrag von kontinentalem ¹⁰Be variiert

Abb. 157: Modellierte ¹⁰Be Depositionsflußdichten in den jeweiligen Boxen, für die in Tabelle 47 vorgegebenen ¹⁰Be Verweilzeiten in der Wassersäule und dem Eintrag von kontinentalem ¹⁰Be

¹⁰Be

Der Vergleich der Modellergebnisse (Abb. 157) mit den Meßergebnissen zeigt, daß sich bei einer längeren ¹⁰Be Verweilzeit in der Hangbox, wie anhand der F_A/F_P (²³⁰Th) Verhältnisse gefordert und einer geringfügigen Reduzierung des Eintrags an kontinentalem ¹⁰Be die

Verhältnisse reproduzieren lassen. Wiederum weisen die nach unserem Modell berechneten ¹⁰Be Depositionsflußdichten in der Norwegen See zu geringe Werte (0,92 • 10⁶ at cm⁻² a⁻¹ statt 1,41 • 10⁶ at cm⁻² a⁻¹) auf.

8.2.3 Isotopenstadium 4

230 Th

Die F_A/F_P (²³⁰Th) Verhältnisse in allen Boxen, welche deutlich geringe ²³⁰Th_{ex} Depositionsflußdichten als aus der Produktion erwartet aufweisen, lassen einen Export von ²³⁰Th_{ex} in den Nordatlantik vermuten. Bei der Modellierung können diese Verhältnisse reproduziert werden, wenn man von längeren Verweilzeiten (d.h. geringen Partikelkonzentrationen im gesamten Nordmeer) ausgeht. In Sedimentkernen des Nordatlantiks müßten in diesem Isotopenstadium hohe F_A/F_P Verhältnisse (²³⁰Th) auffindbar sein, was durch zwei Sedimentkernen aus dem Nordatlantik (Anhang C), die in den Glazialstadien 2 und 4 deutlich höhere Werte als in den Interglazialstadien aufweisen, auch bestätigt wird. Allerdings können diese Verhältnisse sowohl durch den Export an ²³⁰Th_{ex} aus dem Nordmeer in den Nordatlantik als auch durch erhöhte Produktivität in den Glazialstadien verursacht worden sein.

$\operatorname{Arga}_{(n,n)}(\alpha)$	Radionuklid	Schelf	Kontinental- hang	Z. Arktischer Ozean	Norwegen- und Grönland See	FR
Verweilzeiten	230 Thex	-	30	50	30	
[1]	¹⁰ Be (1)		600	1000	600	0
Bring Carl	¹⁰ Be (2)		800	1000	600	0

Tab. 48: ²³⁰Thex und die korrespondierenden ¹⁰Be Verweilzeiten in den jeweiligen Boxen

Abb. 158: Modellierte ¹⁰Be Depositionsfluβdichten in den jeweiligen Boxen, für die in Tabelle 48 vorgegebenen ¹⁰Be Verweilzeiten in der Wassersäule

¹⁰Be

Die gemessenen ¹⁰Be-Depositionsflußdichten in den jeweiligen Boxen deuten, wie durch die F_A/F_P (²³⁰Th) Verhältnisse gefordert auf lange Verweilzeiten und dementsprechend geringe Partikelkonzentrationen im gesamten Nordmeer hin.

162

8.2.4 Isotopenstadium 6

Da nur ¹⁰Be-Depositionsflußdichten aus den Europäischen Nordmeer vorliegen sind Aussagen über die Transportwege in diesem Glazialstadium nicht möglich. Die bestimmten F_A/F_P (²³⁰Th) Verhältnisse und ¹⁰Be Depositionsflußdichten im Europäischen Nordmeer deuten auf ähnliche Transportprozesse wie im Isotopenstadium 2 hin.

8.2.5 Isotopenstadium 7

Analog zum Glazialstadium 6 liegen nicht genügend Informationen im hohen nördlichen Breiten über die ¹⁰Be-Depositionsflußdichten in den jeweiligen Boxen vor. Die ¹⁰Be Flußdichten im Europäischen Nordmeer ähneln hierbei den Bedingungen, die in den Interglazialstadien 3 und 5 vorgelegen haben.

Spezialfälle bei der Berechnung der ¹⁰Be Depositionsflußdichten mit dem Modell Auf zwei weitere wichtige Faktoren [(1) Variation des atmosphärischen Eintrags, (2) ¹⁰Be Zufuhr beim Abschmelzen von Eismassen], die bei der Berechnung der ¹⁰Be Depositionsflußdichten eine entscheidende Rolle spielen, soll an dieser Stelle noch eingegangen werden:

(1) Variation des atmosphärischen Eintrags

Bei den bisherigen Betrachtungen der ¹⁰Be Depositionsflußdichten wurde nicht berücksichtigt, daß durch die permanente Meereisdecke im zentralen Arktischen Ozean der atmosphärische ¹⁰Be Eintrag in die Wassersäule unterbunden werden kann. Aus diesem Grund wird an zwei Beispielen gezeigt, welche Auswirkungen eine vollkommene Unterbindung des atmosphärischen Eintrags an ¹⁰Be auf die Depositionsflußdichten in den jeweiligen Boxen hat.

Fall A) Die ¹⁰Be Depositionsflußdichten für die jeweiligen Boxen wurden für atmosphärische ¹⁰Be Einträge im zentralen Arktischer Ozean von $0,50 \cdot 10^6$ at cm⁻² a⁻¹, $0,25 \cdot 10^6$ at cm⁻² a⁻¹ und $0,00 \cdot 10^6$ at cm⁻² a⁻¹ berechnet. Bei unseren Modellrechnungen wurden die ¹⁰Be Verweilzeiten, der Isotopenstadien 3 bzw. 5, eingesetzt und die ermitteltelten ¹⁰Be Depositionsflußdichten in Abbildung 159 dargestellt.

	Radionuklid	Schelf	Kontinental- hang	Z. Arktischer Ozean	Norwegen- und Grönland See	FR
Verweilzeiten [a]	¹⁰ Be		,300	1000	400	500

FATM (Z. Arktischer Ozean)
$0,50 \cdot 10^6 \text{ at cm}^2 \text{ a}^{-1}$
$0,25 \cdot 10^6$ at cm ⁻² a ⁻¹
$0,00 \cdot 10^6$ at cm ⁻² a ⁻¹

Tab. 49: ¹⁰Be Verweilzeiten in den jeweiligen Boxen; bei der Berechnung der ¹⁰Be Depositionsfluβdichten wird der Eintrag von atmosphärischem ¹⁰Be in die zentrale Arktische Box variiert

Bei der Betrachtung der Depositionsflußdichten wie in Abbildung 159 aufgezeigt, wirkt sich der verminderte oder gar nicht vorhandene atmosphärische ¹⁰Be Eintrag im zentralen Arktischen Ozean vor allem in der Norwegen Box aus. Die ¹⁰Be Depositionsflußdichten verringern sich um etwa 50%.

Fall B) In diesem Fall sind die Bedingungen mit den Transportprozessen im Glazialstadium 4 vergleichbar. Der atmosphärische ¹⁰Be Eintrag wird dabei sowohl in der Kontinentalhangbox als auch im zentralen Arktischen Ozean, analog zu Fall A), reduziert.

	Radionuklid	Schelf	Kontinental -hang	Z. Arktischer Ozean	Norwegen- und Grönland See	FR
Verweilzeiten [a]	¹⁰ Be	gesolo Gleicia	600	1000	600	0

FATM (Kontinentalhang)	FATM (Z. Arktischer Ozean)
0,50 • 10 ⁶ at cm ⁻² a ⁻¹	$0,50 \cdot 10^6$ at cm ⁻² a ⁻¹
0,25 • 10 ⁶ at cm ⁻² a ⁻¹	$0,25 \cdot 10^6$ at cm ⁻² a ⁻¹
0,00 • 10 ⁶ at cm ⁻² a ⁻¹	$0,00 \cdot 10^6$ at cm ⁻² a ⁻¹

Tab. 50: ¹⁰Be Verweilzeiten in den jeweiligen Boxen; bei der Berechnung der ¹⁰Be Depositionsfluβdichten wird der Eintrag von atmosphärischem ¹⁰Be in die zentrale Arktische Box und in die Kontinentalhangbox variiert

Abb. 160: Modellierte ¹⁰Be Depositionsfluβdichten in den jeweiligen Boxen, für die in Tabelle 50 vorgegebenen ¹⁰Be Verweilzeiten in der Wassersäule und dem atmosphärischen ¹⁰Be Eintrag in den zentralen Arktischen Ozean und in die Kontinentalhangbox

Bei diesen Berechnungen führt die Reduzierung des atmosphärischen ¹⁰Be Eintrags in den oben abgeführten Boxen nicht zu merklichen Änderungen in den ¹⁰Be Depositionsflußdichten. Das heißt, daß Variationen im atmosphärischen Eintrag, die ¹⁰Be Depositionsflußdichten nicht merklich ändern.

(2) ¹⁰Be Zufuhr beim Abschmelzen von Eismassen

Wie im Fall (1) A aufgezeigt sind die modellierten ¹⁰Be Flußdichten im Europäischen Nordmeer nicht in Übereinstimmung mit den ermittelten Meßergebnissen. Diese Diskrepanz könnte durch die Nichtmodellierung des Eintrags an ¹⁰Be in der Framstrasse durch das Abschmelzen von Meereis erklärt werden. Messungen der ¹⁰Be Konzentrationen im Meereis und in den aufliegenden Partikeln, sowie die exakte Kalkulation der Gesamtmenge an ¹⁰Be, die in der Framstrasse durch Abschmelzprozesse freigesetzt wird, sind wesentliche Aufgaben für weitere Betrachtungen. Bei der Modellrechnung (Gleichung 37) muß dieser Term als ¹⁰Be Quelle in die Norwegen Box hinzugefügt werden. Für eine Zufuhr an ¹⁰Be in die Norwegen Box sprechen die bestimmten hohen ¹⁰Be Depositionsflußdichten des Sedimentkernes 23235-3 in den Isotopstadien 5 und 7.

Von Eisenhauer et al. [1994] liegen zwei ¹⁰Be Messungen von Kryokronitproben vor. Diese Proben weisen ¹⁰Be Konzentrationen von $0,28 \pm 0,01 \cdot 10^9$ at g⁻¹ bzw. $0,22 \pm 0,01 \cdot 10^9$ at g⁻¹ auf.

8.3	Vergleich der Verhältnisse im Kor	itinentalhangbereich der Laptev See	ß
	und Barents See	Scielladive der Laster Sciel.	

	Kontinentalhang			
Stadium	Laptev See PS2471-4	Barents See PS2138-1/2		
[at cm ⁻² a ⁻¹]	• 10 ⁶	• 10 ⁶		
1 12 485 493	?	2,10		
2. Sectores	2,98	4,70		
3	1,48	1,10		
4 de addresser	0,67	0,70		
5 A Horn	1,24	0,90		

Tab. 51: ¹⁰Be Depositionsfluβdichten in den jeweiligen Isotopenstadien der Sedimentkerne PS2138-1 und PS2471-4

Wie man aus den ¹⁰Be Depositionsflußdichten erkennt (Tab. 51), könnten in den beiden Hanggebieten ähnliche Bedingungen vorgelegen haben. Dies erscheint allerdings verwunderlich, da der Kontinentalhangbereich der Barents See im Gegensatz zur Laptev See keinen Eintrag an kontinentalem ¹⁰Be aufweist. Weiterhin unterscheiden sich die beiden Regionen in der Tatsache, daß nach der Chappel und Shackelton Kurve [1986] das Schelfgebiet der Barents See nur im Glazialstadium 2 trocken gelegen hat, während das Schelfgebiet der Laptev See bis auf das Holozän und kurze Zeitbereiche im Interglazial 5 stets über dem Meerespiegel lag. Deshalb ist es notwendig ein weiteres Boxmodell zu konzipieren. In diesem Modell wird der gesamte Eurasischen Teil des Arktischen Ozeans, wie in Abbildung 161 dargestellt, eingeteilt.

Modellskizze

Support Journey Law and Law an

Abb. 161: Modellskizze für ein weiteres geplantes Boxmodell

mit

- 1 Schelfgebiet der Laptev See
- 2 Kontinentalhanggebiet der Laptev See
- 3 Zentraler Arktischer Ozean
- 4 Kontinentalhanggebiet der Kara See
- 5 Kontinentalhanggebiet der Barents See
- 6 Schelfgebiet der Kara See
- 7 Schelfgebiet der Barents See
- 8 Übergangsbereich Norwegen See und Barents See
- 9 Europäisches Nordmeer
- 10 Atlantik

8.4 Zeitabhängige Modellberechnungen mit dem ersten Modell

Neben der Berechnung der Steady State Bedingungen können mit dem ersten Modell auch zeitliche Abläufe rekonstruiert werden. Deshalb wurden die ¹⁰Be Depositionsflußdichten (Tab. 45) anhand der in Abschnitt 8.2 ermittelten ¹⁰Be Verweilzeiten in den jeweiligen Boxen und Isotopenstadien sowie der zeitabhängigen ¹⁰Be Produktionsrate (Abb. 138) in der Erdatmosphäre, in ihrer zeitlichen Entwicklung bestimmt. In Abbildung 162 sind die modellierten ¹⁰Be Depositionsflußdichten im Schelf- und Kontinentalhangbereich der Laptev See und in Abbildung 163 die modellierten ¹⁰Be Depositionsflußdichten im Kontinentalhangbereich, dem zentralen Arktischen Ozean und dem Europäischen Nordmeer dargestellt. Aus diesen Berechnungen zeigt sich, daß die Verhältnisse in hohen nördlichen Breiten anhand des dynamischen Modells reproduziert werden können.

Abb. 162: Modellierte ¹⁰Be Depositionsflußdichten im Schelf- und Kontinentalhangbereich der Laptev See gegen das Alter; die schwarze Linie repräsentiert den angenommenen atmosphärischen ¹⁰Be Eintrag

Abb. 163: Modellierte ¹⁰Be Depositionsflußdichten im Kontinentalhangbereich, dem zentralen Arktischen Ozean, der Norwegen See gegen das Alter; die schwarze Linie repräsentiert den angenommenen atmosphärischen ¹⁰Be Eintrag

8.5 Zusammenhang ²³²Th Flußdichten mit den ²³⁰Th Verweilzeiten

Wie aus Abbildung 164 ersichtlich ist ein Zusammenhang zwischen den aus den Meßwerten ermittelten ²³²Th Depositionsflußdichten und den aus dem Modell abgeleiteten ²³⁰Th Verweilzeiten zu erkennen. Dies deutet darauf hin, daß die Verweilzeiten in der Wassersäule durch die vorliegenden Partikelkonzentrationen bestimmt werden.

8.6 ¹⁰Be/²³²Th Verhältnisse von Sedimentkernen aus hohen nördlichen Breiten

Da auch die ¹⁰Be Depositionsflußdichten von der Partikelkonzentration in der Wassersäule abhängig sind, werden die ¹⁰Be Konzentrationen auf ²³²Th nomiert um verschiedene Lokationen miteinander vergleichen zu können. An den Sedimentkernen 23059-3, 23235-3, PS1533-3 und PS2757-8 wurden die ¹⁰Be/²³²Th Verhältnisse gegen die Altersskala (siehe Kapitel 5) aufgetragen. Die Profile zeigen in hohen nördlichen Breiten einen vergleichbaren Verlauf (Abb. 165), mit hohen Verhältnissen im Holozän, im Interglazialstadium 5 und 7.

Abb. 165: ¹⁰Be/²³²Th Verhältnisse der Sedimentkerne 23059-3, 23235-3, PS1533-3 und PS2757-8 gegen das Alter

Der Vostok Eisbohrkern (Abschnitt 3.2) weist im Altersbereich zwischen 15 - 55 ka einen ähnlichen Verlauf wie die ¹⁰Be/²³²Th Verhältnisse im Norpolarmeer auf. Woraus geschlossen werden kann, daß die Struktur, wenn auch nicht die Größenordnung, durch den atmosphärischen ¹⁰Be Eintrag verursacht wird.

In Abbildung 166 sind weiterhin die ¹⁰Be/²³²Th Verhältnisse zweier Sedimentkerne aus dem Kongobecken (M16772-2, GeoB1008-3 [Rutsch et al., 1995]) dargestellt. Während Kern GeoB1008-3 im gleichen Wertebereich wie die Nordpolarkerne liegt, sind die ¹⁰Be/²³²Th Verhältnisse des Sedimentkernes M16772-2 deutlich erhöht. Dieser Unterschied kann darauf zurückgeführt werden, daß der Sedimentkern M16772-2 im Gegensatz zu den anderen betrachteten Kernen einer merklichen biogenen Beeinflussung unterliegt [Rutsch, 1994].

8.7 Ausblick

8.7.1 Radionuklidunterschungen im Schelf- und Kontinentalhanggebiet der Laptev See

Ziel der weiteren Untersuchungen im Schelfgebiet der Laptev See ist im Rahmen des Projektes "System Laptev See 2000", die Erfassung der terrestrischen und marinen Bedingungen in der sibirischen Arktis in den letzten 100 Jahren. Dazu wird der rezente atmosphärische Input der Radionuklide ¹⁰Be und ²¹⁰Pb in das Schelfgebiet der Laptev See und das sibirische Hinterland bestimmt. Die Quantifizierung des atmosphärischen Inputs des Radionuklides ²¹⁰Pb ist für die Bilanzierung der Quellen und Senken von ²¹⁰Pb im Schelfgebiet der Laptev See und für die Quantifizierung des atmosphärischen Inputs von ¹⁰Be für die Modellierung der ¹⁰Be-Flußdichten im Arktischen Ozean erforderlich. Weiterhin ermöglichen die Messungen der ¹⁰Be- und ²¹⁰Pb-Konzentrationen an Niederschlagsproben im sibirischen Ozean den Vergleich der atmosphärischen Flüsse in den jeweiligen Beprobungsgebieten.

Im Delta- und Schelfbereich der Laptev-See können durch die Kenntnis der atmosphärischen Deposition und der sedimentären Flußdichten von ²¹⁰Pb die Sedimentationsbedingungen in den letzten 100 Jahren verfolgt werden.

Weiterhin sollen hochaufgelöste ¹⁰Be-Profile an Sedimentkernen vom Schelf und dem Übergangsbereich Schelf/Kontinentalhang erstellt werden. Zusammen mit bereits vorliegenden ¹⁴C Altern dieser Sedimentkerne können ¹⁰Be Depositionsflußdichten in diesem Gebiet hochaufgelöst bestimmt werden. Dadurch kann der Sedimenteintrag der Lena bis zum "Last Glacial Maximum" zurückverfolgt werden. Im Schelfbereich wird die ¹⁰Be-Konzentration im Sedimentmaterial nur durch den fluviatilen und den atmosphärischen Eintrag bestimmt, so daß sich ein verringerter Eintrag an kontinentalem ¹⁰Be mit den in die Laptev See entwässernden Flüssen, direkt bemerkbar macht. Diese Untersuchungen sind im Zusammenhang mit Echolotaufzeichnungen zu sehen, wodurch die Sedimentationsprovinzen der in die Laptev-See mündenden Flüsse untersucht werden. ¹⁰Be-Profile liefern neben der räumlichen Verteilung noch eine zeitliche Auflösung des Sedimenteintrags der Flüsse.

Desweiteren liegen bis dato nur ¹⁰Be- und ²³⁰Th-Profile die mehrere Klimastadien enthalten nur aus der Norwegen- und Grönland-See und dem zentralen Arktischen Ozean vor. Aus dem Kontinentalhangbereich der Laptev See gibt es noch keine Radionuklidmessungen die einen ähnlichen Zeitraum erfassen. Um diese Lücke zu schließen, sollen die Radionuklide ²³⁰Th und ¹⁰Be in enger Absprache mit dem AWI-Bremerhaven und GEOMAR Kiel an vorhandenen Sedimentkernen aus dem Kontinentalhangbereich der Laptev-See das Radionuklid ¹⁰Be gemessen werden.

8.7.2 Modellierung der Transportwege der Radionuklide ¹⁰Be, ²³⁰Th, ²³¹Pa

Einen weiteren Schwerpunkt stellt eine detailliertere Modellierung der Transportwege der Radionuklide ¹⁰Be, ²³⁰Th und ²³¹Pa im Arktischen Ozean dar. Zur Modellierung wird in diesem Fall wie in Abschnitt 8.3 dargestellt der Arktische Ozean aufgrund seiner Bathymetrie in das Schelfgebiet der Laptev See, das Kontinentalhanggebiet der Laptev See, den zentralen Arktischen Ozean, das Kontinentalhanggebiet der Kara See, das Kontinentalhanggebiet der Barents See, das Schelfgebiet der Kara See, das Schelfgebiet der Barents See, den Zentralen Ubergangsbereich Norwegen See und Barents See, das Europäisches Nordmeer und den Atlantik eingeteilt.

Zum Vergleich der Modellergebnisse mit den Meßergebnissen muß ein ²³¹Pa Profil an einem Sedimentkern aus dem zentralen Arktischen Ozean und an je einem Sedimentkern des

Kontinentalhangs der Laptev See bzw. Barents See bestimmt werden. Diese Untersuchungen sollen weitere Aussagen über die Transportprozesse während den einzelnen Isotopenstadien in hohen nördlichen Breiten liefern.

ner aus der Morweiten Teis fürmland See und dem zegtraller Arktrachen Dzeen vor. Aus dem Kantineerallan derift some Set suites duch bei mehr Wedtoputtidmes namen die einem

stand and the set of the set of the set of the set of the

Eitem worteren Seinwerpunkt stellt eine detzilliertere Modellierung der Tramportwege der Eitem worteren Seinwerpunkt stellt eine detzilliertere Modellierung der Tramportwege der Rufteren Fall wie in Abschnitt 8.3 durgennilt der Arktische Ozenn aufgrund seingt Badigmetrie in den Schelfgehiet der Laptev See, des Kontinentalhanggebiet der Laptev See, den zentralen Arktischen Ozen, des Kontinentittanggebiet der Kars See, das Kontinentalhanggebiet der Berren See, des Schelfgebiet der Kars See, das Schelfgebiet der Iturent See, ihm Dergangsberrich Norwegen See und Bateme See, das Schelfgebiet der Iturent See, ihm Ubergangsberrich Norwegen See und Bateme See, das Europätisches Nordenser und den Ubergangsberrich Norwegen See und Bateme See, das Europätisches Nordenser und den

Zum Vergleich der Modellergebnisse mit den Maßergebnissen muß ein "Pa Profil an zumen Seffrantiern aus dem zeutralen Arktischen Oren und an je einem Sodimentkern des

9 Literaturverzeichnis

Self-The Assertion of

Aagard, K., J.H. Swift, and E.C. Carmack, Thermohaline circulation in the Arctic Mediterranean Seas, J. Geophys. Res., 90, (C30), 4833-4846, 1985.

Aagard, K., J.H. Swift, and E.C. Carmack, The Role of Sea Ice and Other Fresh Water in the Arctic Circulation, J. Geophys. Res., 94 (C10), 14485-14498, 1989.

Aksu, A.E. and P.J. Mudie, Magnetostratigraphy and palynology demonstrate at least 4 million years of the Arctic Ocean sedimentation, *Nature 318*, 280-283, 1985.

Anderson, R.F., M.P. Bacon, and P.G. Brewer, Removal of ²³⁰Th and ²³¹Pa from the open Ocean, Earth Planet. Sci. Lett., 62, 7-23, 1983 a.

Anderson, R.F., M.P. Bacon, and P.G. Brewer, Removal of ²³⁰Th and ²³¹Pa at ocean margins, *Earth Planet. Sci. Lett.*, 66, 73-90, 1983 b.

Anderson, R.F., Y. Lao, W.S. Broecker, S.E. Trumbore, H.J. Hofmann, W. Wölfli, Boundary Scavenging in the Pacific Ocean: a Comparison of ¹⁰Be and ²³¹Pa, Earth Planet. Sci. Lett., 96, 287-304, 1990.

Antonov, M., H.C. Haas, and V. Haase, Preliminary Results of Multi Probe Suspension and Current Speed Measurements of the Laptev Sea Shelf, In:Laptev Sea System: Expedition in 1994, H. Kassens (ed.), Berichte zur Polarforschung, 182, 1995.

Bacon, M.P. and R.F. Anderson, Distribution of thorium isotopes between the dissolved and particulate forms in the deep-sea, J. Geophys. Res. 87, 2045-2056, 1982.

Balkanski, Y.J., D.J. Jacob, G.M. Gardner, W.C. Graustein, K.K. Turekian, Transport and Residence Times of Tropospheric Aerosols Inferred from a Global Three-Dimensional Simulation of ²¹⁰Pb, J. Geophys. Res., 98 (D11), 20, 573-586, 1993.

Barabas, M., ESR-Datierung von Karbonaten: Grundlagen, Systematik, Anwendungen, Dissertation, Institut für Umweltphysik der Universität Heidelberg, 1989.

Barabas, M., M. Mudelsee, R. Walther and A. Mangini, Dose-response and thermal behaviour of the ESR signal at g = 2.0006 in carbonates, *Quaternary Sciences Reviews*, Vol. 11, 173-179, 1992.

Baranov, V.I., V.D. Vilenskii, Pb-210 in the atmosphere and in fallout, Soviet. At. Energy, 18, 645-648, 1965.

Barnes, C.E. and J.K. Cochran, Uranium removal in oceanic sediments and the oceanic uranium balance, *Earth Planet. Sci. Lett.* 97, 94-104, 1990.

- Barnett, D., Sea ice distribution in the Soviet Arctic In: Brigham, L.A.(ed): The Soviet Maritime Arctic, 47-62, London (Belhaven Press).
- Barry, R.G., The present climate of the Arctic Ocean and possible past and future states, In: Herman, Y. (ed): The Arctic Seas: Climatology, Oceanography, Geology and Biology, Van Nostrand, Reinhold Company, New York, 1-46, 1989.
- Baumann, M., Coccoliths in sediment cores of the eastern Arctic basin, In: Geological History of Polar Oceans: Arctic versus Antarctic, U. Bleil and J. Thiede (eds), Kluwer, 1990.
- Baumgartner, S.M.M., Kosmogene Radioisotope im Pleistozän des Summit-GRIP-Eiskerns, Dissertation, ETH Zürich, Nr. 11264, 266 pp., 1995.
- Beer, J., A. Blinov, G. Bonani, R.C. Finkel, H.J. Hofmann, B. Lehmann, H. Oeschger, A. Sigg, J. Schwander, T. Staffelbach, B. Staufer, M. Suter, and W. Wölfli, Use of ¹⁰Be in polar ice to trace the 11-year Cycle of solar activity, *Nature 347*, 164-166, 1990.
- Berger, H.W., T. Bickert, H. Schmidt and G. Wefer, Quaternary oxygen isotope record of pelagic foraminifers: Site 806, Ontong Java Plateau, in Berger H.W., L.W. Krienke, L.A. Mayer: Proc. ODP, Sci Results 130, College Station, TX (Ocean Drilling Program), 381-395, 1993.
- Berggren, W.A., D.V. Kent, J.J Flynn, and J.A. van Couvering, Cenozoic geochronology, Geol. Soc. Amer. Bull., 96, 1497-1418, 1985.
- Bohrmann, H., Radioisotope Stratigraphy, Sedimentology and Geochemistry of Late Quaternary Sediments from the Eastern Arctic Ocean, Berichte zur Polarforschung, Alfred-Wegener Institut-Bremerhaven, 95, 1991.
- Bollhöfer, A., Gammaspektroskopische Untersuchungen an Bodenseesedimenten, Diplomarbeit, Universität Heidelberg, 1993.
- Bollhöfer, A., A. Mangini, A. Lenhard, M. Wessels, F. Giovanoli, and B. Schwarz, High-Resolution ²¹⁰Pb-Dating of Lake Constance Sediments, Stable Lead in Lake Constance, *Environ. Geol.*, 24, 267-274, 1994.
- Bourles, D., G.M. Raisbeck and F. Yiou, ¹⁰Be and ⁹Be in marine sediments and their potential for dating, *Geochim. Cosmochim. Acta 53*, 443-452, 1989.
- Broecker, W.S., T.H. Peng, Tracer in the sea, A publication of the Lamont-Doherty geological Observatory, 1982.
- Broecker, W.S., and G.H. Denton, Ursachen der Vereisungszyklen, Spektrum der Wissenschaft 3/1990.
- Brown, E.T., C.I. Measures, J.M. Edmond, D.L. Bourles, G.M. Raisbeck and F. Yiou, Continental inputs of beryllium to the oceans, *Earth Planet. Sci. Lett.* 114, 101-111, 1992.
- Cande, S.C., and D.V. Kent, A new geomagnetic polarity time scale for the late Cretacious and Cenozoic, J. Geophys. Res., 97B, 13917-13951, 1992.

Carter, M.W., A.A. Moghissi, Three decades of nuclear testing, Health Physics, 33, 55-71, 1977.
Ceccaroni, L., M. Frignani, L.Langone, M. Ravaioli, M. Frank, and A. Mangini, Late Quaternary Fluctuations Of Biogenic Component Fluxes On The Continental Slope Of The Ross Sea, ANATARCTICA, Internatonal Symposium, Carbon Fluxes And Dynamic Processes In The Southern Ocean: Present And Past, 28-31 August 1995, Brest, France, 1995.

Chappel, J., and N.J. Shackleton, Oxygen isotopes and sea level, Nature 324, 137-140, 1986.

Chen, J.H., R.L. Edwards, and G.J. Wasserburg, ²³⁸U, ²³⁴U and ²³²Th in the sea water, *Earth Planet.* Sci. Lett., 80, 241-251, 1986.

CIA, Polar Regions Atlas, Washington, 1978.

Clark, D.L., J.-S. Vincent, G.A. Jones and W.A. Morris, Correlation of marine and continental glacial and interglacial events, Arctic Ocean and Banks Island, *Nature 311*, 147-149, 1984.

Clark, D.L., R.R. Whitman, K.A. Morgan and S.D. Mackey, Stratigraphy and glacial-marine sediments of the Amerasian Basin, central Arctic Ocean, Geol. Soc. Am. Spec. Paper, 181, 1985.

Clark, D.L., M. Andree, W.S. Broecker, A.C. Mix, G. Bonani, H.J. Hofmann, E. Morenzoni, M. Nessi, M. Suter and W. Wölfli, Arctic Ocean Chronology confirmed by Accelerator ¹⁴C Dating, *Geophys. Res. Lett.* 13, 4, 319-321, 1986.

Cochran, J.K., D.J. Hirschberg, H. D. Livingston, K.O. Buesseler, and R. Key, Natural and anthropogenic radionuclide distributions in the Nansen Basin, Arctic Ocean: Scavenging rates and circulation timescales, *Deep-Sea Res. II*, Vol. 42, 1495-1517, 1995.

Dansgaard, W., S.J. Johnson, H.B. Clausen, D. Dahl-Jensen, N.S. Gundestrup, C.U. Hammer, C.S. Hvidberg, J.P. Steffensen, A.E. Sveinbjörnsdottir, J. Jouzel, G. Bond, Evidence for a General Instability of past Climate from a 250 kyr Ice Core Record, *Nature 364*, 218-220, 1993.

Darby, D.A., A.S. Naidu, T.C. Mowatt and G. Jones, Sediment composition and sedimentary Processes in the Arctic Ocean, in *The Arctic Seas: Climatology, Oceanography, Geology and Biology*, edited by Y. Herman, 279-292, Van Nostrand, Reinhold Company, New York, 1989.

Dethleff, D., Die Laptevsee - eine Schlüsselregion für den Fremdstoffeintrag in das arktische Meereis, Dissertation, Mathematischen-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel, 111 pp., 1995.

Dominik, J., A. Mangini, and G. Mueller, Determination of recent deposition rates in Lake Constance with radioisotopic methods. *Sedimentology*, V28, 653-677, 1981.

Dörr, H., Investigation of the gas and water budgets in the undersaturated soil layer using carbon dioxide and Radon-222, *Doktorarbeit*, Universität Heidelberg, 1984.

Dörr, H., K.O. Muennich, Lead and Cesium Transport in European Forest Soils, Water Air and Soil Pollution, 57-58, 808-818, 1991.

Dymond, J., E. Suess, and B. Lyle, Barium in deep-sea sediment: A geochemical proxy for palaeoproductivity, Paleoceanography, 7, 163-181, 1992.

- Eisenhauer, A., A. Mangini, R. Botz, P. Walter, J. Beer, G. Bonani, M. Suter, H.J. Hofmann and W. Wölfli, High Resolution ¹⁰Be and ²³⁰Th Stratigraphy of late quaternary sediments from the Fram Strait (core 23235), in *Geological History of the Polar Oceans; Arctic versus Antarctic*, NATO ASI Series, Kluwer, Netherlands, edited by Bleil, U. and J. Thiede, 475-487, 1990.
- Eisenhauer, A., R.F. Spielhagen, M. Frank, G. Hentzschel, A. Mangini, P.W. Kubik, B. Dittrich-Hannen and T. Billen, ¹⁰Be records of sediment cores from high northern latitudes, *Earth and Planet. Sci. Lett.* 124, 171-184, 1994.

Emilliani, Pleistocene temperatures, In: J. Geol., 63, 538-578, 1955.

- Evans, D.W., J.J. Alberts, and A.C. Clark, Reversible ion-exchange fixation of cesium-137 leading to mobilization from reservoir sediments, *Geochimica et Cosmochimica Acta*, Vol. 47, 1041-1049, 1983.
- Falk, E., Water Fluxes in the Nordic Seas A Review, The Nordic Seas Symposium, Hamburg, March 7-9, 1995.
- Finkel, R., and S. Krishnaswami, ¹⁰Be in Arctic Ocean Sediments, Earth Planet. Sci. Lett. 35, 199-204, 1977.
- Frank, M., J.-D. Eckard, A. Eisenhauer, P.W. Kubik, B. Dittrich-Hannen, M. Segl and A. Mangini, ¹⁰Be, ²³⁰Th and ²³¹Pa in Galapagos microplate sediments: Implications of hydrothermal activity and paleoproduktivity changes during the last 100.000 years, *Paleoceanography*, Vol. 9, No. 4, 559-578, 1994.
- Frank, M., Reconstruction of Late Quaternary environmental conditions applying the natural radionuclides ²³⁰Th, ¹⁰Be, ²³¹Pa and ²³⁸U: A study of deep-sea sediments from the eastern sector of the Antarctic Current System, *Berichte zur Polarforschung*, 186, 136 pp, 1996.
- Frederichs, T., Regional and temporal variations of rock magnetic parameters in Arctic marinesediments, Berichte zur Polarforschung 164, Alfred-Wegener-Inst. Bremerhaven, 1995.
- Fütterer, D.K., Arctic'91: Die Expedition ARK-VIII/3 mit FS Polarstern, Berichte zu Polarforschung 107, Alfred-Wegener-Inst. Bremerhaven, 1992.
- Fütterer, D.K., Die Expedition Arctic'93. Der Fahrtabschnitt ARK-IX/4 mit FS Polarstern. Bericht zur Polarforschung, 149, 1994.
- Gard, G., Late Quaternary calcareous nannofossil biozonation, chronology and paleo-oceanograph: in areas north of the Faeroe-Iceland Ridge, Quat. Sci. Rev., 2, 65-73, 1988.
- Gard, G., and J. Backman, Synthesis of Arctic and sub-Arctic coccolith biochronology and histor, of North Atlantic Drift Water influx during the last 500,000 years, In: Geological History of Polar Oceans: Arctic versus Antarctic, U. Bleil and J. Thiede (eds), 417-436, Kluwer, 1990.
- Gäggeler, H., H.R. von Gunten, E. Rössler, H. Oeschger, U. Schotterer, ²¹⁰Pb-Dating of Cold Alpine Firn/Ice Cores from Colle Gnifetti, Switzerland, J. Glaciol., 29, 101, 1983.
- Gierloff-Emden, H.-G., Das Eis des Meeres: Phänomene, Genese und Morphologie, In: Lehrbuch der Allgemeinen Geographie, Berlin, (Walter de Gryter); Bd. 5, 767-940, 1982.

174

Giglio, F., Flussi sedimentari di Carbonio e Silice biogena in bacini di piattaforma continentale del Mare die Ross (Antartide): Correlazioni con le variazioni climatiche Oloceniche, Diplomarbeit, Universität Rom, 1996.

Gold, S., H.W.Barkhau, B. Schleien, B. Kahn, Measurement of Naturally Occuring Radionuclides in Air, The Natural Radiation Environment, Rice University Semicentennial Series, Chicago: University of Chicago Press, 369-382, 1964.

Gopalakrishnan, S., C. Rangarajan, L.U. Joshi, D.K. Kapoor, C.D. Eapen, Measurements on airborne and surface fallout radioactivity in India. Government of India, Atomic Energy Commission, Bhabha Atomic Research Centre, Bombay, India, 1973.

Gordienko, P.A., and A.F. Laktionov, Circulation and physics of the Arctic Basin waters, Annuals of the International Geophysical Year, Ocenography, 46,94-112, 1969.

Gorshkov, S.G., World Ocean Atlas, Vol. 3, Arctic Ocean, 80-103, 1983.

Graedel, T.E. und P.J. Crutzen, Chemie der Atmosphäre, Spektrum Akademischer Verlag, Heidelberg-Berlin-Oxford, 1994.

Graustein, W.C., and K.K. Turekian, The effects of forests and topography on the deposition of submicrometer aerosols measured by lead-210 and cesium-137 in soils, Agricultural and Forest Meteorology, 47, 199-220, 1989.

Grobe, H., A. Mackensen, H.W. Hubberten, V. Spiess, and D.K. Fütterer, Stable isotope record and Late Quaternary sedimentation rates at the Antarctic continental margin, In: Geological History of the Polar Ocean: Arctic versus Antarctic, U. Bleil, and J. Thiede (eds), 539-572, Kluwer, 1990.

Grün, R., Die ESR-Altersbestimmungsmethode, Springer Verlag, Heidelberg, 1989.

Heller, J., Datierung des Sedimentkernes PS2757-8 aus dem Arktischen Ozean anhand der Radionuklide ¹⁰Be und ²³⁰Th, *Diplomarbeit*, Institut für Umweltphysik Heidelberg, 1997.

Henrich, R., and K.-H. Baumann, Evolution of the Norwegian Current and the Scandinavian ice sheet during the past 2,6 m.y.: Evidence from ODP Leg 104 biogenic carbonate and terrigenous records, Palaeogeography, Palaeoclimatology, Palaeoecology 108, 75-94, 1994.

Hentzschel, G., Der Transport von ¹⁰Be und ²³⁰Th in die Sedimente von Kern 21533 - Arktischer Ozean, *Diplomarbeit*, Universität Heidelberg, 1992.

Herman, Y., The Arctic Seas: The Arctic Seas: Climatology, Oceanography, Geology and Biology, Van Nostrand, Reinhold Company, New York, 1989.

Hofmann, H.J., J. Beer, G. Bonani, H.R. von Gunten, S. Raman, M. Suter, R.L. Walker, W. Wölfli and D. Zimmermann, ¹⁰Be half-life and AMS-standards, *Nucl. Instrum. Methods Phys. Res. B29*, 2-36, 1987.

Holmes, M.L., Late Pleistocene and Holocene history of the Laptev Sea, *Master thesis*, University of Washington, 99 pp., 1967.

- Hunter, K.A., D.J. Hawke and L.K. Choo, Equilibrium adsorption of thorium by metal oxides in marine electrolytes, Geochim. Cosmochim. Acta 52, 627-636, 1988.
- Imbrie, J., J.D. Hays, D.G. Martinson, A. McIntyre, A.C. Mix, J.J. Morley, N.G. Pisias, W.L. Prell, and N.J. Shackleton, The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ¹⁸O record, in *Milankovitch and climate*, edited by Berger, A. L., J. Imbrie, J.D. Hays, G. Kukla and B. Saltzman, Part 1, 269-305, 1984.
- Ishman, S.E., L.V. Polyak, R.Z. Poore, Expanded record of Quaternary oceanographic change: Amerasian Arctic Ocean, Geology 24, 139-142, 1996.
- Ivanov, V.V., and A.A. Piskun, Distribution of river water and suspended sediments in the River Deltas of the Laptev Sea, In: Kassens, H., D. Piepenburg, J. Thiede, L. Timokhov, H.W. Hubberten, and S.M. Pryamikov, Russian-German Cooperation in the Siberian Shelf Seas: Geo-System Laptev Sea, Bremerhaven, Alfred-Wegener Institut für Polar- und Meeresforschung, Berichte zur Polarforschung, 176, 142-153, 1995.

L

L:

L

L

- Ivanovich, M. and R.S. Harmon (eds), Uranium Series Disequilibrium, 2nd edition, Clarendon, Oxford, 910 pp., 1992.
- Kassens, H., V.Y. Karpiy, Russian-German Cooperation: the Transdrift I expedition to the Laptev Sea, Berichte zur Polarforschung, 151, 168 pp., Bremerhaven, Alfred-Wegener Institut für Polar- und Meeresforschung, 1994.
- Kassens, H., Laptev Sea System: Expeditions in 1994, Berichte zur Polarforschung, 182, 195 pp., 1995.
- Klinkhammer, G. and M.R. Palmer, Uranium in the oceans, where it goes and why, Geochim. Cosmochim. Acta 55, 1799-1806, 1991.
- Köhler, S.E.I. and R.F. Spielhagen, The Enigma of Oxygen Isotope Stage 5 in the Central Fram Strait, in *Geological History of the Polar Oceans; Arctic versus Antarctic*, NATO ASI Series, edited by Bleil, U. and J. Thiede, C 308, 489-497, 1990.
- Köhler; S.E.I., Spätquartäre paläo-ozeanische Entwicklung des Nordpolarmeeres und Europäischen Nordmeeres anhand von Sauerstoff- und Kohlenstoff-Isotopenverhältnissen der planktischen Foraminifere Neogloboquadrina pachyderma (sin.), Dissertation, Mathematisch-Naturwissenschaftliche Fakultät, Universität Kiel, 1991.
- Koerner, R.M., The mass balance of the sea ice of the Arctic Ocean, J. Glaciol., 12, 65, 173-185, 1973.
- Krause, G., J. Meincke, and J. Thiede, "Scientific Cruise Report of Arctic expeditions ARK IV/1, 2 & 3, Berichte zur Polarforschung, 56, 1989.
- Kromer, B. und B. Becker, Tree-ring ¹⁴C calibration at 10.000 B.P., In: The last deglaciation: absolute and radiocarbon chronologies, *Springer Verlag*, Berlin, 3-11, 1992.
- Ku, T.L., K.G. Knauss, and G.G. Mathieu, Uranium in open ocean: concentration and isotopic composition, Deep Sea Res., 24, 1005-1017, 1979.

176

- Ku, T.L., L. Kusakabe, C.I. Measures, J.R. Southon, G. Cusimano, J.S. Vogel, D.E. Nelson and D. Nakaya, Beryllium isotope distribution in the western North Atlantic, A comparison to the Pacific, Deep Sea Res. 37, 795-808, 1990.
- Kusakabe, M., T.L. Ku, J.R. Southon, J.S. Vogel, D.E. Nelson, C.I. Measures, Y. Nozaki, Distribution of ¹⁰Be and ⁹Be in rivers/estuarines and their oceanic budgets, *Earth and Planet*. *Sci. Lett.*, 102, 265-276, 1987.
- Kusakabe, L., T.L. Ku, J.R. Southon, S. Liu, J.S. Vogel, D.E. Nelson, S. Nakaya and G.L. Cusinmano, Be isotopes in rivers/estuarines and their oceanic budgets, *Earth Planet. Sci. Lett.* 102, 265-276, 1991.
- Lal, D. and B. Peters, Cosmic ray produced radioactivity on the Earth, In: Encyclopedia of Physics 46 (2), Springer Verlag, New York, 581-588, 1967.
- Lal, D., Comments on some aspects of particulate transport in the oceans, Earth and Planet. Sci. Lett., 16, 520-527, 1980.
- Lal, D., K. Nishiizumi and J.R. Arnold, In-Situ Cosmogenic ³H, ¹⁴C and ¹⁰Be for Determing the Net Accumulation and Ablation Rates of Ice Sheets, J. Geophys. Res. 92, 4947-4952, 1987.
- Langner, C., and Transdrift I Shipboard Party, Distribution of Fe and Mn in pore waters and sediments of the Laptev Sea-Results of the expedition Transdrift I. In: Russian-German Cooperation: Laptev Sea System, *Berichte zur Polarforschung*, 176, H. Kassens, D. Piepenburg, J. Thiede, L. Timokhov, H.-W. Hubberten, and S.M. Priamikov (eds), 387 pp, 1995.
- Lao, Y., R.F. Anderson, W.S. Broecker, Boundary scavenging and deep-sea sediment dating: Constraints from excess ²³⁰Th and ²³¹Pa, *Paleoceanography*, Vol. 7, No.6, 783-798, 1992 a.
- Lao, Y., R.F. Anderson, W.S. Broecker, S.E. Trumbore, H.J. Hofmann and W.Wölfli, Increased production of cosmogenic ¹⁰Be during the last glacial maximum, *Nature 357*, 576-578, 1992 b.
- Lao, Y., R.F. Anderson, W.S. Broecker, S.E. Trumbore, H.J. Hofmann and W.Wölfli, Transport and burial rates of ¹⁰Be and ²³¹Pa in the Pacific Ocean during the Holocene period, *Earth and Planet*. *Sci. Lett.* 113, 173-189, 1992 c.
- Lao, Y., R.F. Anderson, W.S. Broecker, H.J. Hofmann and W. Wölfli, Particulate fluxes of ²³⁰Th, ²³¹Pa and ¹⁰Be in the northeastern Pacific Ocean, *Geochim. Cosmochim. Acta* 57, 205-217, 1993.
- Letolle, R., J.M. Martin, A.J. Thomas, V.V. Gordeev, S. Gusarova, and I.S. Sidorov, 18-O abundance and dissolved silicate in the Lena delta and Laptev Sea (Russia), *Mar. Chem.*, 43, 47-64, 1993.
- Lindemann, F, Sonographische und sedimentologische Untersuchungen in der Laptev See, sibirische Arktis, Diplomarbeit, 75 pp., 1994.

Lingen, H., Die Eroberung der Erdpole, Lingen Verlag, 1980.

Linkova, T.I., Some results of palaeomagnetic study of Arctic Ocean floor sediments.- Hope, E.R. (trans.), The present and past of the geomagnetic field, Nauka, Moskow, in *The Arctic Seas:*

Climatology, Oceanography, Geology and Biology, edited by Y. Herman, 279-292, Van Nostrand, Reinhold Company, New York, 1989.

- Liu, S.C., J.R. McAfee, R.J. Cicerone, Radon-222 and Tropospheric Vertical Transport, J. Geophys. Res., 89, 7291-7297, 1984.
- Mangini, A., C. Sonntag, G. Bertsch, E. Müller, Evidence for a higher, natural U content in the world rivers, *Nature*, Vol. 79, 337-339, 1979.
- Mangini, A., and L. Diester-Haass, Excess Th-230 off W. Africa traces upwelling in the past, In: Coastal Upwelling, E. Suess, and J. Thiede (eds), *Plenum Publishing Corp.*, 455-470, 1983.
- Mangini, A., Datierung von Sedimenten und andere Anwendungen der Radionuklide ²³⁰Th, ²³¹Pa und ¹⁰Be in der marinen Geologie, *Habilitation*, Fakultät für Geowissenschaften der Universität Heidelberg, 1984.
- Martell, E.A., Enhanced ion production in convective storms by transpired radon isotopes and their decay products, J. of Geophys. Res., 90, No. D4, 5909-5916, 1985.
- Martinson, D.G., N.G. Pisias, J.D. Hays, J. Imbrie, T.C. Moore jr., and N.J. Shackleton, Age dating and the orbital theory of ice ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy; *Quart. Res.* 27, 1-29, 1987.
- Mazaud, A., C. Laj and M. Bender, A geomagnetic chronology for Antarctic ice accumulation, Geophys. Res. Lett. 21, 337-340, 1994.
- Meyandier, L., J.P. Valet, R. Weeks, N.J. Shackelton, and V.L. Hagee, Relative geomagnetic intensity of the field during the last 140 ka, *Earth Planet. Sci. Lett.*, 114, 39-57, 1992.
- Mienert, J., L.A. Mayer, G.A. Jones and J.W. King, Physical and Acoustic Properties of Arctic Deep-Sea Sediments: Paleoclimatic Implications, in *Geological History of the Polar Oceans:* Arctic versus Antarctic, Kluwer, Netherlands, 475-487, 1990.
- Milankovitch, M., Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen, 1930, In: Koppen, W., R. Geiger (eds): Handbuch der Klimatologie, I(A), Bornträger Verlag Berlin, zitiert in Geyh & Schleicher, 1990.
- Milliman, J.D., and R.H. Meade, World-wide delivery of river sediments to the oceans, J. Geol., 91 (1), 1-21, 1983.
- Molnar, M., Datierung von Sedimentkernen aus dem Arktischen Ozean, Diplomarbeit, Universität Heidelberg, 1995.
- Monaghan, M., S. Krishnaswami and K.K. Turekian, The global-average production rate of ¹⁰Be. Earth Planet. Sci. Lett. 76, 279-287, 1985/86.
- Morris, T.H., D.L. Clark, and S.M. Blasco, Sediments of the Lomonosov Ridge and Makarov Basin: A pleistocene stratigraphy of the North Pole, Geol. Soc. of Am. Bulletin 96, 901-910, 1985.

Morris, J.D., Applications of cosmogenic ¹⁰Be to problems in the earth sciences, Annu. Rev. Earth Planet. Sci., 19, 313-350, 1991.

Moses, H.H., F. Lucas, Jr., G.A. Zerbe, The Effect of Meteorological Variables upon Radon Concentration Three Feet Above The Ground, J. Air Pollution Contr. Assoc., 13, 12, 1963.

- Mudelsee, M., M. Barabas and A. Mangini, ESR Dating of the Quaternary Deep-Sea-Sediment Core RC17-177, Quaternary Science Reviews 11, 181-189, 1992.
- Myhre, A.M., J. Thiede, J.V. Firth et al., Proc. ODP, Init. Repts. 151. College Station, TX, 926 pp., 1995.
- Nagel, F., Hochauflösende²³⁰Th- und ¹⁰Be- Stratigraphie an Kern 1008-3 aus dem Angola Becken, Diplomarbeit, Universität Heidelberg.
- Niessen, F., D. Weiel, T. Ebel, J. Hahne, C. Kopsch, M. Melles, and R. Stein, Weichselian Glaciations in Central Siberia - Implications from Marine and Lacustrine High Resolution Seismic Profiles and Sediment Cores, EUG-9 Conference, European Union of Geosciences, Strasbourg, March 23-27, Abstract Volume, 1997.

Nøgaard-Pedersen, N., Late Quaternary Arctic Ocean Sediment Records: Surface Ocean Conditions and Provenance of Ice-rafted debris, *Dissertation*, Christian-Albrechts-Universität Kiel, 1996.

Nowaczyk, N.R., Hochauflösende Magnetstratigraphie spätquartärer Sedimente arktischer Meeresgebiete, Berichte zur Polarforschung 78, Alfred Wegener Institute Bremerhaven, 1991.

- Nowaczyk, N.R., M. Baumann, Combined high-resolution magnetostratigraphy and nannofossil biostratigraphy for the late Quaternary Arctic sediments, *Deep-Sea Res. 39*, Supp.2, 567-601, 1992.
- Nowaczyk, N.R., T.W. Frederichs, A. Eisenhauer and G. Gard, Magnetostratigraphic data from the late Quaternary sediments from the Yermak Plateau, Arctic Ocean: evidence for four geomagnetic polarity events within the last 170 ka of the Brunhes Chron, Geophys. J. Int. 117, 453-471, 1994.
- Nürnberg, D., D. Fütterer, F. Niessen, N. Nörgaard-Petersen, C. Schubert, R.F. Spielhagen, and M. Wahsner, The depositional environment of the Laptev Sea continental margin: Preliminary results from the RV "Polarstern" ARK-IX/4 cruise, *Berichte zur Polarforschung*, 14, 43-53, 1995.
- Nürnberg, D., Biogenic Barium and opal in shallow eurasian shelf sediments in relation to the pelagic arctic ocean environment, In:Surface-sediment composition and sedimentary processes in the central Arctic Ocean and along the Eurasian Continental Margin, Stein, R., G.I. Ivanov, M.A. Levitan, and K. Fahl (eds), *Berichte zur Polarforschung*, 212, 1996.

O'Brian, K.O., Secular Variations in the Production of Cosmogenic Isotopes in the Earth's Atmosphere, J. Geophys. Res., 95 (D13), 22,407-22,415, 1979.

O'Brian, K.O., A. de la Zerda Lerner, M.A. Shea, D.F. Smart, The Production of Cosmogenic Isotopes in the Earth's Atmosphere and their Inventories, In: Sonett, C.P, M.S. Giampa, M.S. Matthews (eds): *The Sun in Time*, University of Arizona, Tucson, 317-341, 1991.

- Paetsch, H., Sedimentation im Europäischen Nordmeer: Radioisotopische, geochemische und tonmineralogische Untersuchungen spätquartärer Ablagerungen, Doktorarbeit, Christian-Albrechts-Universität Kiel, 83 pp., 1991.
- Parkinson, C.L., J.C. Comiso, H.J. Zwally, D.J. Cavalieri, P. Gloersen, and W.J. Campbell, Arctic sea ice, 1973-1976: Satelitte passive microwave observations, NASA; Washington D.C., 489, 1987.
- Parkinson, C.L., and D.J. Cavalieri, Arctic sea ice 1973-1987: Seasonal, regional and interannual variability, J. Geophys. Res., (C10), 14499-14523, 1989.
- Peng, T.H., W.S. Broecker, G.G. Mathieu, Y.H. Li, A.E. Bainbridge, Radon evasion rates in the atlantic and pacific oceans as determined during the Geosecs program, J. of Geophys. Res., 84, No. C5, 2471-2486, 1979.
- Rachor, E., "Scientific Cruise Report of the 1991 Arctic Expedition ARK VIII/2 of RV Polarstern (EPOS II), Berichte zur Polarforschung, 115, 1992.
- Raisbeck, G.M., F. Yiou, J. Jouzel, J.R. Petit, N.I. Barkov, E. Bard, ¹⁰Be Deposition at Vostock, Antarctica During the Last 50,000 Years and its Relationship to Possible Cosmogenic Production Variations During this Period, In: Bard, E., W.S. Broecker, *The Last Deglaciation:* Absolute and Radiocarbon Chronologie, NATO ASI, 12, Heidelberg, Springer, 1992.
- Rehfeld, S., Deposition radioaktiver Tracer in einem Transportmodell der Atmosphäre, Doktorarbeit, Univ. Hamburg, 144 pp., 1994.
- Robbins, J.A., and D.N. Edgington, Depositional processes and the determination of recent sedimentation rates in Lake Michigan, Proc. 2nd Federal Conf. Great Lakes, 378-390, 1976.

Roedel, W., Physik unserer Umwelt: Die Atmosphäre, Springer Verlag, 1992.

- Rona, E., L.O. Gilpatrick, and L.M. Jeffrey, Uranium determination in sea water, EOS, Trans. Am. Geophys. Union, 37, 697-701, 1956.
- Rudels, B., E.P. Jones, L.G. Anderson, and G. Kattner, On the intermediate depth waters of the Arctic Ocean, In: The Polar Oceans and their Role in shaping the Global environment, Johannessen, O., R.D.: Muench, and J.E.Overland (eds), *American Geophysical Union*, Washington, 33-46, 1994.
- Rutgers van der Loeff, M.M., and G.W. Berger, Scavenging of ²³⁰Th and ²³¹Pa near the Antarctic Polar Front in the South Atlantic, *Deep-Sea Research*, 40, 339-357, 1993.
- Rutgers van der Loeff, M.M., M.K. Key, J. Scholten, D. Bauch, and A. Michel, ²²⁸Ra as a tracer for shelf water in the Arctic Ocean, *Deep-Sea Research II*, Vol. 42, No. 6, 1533-1553, 1995.
- Rutsch, H.J., Element- und Isotopenkonzentrationen in Tiefseesedimenten aus dem nordöstlichen Südatlantik - Zeitreihenuntersuchungen an den Sedimentkernen GeoB 1008-3 und M 16772-2, Diplomarbeit, Universität Heidelberg, 1993.

180

- Rutsch, H.J., A. Mangini, G. Bonani, B. Dittrich-Hannen, P.W. Kubik, M. Suter and M. Segl, ¹⁰Be and Ba concentrations in W. African sediments trace productivity in past, *Earth Planet. Sci. Lett.* 133, 129-143, 1995.
- Sanak, J., G. Lambert, Lead 210 or Climatic Changes at South Pole?, Geophys. Res. Lett., 4, 9, 357-359, 1977.
- Schäper, S., Quartäre Sedimentation im polnahen Arktischen Ozean, Diplomarbeit, Universität Heidelberg, 113 pp., 1994.
- Scholten, J.C., R. Botz, H. Paetsch, and P. Stoffers, ²³⁰Th_{ex} flux into Norwegian-Greenland sediments: Evidence for lateral sediment transport during the past 300,000 years, *Earth and Planet. Sci. Lett. 121*, 111-124, 1994.
- Scholten, J. C., M.M. Rutgers van der Loeff and A. Michel, Distribution of ²³⁰Th and ²³¹Pa in the water column in relation to the ventilation of deep Arctic basins, *Deep Sea Res.* 42, 1519-1531, 1995.
- Schubert, C.J., Organischer Kohlenstoff in spätquatären Sedimenten des Arktischen Ozeans: Terrigener Eintrag und marine Produktivität, Berichte zur Polarforschung, Bremerhaven, Alfred-Wegener Institut, 177, 178 pp., 1995.
- Schulz, V., Datierung von Sedimentkernen aus dem Arktischen Kontinentalhang der Barents- und Laptewsee mit den Radionukliden ²³⁰Th und ¹⁰Be, *Diplomarbeit*, Institut für Umweltphysik Heidelberg, 1996.
- Segl, M, A. Mangini, J. Beer, G. Bonani, M. Suter, and W. Wölfli, ¹⁰Be in the Atlantic Ocean, a transect at 25°N, *Nucl. Instr. Meth.*, B29, 332-334, 1987.
- Sharma, P., P. Mahannah, W.S. Moore, T.L. Ku and J.R. Southon, Transport of ¹⁰Be and ⁹Be in the oceans, *Earth Planet. Sci. Lett.* 86, 69-76, 1987.
- Smith, S.D., R.D. Miench, and C.H. Pease, Polynyas and leads: An overview of physical processes and environment, J. Geophys. Res., 95 (C), 9461-9479, 1990.
- Southon, J.R., T.L. Ku, D.E. Nelson, J.L. Reyss, and J.S. Vogel, ¹⁰Be in a deep sea core: implications regarding ¹⁰Be production changes over the past 420 ka, *Earth Planet. Sci. Lett.* 85, 356-364, 1987.
- Spielhagen, R.F., A. Eisenhauer, M. Frank, T. Frederichs, H. Kassens, A. Mangini, N.R. Nowaczyk,
 N.N. Pedersen, S. Schäper, R. Stein, J. Thiede, R. Tiedemann, M. Washner, G. Bonani and P.W.
 Kubik, Arctic Ocean evidence for late Quaternary initiation of northern Eurasian ice sheets, Geology, 1997.
- Stanzick, A., Räumliche und zeitliche Depositionsvariationen der Radioisotope ¹⁰Be und ²¹⁰Pb in Eisbohrkernen Zentralgrönlands; *Diplomarbeit*, Institut für Umweltphysik Heidelberg, 1996.

Stein, R., H. Grobe, M. Wahsner, Organic carbon, carbonate, and clay mineral distributions in eastern central Arctic Ocean surface sediments; *Mar. Geol 119*, 269-285, 1994 a.

Stein, R., S.-I. Nam, C. Schubert, C. Vogt, D. Fütterer and J. Heinemeier, The last deglaciationevent in the eastern central Arctic Ocean; Science 264, 692-696, 1994 b.

Stocker, T.F., A glimpse of the glacial, Nature 391, 338-339, 1998.

- Thiede, J. and Hempel, G., Die Expedition Arktis-VII/1 mit FS Polarstern. Berichte zur Polarforschung, 80, 1991.
- Timokhov, L.A., Regional Characteristics of the Laptev and the East Siberian Seas: Climate, Topography, Ice Phases, Thermohaline Regime, Circulation, In: Kassens, H., H.W. Hubberten, S.M. Pryamikov, and R. Stein, Russian-German Cooperation in the Siberian Shelf Seas: Geo-System Laptev Sea, Bremerhaven, Alfred-Wegener Institut für Polar- und Meeresforschung, Berichte zur Polarforschung, 144, 15-33, 1994.
- Tric E., J.P. Valet, P. Tucholka, M. Paterne, L. Labeyrie, F. Guichard, L. Tauxe, and M. Fontugne, Paleointensity of the geomagnetic field during the last 80,000 years, J. Geophys. Res., 97, 9337-9351, 1992.
- Turekian, K.K., and L.H. Chan, The marine geochemistry of uranium isotopes, Th-230 and Pa-231, In: Activation analysis in geochemistry and cosmochemistry, A.O. Brunfelt, and E. Steinnes (eds), 311-320, Universitetsforlaget, Oslo, 1971.
- Turekian, K.K., Y. Nozaki, and L.K. Benninger, Geochemistry of atmospheric radon and radon products, Ann. Rev. Earth Planet. Sci., 5, 227-255, 1977.
- Turekian, K.K., L.K. Benninger, and E.P. Dion, ⁷Be and ²¹⁰Pb total deposition fluxes at New Haven, Connecticut, and at Bermuda, J. Geophys. Res. 88, 5411-5415, 1983.

Turekian, K.K., Die Ozeane, Ferdinand Enke Verlag Stuttgart, 1985.

- Turekian, K.K., W.C. Graustein, K. Cochran, Lead-210 in the SEAREX program: An Aerosol Tracer across the Pacific, In: Riley, J.P., R. Chester: Chemical Oceanography, Academic, 10, 51-81, 1989.
- Vogler, S., Das Verhalten der natürlichen Radionuklide²³⁴Th und ⁷Be im Bodensee, *Diplomarbeit*, Universität Heidelberg, 1994.
- Vogelsang, E., Paläo-Ozeanographie des Europäischen Nordmeeres an Hand stabiler Kohlenstoff und Sauerstoffatome, Christian-Albrechts-Universität Kiel, Ber. Sonderforschungsbereich 313, No. 23, 1990.
- Vogt, C., Zeitliche und räumliche Verteilung von Mineralvergesellschaftungen in spätquatären Sedimenten des Arktischen Ozeans und ihre Nützlichkeit als Klimaindikatoren während de Glazial/Interglazial Wechsel, Berichte zur Polarforschung, 251, 1997.
- von Gunten, H.R., and R.N. Moser, How reliable is the ²¹⁰Pb dating method? Old and new result from Switzerland, *Journal of Paleolimnology*, 0, 1-18, 1993.

Wagner, G. A., Altersbestimmung von jungen Gesteinen und Artefakten, Enke Stuttgart, 1995.

182

- Walsh, J.E., and C.M. Johnson, An analysis of Arctic sea ice fluctuations, 1953-1977, J. Phys. Oceanogr., 9, 580-590, 1979.
- Wedepohl, K.H., The composition of the continental crust, Geochim. Cosmochim. Acta 59, 1217-1232, 1995.
- Weiel, D, Paläozeanographische Untersuchungen in der Vilkitsky Straße und östlich von Severnaya Zemyla mit sedimentologischen und geophysikalischen Methoden, Diplomarbeit, Universität Kiel, 1997.

Welz, B., Atom-Absorbtions-Spektroskopie, Verlag Chemie, 1975.

Lund

3,

31

- Werner, M., Vergleichende Studie über die Verteilung vulkanogener Spurenstoffdepositionen in Nord-Ost Grönland, Diplomarbeit, Universität Heidelberg, 1995.
- Wilson, J.D., R.K. Webster, G.W.C. Milner, G.A. Barnett, and A.A. Smales, A comparison of three methods of determining the concentration of U in sea water, Anal. Chim. Acta, 23, 505-514, 1960.
- Wollenburg, J., Benthische Foraminiferenfaunen als Wassermassen-, Produktions- Eisdriftanzeiger im Arktischen Ozean, Berichte zur Polarforschung, Bremerhaven, (Alfred-Wegener Institut), 179, 1995.
- Yamazaki, T., and N. Ioka, Long-term secular variation of the geomagnetic field during the last 200,000 years recorded in sediment cores from the western equatorial Pacific, *Earth Planet. Sci. Lett.*, 128, 527-544, 1995.
- Yang, H.-S., Y. Nozaki, A. Masuda, The distribution of ²³⁰Th and ²³¹Pa in the deep-sea surface sediments of the Pacific Ocean, Geochim. Cosmochim. Acta, 50, 81-89, 1986.
- Young, J.A., W.B. Silker, The Determination of Air-Sea Exchange and Ocean Mixing Rates Using ⁷Be during the Bombex Experiment, J. Geophys. Res., 79, 30, 4481-4489, 1974.
- Yu, E.F., R. Francois, and M.P. Bacon, Radiochemical constraints on ocean circulation during the last glacial maximum, submitted to Nature, 1995.
- Zahn, R., B. Markussen and J. Thiede, Stable isotope data and depositional environments in the late Quaternary Arctic Ocean; Nature 314, 433-435, 1985.
- Zakharov, V.F., Cooling of the Arctic and the ice cover of the Arctic Seas, Arctic and Antarctic Research Institute, Leningrad, Russia, 96 pp., 1976.

Zakharov, V.F., Arctic ice and contemporary natural processes, L. Gidrometeoizdat, 130 pp., 1981.

A.1 Geographische Lokationen

A.1.1 Geographische Lage der bearbeiteten Sedimentkerne

Schelfgebiet der Laptev See

Butter Basered

Geographische Lage der bearbeiteten Sedimentkerne aus dem Schelfgebiet der Laptev See, die während den russisch-deutschen Expeditionen Transdrift II [Kassens, 1994] und Transdrift III [Kassens, 1995] gezogen wurden.

Stationsnummer	Lokation	Wassertiefe [m]	Kernlänge [cm]	Bearbeiter (¹⁰ Be, ²³⁰ Th)
PM9402-3 (GKG)	75°29,44`N 115°14,94`E	47	39	diese Arbeit
PM9417-4 (GKG)	75°30,17'N 130°00,83'E	51	45	diese Arbeit
PM9441-4 (GKG)	74°00,01'N 125°59,35'E	14	19	diese Arbeit
PM9442-3 (GKG)	74°30,05'N 126°00,20'E	40	47	diese Arbeit
PM9451-7 (GKG)	74°30,16'N 130°29,70'E	25	18	diese Arbeit
PM9462-1 (GKG)	74°30,13'N 136°00,23'E	27	53	diese Arbeit
PM9462-4 (VC)	74°30,18'N 136°00,32'E	27	467	diese Arbeit
PM9463-8 (GKG)	74°30,21'N 126°34,91'E	36	44	diese Arbeit
PM9481-2 (GKG)	73°45,00`N 134°00,25`E	17	35	diese Arbeit
PM9482-1 (GKG)	73°59,94`N 128°10,47`E	27	56	diese Arbeit
PM94T3-2 (GKG)	77°04,16'N 99°13,18'E	110,5	49	diese Arbeit
KD9529-12 (GKG)	71°45,18'N 135°44,21'E	15	18	diese Arbeit
KD9555-10 (GKG)	75°31,92'N 134°34,59'E	36	38	diese Arbeit

聯

Kontinentalhanggebiet der Laptev See

Geographische Lage der bearbeiteten Sedimentkerne aus dem Kontinentalhanggebiet der Laptev See, die während der Expedition ARK IX/4 [Fütterer, 1994] gezogen wurden.

Stationsnummer	Lokation	Wassertiefe [m]	Kernlänge [cm]	Bearbeiter (¹⁰ Be, ²³⁰ Th)
PS2456-2 (GKG)	78°29,04'N 133°00,10'E	2520	44	Schulz [1997]
PS2456-3 (KAL)	78°28,86'N 133°01,90'E	2507	574	Schulz [1997]
PS2474-3 (KAL)	77°40,2'N 118°35,5'E	1494	784	diese Arbeit
PS2471-4 (KAL)	79°09,07'N 119°47,55'E	3047	417	diese Arbeit

Kontinentalhanggebiet der Barents See

Geographische Lage des bearbeiteten Sedimentkerns aus dem Kontinentalhanggebiet der Barents See, der während der Expedition ARK VIII/2 [Rachor, 1992] gezogen wurde.

Stationsnummer	Lokation	Wassertiefe [m]	Kernlänge [cm]	Bearbeiter (¹⁰ Be, ²³⁰ Th)
PS2138-1 (KAL)	81°32,10'N 30°35,16'E	2520	640	Schulz [1997]

Lomonosov Rücken

Geographische Lage der bearbeiteten Sedimentkerne vom Lomonosov Rücken, die während den Expeditionen ARK XI/1 und ARK VIII/3 [Fütterer, 1992] gezogen wurden.

Stationsnummer	Lokation	Wassertiefe [m]	Kernlänge [cm]	Bearbeiter (¹⁰ Be, ²³⁰ Th)
PS2757-8 (KAL)	81°09,8'N 140°12,0E	1230	840	Heller [1997]
PS2185-3 (GKG)	87°32,0'N 144°22,9'E	1051	33	Schäper [1994]
PS2185-6 (KAL)	87°32,2'N 144°55,6'E	1052	820	Schäper [1994]

Yermak Plateau

Geographische Lage des bearbeiteten Sedimentkerns vom Yermak Plateau, der während der Expedition ARK IV/3 [Krause et al., 1989] gezogen wurde.

Stationsnummer	Lokation	Wasserticfe [m]	Kernlänge [cm]	Bearbeiter (¹⁰ Be, ²³⁰ Th)
PS1533-3 (KAL)	82°01,9'N 15°10,7'E	2030	485	Hentzschel [1992] Eisenhauer et al. [1994]

Nansen Gakkel Rücken

Geographische Lage des bearbeiteten Sedimentkerns vom Nansen Gakkel Rücken, der während der Expedition ARK IV/3 [Krause et al., 1989] gezogen wurde.

Stationsnummer	Lokation	Wassertiefe [m]	Kernlänge [cm]	Bearbeiter (¹⁰ Be, ²³⁰ Th)
PS1524-2 (KAL)	85°21,8'N 26°12,9'E	3646	423	Eisenhauer et al. [1994]

Nansen Becken

pr-vil pant

-veteral analysis

Geographische Lage des bearbeiteten Sedimentkerns vom Nansen Gakkel Rücken, der während der Expedition ARK IV/3 [Krause et al., 1989] gezogen wurde.

Stationsnummer	Lokation	Wassertiefe [m]	Kernlänge [cm]	Bearbeiter (¹⁰ Be, ²³⁶ Th)
PS1521-15 (KAL)	82°56,5'N	3752	498	diese Arbeit
1.125	32°05,2'E	4500	30, 300, 236	

Makarov Becken

Geographische Lage des bearbeiteten Sedimentkerns aus dem Makarov Becken, der während der Expedition ARK VIII/3 [Fütterer, 1992] gezogen wurde.

Stationsnummer	Lokation	Wassertiefe [m]	Kernlänge [cm]	Bearbeiter (¹⁰ Be, ²³⁰ Th)
PS 2178-5 (KAL)	88°1,5'N 159°42,2'E	4008	831	Schäper [1994]

Morris Jesup Plateau

Geographische Lage des bearbeiteten Sedimentkerns vom Morris Jesup Plateau, der während der Expedition ARK VIII/3 [Fütterer, 1992] gezogen wurde.

Stationsnummer	Lokation	Wassertiefe [m]	Kernlänge [cm]	Bearbeiter (¹⁰ Be, ²³⁸ Th)
PS 2200-5 (KAL)	85°19,4'N	1052	770	Molnar [1996]
· ···································	14°00,0'E	N 203	010-12-01	

Norwegen-, Grönland See und Framstrasse

Geographische Lage der bearbeiteten Sedimentkerne aus der Norwegen-, Grönland See und der Framstrasse, die während den Expeditionen Meteor 2/1, 2/2 [1986] gezogen wurden.

Stationsnummer	Lokation	Wassertiefe [m]	Kernlänge [cm]	Bearbeiter (¹⁰ Be, ²³⁰ Th)
23059-2 (GKG)	70°18,30'N 03°07,30'W	2283	and the second second	Eisenhauer et al., [1994]
23059-3 (KAL)	70°18,30'N 03°07,40'W	2281	15772 Bell	Eisenhauer et al., [1994]
23235-3 (KAL)	78°51,55'N 1°18,59'E	2456	CIPAC T	Eisenhauer et al., [1994]
23065 (KAL)	68°29,7'N 0°49,1'E	2802	640 1	Scholten et al. [1994]
23259 (KAL)	72°1,8'N 9°15,9'E	2518	e den bendrein	Scholten et al. [1994]
17728 (KAL)	76°31,2'N 3°57,5'E	2485		Scholten et al. [1994]

A.1.2 Geographische Lage der bearbeiteten Wasserproben

Geographische Lage der bearbeiteten Wasserproben aus der Norwegen-, Grönland See, dem zentralen Arktischen Ozean un der Laptev See, die während den Expeditionen Transdrift II [Kassens, 1994], Transdrift III [Kassens, 1995], ARK VII/1 [Thiede und Hempel, 1991] und ARK VIII/3 [Fütterer, 1992] gezogen wurde.

Stationsnummer	Lokation	Wassertiefe [m]	bearbeitete Tiefen [m]
Norwegen- und Grönl	and See		Spelar Seriesa
1	65°00'N 0°00'W		6, 50
5	69°27'N 16°31'W	996	6, 10, 50
6	69°47`N 15°39`W	1189	6, 50, 250, 750
8	70° 45`N 05°25`W	2387	6, 100, 200, 500, 1000, 1500, 1950
- 9	72°33'N 12°15'W	2362	6, 50, 100, 500, 1000, 1950
- 14	75°25`N 07°20`W	3360	6, 50, 100, 200, 500, 1000, 1500, 2000
15	75°50'N 08°10'W	1970	6, 50, 100, 200, 500, 1000, 1500
- 18	77°27'N 5°54'W	423	6, 20, 100, 200, 350
Zentraler Arktischer 152	Ozean 83°58,5`N	3890	50, 500, 1500, 2250, 3000,
165	30°24,8`E 87°34,4'N	4300	3500 50, 500, 1300, 2300, 3300,
173	87°45,2'N 108°59,1'E	4220	50, 320, 1220, 2220, 3220, 4220
Lantev See			
PM9463-1	74°30,07'N 126°35,06'E	36	2, 30
PM9472-3	71°59,85'N 130° 30,77'E	16	2
PM9494-3	74°30,06`N 114°17,05`E	36	2
KD95028	76°11,52'N 133°06,99'E	46	5

of Bridd Brook Brook

120

Stationsnummer	Lokation	Wassertiefe [m]	bearbeitete Tiefen [m]
		Lupicy See, G	en Addedim Ozenz (11 60)
KD9517-7	76°14,29'N 138°50,10'E	18	0
KD9523-4	74°18,42'N 135°26,99'E	32	5, 10, 20
KD9529-16	71°45,14'N 135°44,12'E	15	0
KD9531-2	72°14,93'N 130°55,12'E	15	
KD9533-9	71°14,02'N 131°20,64'E	14,5	0, 5 - 10
KD9541-14	73°22,80'N 129°56,57'E	22	0, 18
KD9548-7	75°29,47'N 130°41,65'E	39	0, 10, 20
KD9561-1	73°53,55'N 126°50,81'E	13	0
KD9564-4	74°36,05'N 114°28,52'E	39	0, 10, 20
KD9568-9	75°29,38'N 114°30,41'E	34	0, 25
KD9572-4	77°00,78'N 116°03,15'E	50	0, 10, 25

CAL)	9115 76"31 3"57	27N 37B	2483	30.54	Schulten et e

- 16	
\$	

A.2 Meeresbodenprofile

Abb. A1: Lage des Sedimentkernes PS2200-5 in einem Meeresbodenprofil [Fütterer, 1992]

Abb. A3: Lage des Sedimentkernes PS2185-6 in einem Meeresbodenprofil [Fütterer, 1992]

Abb. A4: Lage der Sedimentkerne PS2471-4 und PS2474-3 in einem Meeresbodenprofil [Fütterer, 1994]

Wateress PSTTTTS in circan Mectresboateners

Abb. A5: Lage des Sedimentkernes PS2456-3 in einem Meeresbodenprofil [Fütterer, 1994]

Lörung wird ther blacks make dass bit-Lauppen bis for Trockes strenchertoff

Probe wird accentification and die Löving versionin - Alexandrian and Alfalis baw. Undeterferingen, die is der geltenen Finne verliegen, werder verwerfen) Bestemmt wird mit stern 7 mit Netlij gelten und mit pit 14 emperatio (en Be(OF), gele bei pit 14 winder in Lötung und Eisen falls and

Events beginning and the Ministered (south fire (R. Down) vorweis (in States, and pill 1.4 wriggers (es. 20 - 13 Tropfin) and 1 and Ne ETDA southant and the states of the states of the states and Adaptive term. Endsteadimentation)

B.1 ¹⁰Be-Messungen

B.1.1 Chemische Aufbereitung der Sediment- und Wasserproben

1.Tag

0,5 bis 1 g gemörsertes Sediment in einen Teflonbecher einwiegen und mit Wasser (H₂O) aufnehmen (1 - 2 ml) ⁹Be-Spike hinzugeben Zugeben von 5 ml H₂O₂ und ca. 25 ml 8N HCl Probe wird über Nacht gelagert

2.Tag

Probe 5 min bei 3900 U min⁻¹ zentrifugieren und die Lösung abdekantieren und in anderen Teflonbechern aufbewahren (⇒ ¹⁰Be in Lösung) Rückstand mit 15 ml 8N HCl versetzen und tagsüber (ca. 8 Stunden) reagieren lassen Erneut zentrifugieren Lösungen werden zusammengeführt, und das Zentrifugat wird verworfen

Lösung wird über Nacht unter den IR-Lampen bis zur Trockne eingedampft

3.Tag

Rückstand wird mit 2 ml HNO₃ konz. und 2 ml HCl konz. aufgenommen 30 min warten Probe mit etwas Wasser verdünnen und etwa 8 ml NaOH zugegeben bis pH bei 2,5 (nicht darüber!!) 2 ml Na-ETDA zugeben und 1h warten (⇒ Na-ETDA bildet mit Aluminium wasserlösliche Komplexe)

Mit etwa 15 Tropfen NaOH wird ein Farbumschlag von gelb nach orange erreicht, der den pH von 8 -9 anzeigt

4.Tag

Probe wird zentrifugiert und die Lösung verworfen (⇒ Aluminium und Alkali- bzw. Erdalkalimetalle, die in der gelösten Phase vorliegen, werden verworfen) Rückstand wird mit etwa 7 ml NaOH gelöst und auf pH 14 eingestellt (⇒ Be(OH)₂ geht bei pH 14 wieder in Lösung und Eisen fällt aus)

5.Tag

Zentrifugieren und den Rückstand (enthält z.B. Eisen) verworfen Mit HNO₃ konz. auf pH 2,5 bringen (ca.10 - 15 Tropfen) und 1 ml Na-ETDA zufügen (⇒ Erneute Abtrennung von Aluminium und Alkali- bzw. Erdalkalimetallen) Nach 1 h wird mit ca. 7 Tropfen NaOH der pH auf 8 - 9 erhöht

6./7. Tag

Zentrifugieren und die Lösung (enthält z.B. Aluminium) wird verworfen Der geleeartige weiße Niederschlag von Be(OH) am Boden des Teflonbechers wird mit 5 ml Wasser gespült und mit einem Tropfen NH₃ im gefällten Zustand fixiert (⇒ Bor bleibt bei pH 8,5 - 9 in Lösung, während Be(OH) ausgefällt wird) Das Verfahren wird am nächsten Tag wiederholt Zentrifugieren und die Lösung (enthält z.B. Bor) wird verworfen usw.

8. Tag

Niederschlag wird abgenutscht und der Microporenfilter mit dem Präparat in einem Quarztiegel ca. 1 h bei 1100° C im Ofen gebrannt Hierbei wird Be(OH) in BeO übergeführt

9. Tag

Das reinweiße ¹⁰Be Pulver wird im Achatmörser mit Kupferpulver im Massenverhältnis von 1:4 bis1:20 vermischt und mit etwa 8 • 10⁴N in ein Kupfertarget gepreßt

1.Tag

Probenmenge (1 - 301) werden mit (0,5 - 1 ml)⁹Be-Spike versetzt Mit 8N HCl angesäuert bis ein pH von 1 -2 erreicht ist

Reduzierung des Probenvolumens:

Unter Zugabe einer definierten Menge (1 ml) an Eisenlösung (Fe(II)Cl₂) [40 mg ml⁻¹] wird die Probe mit NH₃ ins alkalische Milieu (pH 7 -8) überführt

2.Tag

Nach kurzer Zeit kann die ausgefällte Eisenphase (⇒ ¹⁰Be adsorbiert an der Oberfläche) zentrifugiert und demzufolge abgetrennt werden

Eisenphase wird mit 20 ml 8N HCl gelöst und über eine mit 8N HCl (30 ml) beladene 1x8 Dowex Säule (5 cm Höhe) gegeben

Spüle mit 30 ml 8N HCl (⇒ Eisen verbleibt auf der Ionenaustauschersäule, während ¹⁰Be im Teflonbecher aufgefangen wird)

Lösung auf 1,5 Normalität (180 ml H₂O (Milli-Q) bringen

Bor- und Aluminium- Abtrennung

4 ml Na-ETDA Lösung (gesättigt) hinzufügen und mit NH₄OH auf pH 4 bringen (⇒ Na-ETDA bildet mit Aluminium und Bor und einigen weiteren Metallen einen wasserlöslichen Komplex) 6 ml Acetyl-Aceton hinzufügen (⇒ Acetyl bildet mit Beryllium einen Komplex)

3.Tag

Probe wird 30 min mit einem Magnetrührer gerührt

20 ml Chloroform hinzufügen (⇒ im nicht so sauren Milieu geht der Acetylen Komplex in die Chloroform Phase über, während der ETDA Komplex in der wäßrigen Phase verbleibt) Weitere 2 h rühren

Trenne Chloroformphase ab; erst abdekantieren, anschließend mit Einwegpipette (verwerfe wässrige Phase (ORGANISCHER SONDERMÜLL!!)

20 ml 8N HCl hinzufügen (⇒ Beryllium wird hierdurch wieder in die wäßrige Phase überführt) Weitere 2 h rühren

Trenne wäßrige Phase ab, verwerfe Chloroformphase (ORGANISCHER SONDERMÜLL!!) Lösung über Nacht eindampfen

4.Tag

 1 - 2 ml konz. HNO₃ (event. mit Wärme behandeln, bis der Rückstand vollständig gelöst) Bis zur Trockne eindampfen (⇒ um organische Reste zu entfernen)
 10 ml HNO₃ (event. mit Wärme behandeln, bis der Rückstand vollständig gelöst)
 10 ml H₂O zufügen (Milli-Q)
 NH₄OH hinzufügen und einen pH-Wert von 8,5 - 9 einstellen

5./ 6. Tag

Zentrifugieren der Lösung (3900 U min⁻¹) und die Lösung verwerfen Der geleeartige weiße Niederschlag von Be(OH) am Boden des Teflonbechers wird mit 5 ml Wasser gespült und mit einem Tropfen NH₃ im gefällten Zustand fixiert (⇒ Bor bleibt bei pH 8,5 - 9 in Lösung, während Be(OH) ausgefällt wird) Das Verfahren wird am nächsten Tag wiederholt Zentrifugieren und die Lösung (enthält z.B. Bor) wird verworfen

7. Tag

Niederschlag wird abgenutscht und der Microporenfilter mit dem Präparat in einem Quarztiegel ca. 1 h bei 1100° C im Ofen gebrannt Hierbei wird Be(OH) in BeO übergeführt

8. Tag

Das reinweiße ¹⁰Be Pulver wird im Achatmörser mit Kupferpulver im Massenverhältnis von 1:4 bis 1:20 vermischt und mit etwa 8 • 10⁴N in ein Kupfertarget gepreßt

AMS Messung der ¹⁰Be-Konzentrationen

B.1.2 Bestimmung der ¹⁰Be Konzentrationen am Beschleunigermassenspektrometer

Mit dem Beschleunigermassenspektrometer (Accelerated Mass Spectrometry) der ETH Zürich (Arbeitsgruppe G. Bonani, M. Suter) ist es möglich, Isotopenverhältnisse (z.B. ¹⁰Be/⁹Be) mit hoher Präzision zu bestimmen. Ein wichtiger Vorteil dieses Systems liegt in den geringen Probenmengen, die zur Messung benötigt werden. 25 Targets bilden ein Magazin und können in den Massenspektrometer eingeschleust werden. In diesen 25 Targets sind 5 interne ¹⁰Be/⁹Be Standards, ein hauseigener Blank und ein Prozeßblank enthalten. Der Prozeßblank dient zur Überprüfung, ob bei der chemischen Aufbereitung das Probenmaterial kontaminiert wurde. Die interne ¹⁰Be/⁹Be Standards weisen einen Nominalwert von 95,5 auf.

Die Kupfertargets mit BeO werden in der Ionenquelle mit positiv geladenen Cäsium Ionen beschossen. Hierbei entstehen negativ und positv geladene BeO Ionen. Die negativen BeO Ionen werden durch elektrostatische Linsen fokussiert und durch elektrostatische Felder beschleunigt. In einem Magnetfeld können Molekülionen aufgrund ihrer verschiedenen Impuls zu Ladung Verhältnisse getrennt werden. Weiterhin werden durch Variation der Beschleunigerspannung abwechselnd ¹⁰BeO' und ⁹BeO' Ionen in den Tandem Van-de-Graaf Beschleuniger (Abb. B1) eingeschossen. Im Beschleuniger werden die negativen Moleküle zum Pol beschleunigt. Im Züricher Beschleuniger liegen hierbei Spannungen von 5 - 6 MeV vor. Am Pol findet eine Umladung der Moleküle durch eine Stripper-Reaktion (Kohlenstofffolie/Gas) statt. Hierbei entstehen durch den Verlust von Hüllenelektronen mehrfach positiv geladene Be Ionen. Die für die Messung der ¹⁰Be Konzentrationen wichtigen 3 fach positiv geladenen Ionen werden weiter beschleunigt und besitzen nach dem Austritt aus dem Beschleuniger eine kinetische Energie von etwa 20 MeV. Der Strom des stabilen ⁹Be³⁺ Ionen wird in einem Faraday Becher, die ¹⁰Be³⁺ Ionen in einem mit Argon-Methan Mischung gefüllten dE/E-Gasdetektor identifiziert und gemessen. In diesem werden sowohl die Gesamtenergie der Ionen als auch die Energieverluste in verschiedenen Abschnitten bestimmt. Eine wichtige Fehlerquelle bei der Bestimmung der ¹⁰Be Konzentrationen liegt in einer möglichen falschen Identifizierung der Isobare (¹⁰B für ¹⁰Be). Die notwendige Isobarentrennung erfolgt deshalb im Gaszähler unter Berücksichtigung der Tatsache, daß verschiedene Isobare unterschiedliche Energie-verlustraten aufweisen. Auch durch die Wechselwirkung zwischen ¹⁰Bor und Wasserstoff, der z.B. im Detektoreintrittsfenster vorhanden, bei der 7Be entsteht, erzeugt einen störenden Untergrund. Wichtige Meßgrößen stellen neben den gemessenen ¹⁰Be Counts, die ⁹Be-Ströme vor und hinter dem Beschleuniger zur Bestimmung der "Transmission" und die Anzahl der Bor-Ereignisse dar. Der Maschinenuntergrund liegt bis dato bei einem Verhältnis von typischerweise (1 - 2) • 10-14 ¹⁰Be/⁹Be, die Transmission normalerweise für Beryllium bei 7 - 10%.

Fehlerberechnung

Jede Probe wird etwa 3 bis 4 mal gemessen, wobei die Einzelmessungen einen Fehler enthalten, der sich aus folgenden Beiträgen zusammensetzt:

- a) Statistischer Fehler; mittels der Poisson Statistik wird er als der Wurzel der Zählereignisse abgeschätzt (5 - 10%)
- b) Fehler der Bor-Korrektur (4 10%)
- c) Reproduzierbarkeit des Standards (1 2%)
- d) Korrektur des Blank Untergrundes (< 1%)

Abb. B1: Schematischer Aufbau der AMS Anlage in Zürich

B.2 Uran/Thorium Messungen

B.2.1 Chemische Aufbereitung von Uran- und Thoriumisotope

Zur Messung der Aktivitäten der Uran- und Thoriumisotope an Sedimentkernen ist es notwendig, das Probenmaterial chemisch zu bearbeiten. Dabei werden die Radioisotope der beiden Elemente von der übrigen Probenmatrix abgetrennt. Die chemische Aufbereitung erfolgt nach dem Verfahren von Mangini [1984] (Vollaufschlußverfahren) und ist bei Frank et al. [1994] ausführlich beschrieben. Es soll deshalb an dieser Stelle nur tabellarisch präsentiert werden.

- 1) 0,5 g getrocknetes und gemörsertes Probenmaterial wird mit einem ²²⁸Th, ²³²U Standard versetzt.
- Die Probe wird zum Brechen der Silikatverbindungen zweimal mit 30 ml 30% HF versetzt und jeweils eingedampft.
- 3) Der Rückstand wird mit Lithiummetaborat (LiBO₂) vermischt (Senkung des Schmelzpunktes) und geschmolzen. Der Schmelzkuchen wird mit 8N HCl und Wärmezufuhr wieder aufgelöst und auf eine mit 8N HCl beladene Dowex 1x8 Ionenaustauschersäule gegeben. In der Säule wird Uran und Eisen fixiert, während Thorium und Kalzium die Säule durchlaufen. Das fixierte Uran und Eisen läßt sich durch Zugabe von 1N HCl wieder freisetzten (eluieren). Die so erhaltenen Lösungen werden bis zur Trockne eingedampft.
- 4) Zur Abtrennung von Thorium vom Kalzium wird die eingetrocknete Probe in etwa 30 ml 8N HNO₃ gelöst und auf eine mit 8N HNO₃ beladene Dowex 1x8 Ionenaustauschersäule gegeben. Aus der Säule läßt sich nacheinander Kalzium (mit zweimal 30 ml 8N HNO₃) und Thorium (mit 30 ml 8N HCl und 10 ml 37%ige HCl) gewinnen. Das in HCl gelöste Thorium wird wieder bis zur Trockne eingedampft.
- 5) Der Uran und Eisenrückstand wird in 5 ml Essigsäure gelöst und auf eine mit Essigsäure beladenen Dowex 1x8 Ionenaustauschersäule gegeben. Zuerst wird Eisen (mit zweimal 5 ml H₂O) und anschließend Uran (mit 40 ml 1N HCl) aus der Säule eluiert. Das in HCl gelöste Uran wird bis zur Trockne eingedampft.
- 6) Für die α-Messung werden die Uran- und Thoriumproben elektrolytisch auf Edelstahlplättchen aufgebracht. Dazu wird der getrocknete Rückstand in 2 ml konzentrierter HNO₃ und etwa 10 Tropfchen konzentrierter HCl gelöst und durch Erhitzen auf ein möglichst kleines Volumen eingeengt. Die Lösung wird mit einem Indikator versetzt und NH₃ basisch titriert, dann mit HNO₃ in den sauren pH Bereich zurücktitriert. Nach der Zugabe einer Pufferlösung (3,5 ml 0,01N HNO₃, 4,5 ml gesättigte Ammoniumoxalatlösung und 4,5 ml 2M NH₄Cl) wird der pH Wert mit 3,5N HNO₃ auf 4 -4,5 eingestellt. Die so erhaltene Lösung wird dann elektrolysiert. Hierzu wird eine Kupferzelle mit einem Edelstahlplättchen als Kathode und einem Platindraht als Anode verwendet. Die Thorium- und Uranisotope werden dann bei einem Strom von 0,7 A und einer Spannung von etwa 12 V auf dem Plättchen abgeschieden. Nach etwa 1 h 15 min werden 2 ml NH₄OH hinzugefügt und die Elektrolyse beendet.

Ľ

Ľ

Ľ

B.2.2 α-Messungen

Berechnung der Thorium- und Uranaktivitäten aus den gemessenen Spektren

Die von den Proben abgegeben α -Teilchen werden in einem Halbleiterzähler detektiert. In diesem Halbleiter-Oberflächen-Sperrschichtdetektor werden die auftreffenden α -Teilchen vollständig gestoppt und ein dem Energieverlust äquivalentes elektrisches Signal erzeugt. Die Effizienz des Detektors beträgt etwa 33%, d.h. der Detektor regisitriert aufgrund der geometrischen Bedingungen nur etwa 33% der ausgesandten α -Teilchen. Die Kammern, in denen sich die zu messenden Proben befinden, müssen evakuiert werden, um Energieverluste durch Stöße der α -Teilchen mit Luftmolekülen (Energieverringerung) zu verhindern. Da die Halbleiterdetektoren nur sehr schwache Stromsignale liefern, werden die Signale durch Vorund Hauptverstärker verstärkt. Will man nur einen gewissen Energiebereich des α -Spektrums erfassen, können Energieschwellen am Diskriminator eingestellt werden, so daß nur noch Signale (Rechtecksignale) ausgesandt werden, wenn die ankommende Energie innerhalb des festgelegten Bereichs liegt. Um eine Darstellung der Spektren am PC zu ermöglichen, wird ein Multi Channel Analyzer verwendet, der die analogen Spannungssignale in digitale Werte umwandelt.

	a-Energie [MeV]	Intensität [%]	an side rom	a-Energie [MeV]	Intensität [%]
²³² Th	4,01	76,0	223Ra	5,75	9,10
	3,95	24,0	C. L *	5,71	53,7
	3,88	0,20		5,61	26,0
230 Th	4,68	76,0	1	5,54	9,1
	4,62	24,0	227Th	. 6,1	3,20
	4,48	0,12		bis	57,0
	4,44	0,03	1	5,8	
228 Th	5,42	71,0	²¹² Bi	6,09	30,0
and a second	5,34	28,0		6,05	70,0
de la companya de la	5,21	0,40	229 Rn	6,30	~100
	5,17	0,20	Contraction 1	5,76	~0,30
	5,14	0,03	216Po	6.78	100
224 Ra	5,68	95,5	²¹² Po	8,78	100

Thorium-Spektren

Tab. B.1: a-Energien und Intensitäten der Radionuklide im Thoriumspektrum

Zur Bestimmung der Aktivititäten der Thoriumisotope wird zunächst die chemische Ausbeute bestimmt. Diese ist ein Maß für die Qualität der chemischen Bearbeitung jeder einzelnen Probe und stellt das Verhältnis zwischen der erwarteten Zählrate des zugefügten Spikes (²²⁸Th) zu der tatsächlich gemessenen Zählrate dar.

Chem. Ausbeute = $\frac{(230-232)}{0.3 \cdot t \cdot A \cdot V}$ 100 (%)

mit dem Fehler

$$\Delta$$
 Chem. Ausbeute = $\frac{\sqrt{(\Delta 228)^2 + (\Delta 232)^2}}{0, 3 \cdot t \cdot A \cdot V} \cdot 100 (\%)$

mit		
t	= Meßzeit [min]	
v	= Spikevolumen [ml]	
Α	= Spikeaktivität [dpm ml ⁻¹]	
228	= Zählrate von ²²⁸ Th	
232	= Zählrate von ²³² Th	

Die Zählratenfehler berechnet sich aus $\sqrt{Z\ddot{a}hlrate}$. Die gesamte 228 Zählrate setzt sich aus den Zerfällen des Spikes (²²⁸Th) und den ²²⁸Th Zerfällen aus der Probe (Aktivitätsgleichgewicht mit 232Th) zusammen.

Die ²³⁰Th Aktivität berechnet sich nach folgender Gleichung:

$$^{230}\text{Th} = \frac{230}{0, 3 \cdot t \cdot m \cdot (\text{Chem. Ausbeute / 100})}$$

mit dem Fehler

$$\Delta^{230} \text{Th} = \sqrt{\left(\frac{\Delta 230}{230}\right)^2 + \left(\frac{\Delta \text{Chem. Ausbeute}}{\text{Chem. Ausbeute}}\right)^2} \cdot 230 \text{ Th} \qquad [\text{dpm g}^{-1}]$$

[dpm g⁻¹]

mit

t	= Meßzeit [min]
m	= Probenmenge [g]
230	= Zāhlrate von ²³⁰ Th

²³²Thorium Aktivitäten

230
Th = $\frac{232}{0,3 \cdot t \cdot m \cdot (Chem. Ausbeute / 100)}$ [dpm g⁻¹]

Mit dem Fehler

$$\Delta^{230} \text{Th} = \sqrt{\left(\frac{\Delta 232}{232}\right)^2 + \left(\frac{\Delta \text{Chem. Ausbeute}}{\text{Chem. Ausbeute}}\right)^2} \cdot 232 \text{ Th} \qquad [\text{dpm g}^{-1}]$$

mit

	= Meßzeit [min]
m	= Probenmenge [g]
232	Zählrate von ²³² Th

Uran-Spektren

	α-Energie [MeV]	Intensität [%]	Are saw in the second sec	α-Energie [MeV]	Intensität [%]
²³⁸ U	4,20	77,0	228Th	5,42	71,0
	4,15	23,0	and the second	5,34	28,0
	4,04	0,23		5,21	0,40
234U	4,77	72,0	S. Martin	5,17	0,20
	4,72	28,0	and the second sec	5,14	0,03
	4,60	0,30	224 Ra	5,68	95,5
232Th	5,32	68,0		5,45	5,50
	5,26	32,0	and the second	5,21	0,40

Tab. B.2: a-Energien und Intensitäten der Radionuklide im Uranspektrum

Die chemische Ausbeute der Uranspektren wird analog zu den Thoriumspektren berechnet.

Chem. Ausbeute =
$$\frac{(232)}{0, 3 \cdot t \cdot A \cdot V} \cdot 100(\%)$$

$$\Delta$$
 Chem. Ausbeute = $\frac{\sqrt{(\Delta 232)^2}}{0, 3 \cdot t \cdot A \cdot V} \cdot 100(\%)$

mit

t = Meßzeit [min] V = Spikevolumen [ml] A = Spikeaktivität [dpm ml⁻¹] 232 = Zählrate von ²³²U

²³⁴Uran Aktivitäten

$$^{234}\text{U} = \frac{234}{0,3 \cdot t \cdot m \cdot (\text{Chem. Ausbeute}/100)} \qquad [dpm g^{-1}]$$

mit dem Fehler

$$\Delta^{234}U = \sqrt{\left(\frac{\Delta^{234}}{234}\right)^2 + \left(\frac{\Delta \text{Chem. Ausbeute}}{\text{Chem. Ausbeute}}\right)^2}.234U \qquad [dpm g^{-1}]$$

²³⁸Uran Aktivitäten

$$^{238}\text{U} = \frac{238}{0,3 \cdot t \cdot m \cdot (\text{Chem. Ausbeute / 100})}$$
 [dpm g⁻¹]

mit dem Fehler

$$\Delta^{238} U = \sqrt{\left(\frac{\Delta^{238}}{238}\right)^2 + \left(\frac{\Delta \text{Chem. Ausbeute}}{\text{Chem. Ausbeute}}\right)^2}.238 U \qquad [dpm g^{-1}]$$

I R

1

T

mit

t	= Meßzeit [min]
m	= Probenmenge [g]
238	= Zählrate von ²³⁸ U
234	= Zählrate von ²³⁴ U

B.3 Gammaspektroskopie

-

1020 /0

Für die gammaspektroskoskopischen Messungen wurde etwa 10 bis 30 g getrocknetes Material in 50 ml Polyethylen Becher gefüllt und auf einem Low Energy Germanium Detektor (LEGE) gemessen. Die Eichung dieser Detektoren erfolgte anhand eines Vielnukildstandards (QCY44, Amersham) und eines ²¹⁰Pb Flüssigkeitstandards, wodurch die Effizienzen (Detektor-Zählausbeuten) für bestimmte y-Energien in Abhängigkeit von Probenhöhe, Probengewicht und Probengeometrie festgelegt werden konnten. Die Bestimmung der Effizienzen erfolgte analog zu den Arbeiten von H. Dörr [1991], Bollhöfer [1993] und Vogler [1994]. Die y-Energien, Halbwertszeiten und die Zerfallswahrscheinlichkeiten der in dieser Arbeit untersuchten Radionuklide sind in Tabelle B3 aufgelistet. Der große Vorteil dieses Meßverfahrens liegt in der nicht notwendigen chemischen Aufbereitung des Probenmaterials. Die Meßzeiten betragen, je nach gewünschter Meßgenauigkeit, zwischen einem und zwei Tagen. Als unabhängige Kontrolle gammaspektroskopisch bestimmter Aktivitäten können die mittels Alphaspektroskopie erhaltenen Aktivitäten der Mutternuklide herangezogen werden. Hierbei müssen Aktivitätsgleichgewichte zwischen ²⁰⁸Tl, ²²⁸Ac (γ) und ²³²Th (α), sowie zwischen ²³⁴Th (γ) and $^{238}U(\alpha)$ vorliegen.

Radionuklide	Halbwertszeit t _{1/2}	y-Energie	Intensität [%]
²¹⁰ Pb	22,3 a	46,5	4,05
²³⁴ U	24,1 d	62,3	3,92
226Ra	1630 a	186,1	3,30
²⁰⁸ Tl	3,1 min	583,5	84,50
²¹⁴ Bi	19,7 min	609,3	46,10
¹³⁷ Cs	30,1 a	661,6	84,80
²²⁸ Ac	6,13 a	911,0	27,70
40K	1,28 10 ⁹ a	1460,8	10,70

Tab. B3: Halbwertszeiten, y-Energien und Intensitäten der aufgeführten Radionuklide

3.4.2 Meaning an experience of the second second set of the second second second second second and the second adverse to the second second second second second second second second second adverse to the second second second second second second second second second being (AE - EI - EI - t) winder in des encryptionsers Zestand Die mitten Verseeledent in second second second being 10° in 10° a [Weit, 1985] Joins Atom second second second data data for Absorption second second second second second believe with data for Absorption second Annahl des verifications Atoms desses Bernentes in dem Problemmental congression data der similation des au meseculari Eismentes kann mech dem Problemmental congresses and der similation des au meseculari Eismentes kann mech dem Statisticates dem Statistication Konsentiation des au meseculari Eismentes kann mech dem Statistication dem Statistication des au der similation des au meseculari Eismentes kann mech dem Statistication dem Statistication dem Statistication for second second second bereicht werden.

(2 · b · 3 ·) ges (0)] -(b))

B.4 Atom-Absorptions-Spektrometrie (AAS)

Mit einem Flammen-Atom-Absorptionsspektrometer (Spectra AA 10) der Firma Varian wurden die Gewichtsanteile der Elemente Mangan, Kalzium, Barium und Aluminium in den einzelnen Proben bestimmt. An dem zu messenden Probenmaterial wurde vorher ein "Schmelzaufschluß" durchgeführt.

B.4.1 Schmelzaufschluß

0,5 g Sedimentmaterial wird mit H₂0 aufgefüllt und die Silikatverbindungen anschließend durch Zugabe von 30 ml HF konz. aufgebrochen. Das Probenmaterial wird zweimal mit 30 ml konz. HF versetzt. Der Rückstand wird mit LiBO₂ versetzt und geschmolzen. Mit ca. 20 ml 8N HCl und durch Wärmezufuhr wird der Schmelzkuchen wieder verflüssigt. Das Probenmaterial wird im abgekühlten Zustand in einen 50 ml Meßkolben eingefüllt. Als Ionisationspuffer wird 200 μ l CsCl (200 fache Verdünnung) zugegeben und der Meßkolben bis zum Eichstrich mit 8N HCl und destilliertem H₂O aufgefüllt.

CsCl: In der heißeren Flamme kann es zur Ionisation der Elemente kommen. Die Elemente liegen dann nicht mehr im Grundzustand vor, sondern teilweise in Ionenform. Durch die veränderte Elektronenhülle wird die Messung verfälscht. Durch das Zufügen von CsCl kann dieses verhindert werden. Dies wird durch die beiden folgenden Gleichungen verdeutlicht [Fischer, 1987]:

	Construction of the second
(*)X ⇔ X+ + e-	$(**) Y \Leftrightarrow Y++e-$
zugesetztes leicht ionisierbares Element X	zu bestimmendes Element Y (z B. Calcium)
Die in Gleichung (*) entstehenden e verschieben	das Gleichgewicht in Gleichung (**) nach
links, so daß die Ionisation des zu messenden Eleme	ents Y unterdrückt wird.

Zur Homogenisierung wird der Meßkolben gründlich geschüttelt und anschließend die Proben in Vialbecher (20 ml) umgefüllt. Die einzelnen Proben können nun der Messung zugeführt werden.

B.4.2 Messung

Die Atom-Absorptionsspektroskopie beruht auf dem Prinzip, daß in einem Atom, das im energetischen Grundzustand vorliegt, durch äußere Anregung ein Hüllenelektron in eine höhere Schale gehoben werden kann. Das Elektron rekombiniert unter Abgabe einer diskreten Energie ($\Delta E = E2 - E1=h \cdot v$) wieder in den energieärmeren Zustand. Die mittlere Verweilsdauer im angeregten Zustand beträgt 10⁻⁷ bis 10⁻⁹ s [Welz, 1985]. Jedes Atom weist charakteristische Wellenlängen auf und kann auf diese Weise identifiziert werden. Die AAS bedient sich dabei der Absorption elektromagnetischer Strahlung. Bestrahlt man die atomisierte Probe mit der für das Element charakteristischen Wellenlänge, so wird je nach Anzahl der vorhandenen Atome dieses Elementes in dem Probenmaterial ein gewisser Anteil der einfallenden Strahlung durch Absorption aus dem Strahlengang entfernt. Die Konzentration des zu messenden Elementes kann nach dem Lambert-Beer'schen Gesetz aus dem Intensitätsverlust (Extinktion) ermittelt werden.

 $I(d) = I(0) \exp(-\varepsilon \cdot d \cdot c)$

mit	
I(d)	= Intensität nach durchstrahltem Weg d [W m ⁻²]
I(0)	= Intensität der einfallenden Strahlung [W m ⁻²]
d	= durchstrahlte Schichtdicke [m]
c	= Elementkonzentration [g l ⁻¹]
ε	= Extinktionskoeffizient [g ⁻¹ m ⁻¹]

Die Extinktion ist dabei der Konzentration des Elements proportional. Da die AAS keine Direkt- sondern eine Relativmessung ist, muß eine Eichgerade erstellt werden. Hierbei trägt man die Extinktionen gegen die korrespondierenden Standards bekannter Konzentrationen des zu untersuchenden Elementes auf.

 Norm
 Norm
 F_A (¹⁰ Th)
 F_A (¹⁰ Th)
 F_A (¹⁰ Th)
 F_A (¹⁰ Th)
 F(¹⁰ He)
 F(¹⁰ He)
 F_A (¹⁰ th)

 1
 1
 0
 15
 1,90 ± 0.54
 0.53 ± 0.07
 10⁰ st cm⁻¹ st⁻¹
 10⁰ st

Provide Astronomy 200 The Wolldlehrm des Sedimenthemes 23065

¥.

ANHANG C

C.1 ¹⁰Be und ²³⁰Th_{ex} Depositionsflußdichten im Europäischen Nordmeer (Norwegen-, Island- und Grönlandsee) und im Nordpolarmeer

Norwegen- und Grönland See

Isotopen- stadium [ka]	Kern- abschnitt [cm]	E _A (²³⁸ Th) [dpm cm ⁻² ka ⁻¹]	F _A /F _P (²³⁸ Th)	F (¹⁹ Be) [10 ⁶ at cm ⁻² a ⁻¹]	F, (¹⁹ Be) [10 ⁶ at cm ⁻² a ⁻¹]
1:0-12	0 - 10	A CONTRACTOR	ing terner R	123.843	
2: 12 - 24	10 - 35	6,98 ± 2,23	1,16 ± 0,32	$1,20 \pm 0,42$	1,11 ± 0,32
3: 24 - 59	35 - 142	8,74 ± 1,63	1,46 ± 0,19	$1,57 \pm 0,16$	$1,12 \pm 0,20$
4: 59 - 74	142 - 150	2,67 ± 0,20	$0,45 \pm 0,20$	$0,35 \pm 0,10$	0,78 ± 0,50
5: 74 - 128	150 - 220	7,35 ± 1,83	$1,22 \pm 0,25$	$1,44 \pm 0,30$	1,38 ± 0,54
6: 128 - 186	220 - 340	5,66 ± 2,30	0,94 ± 0,41	$0,72 \pm 0,18$	1,08 ± 0,70
7: 186 - 244	340 - 410	$6,47 \pm 0,77$	1.08 ± 0.12	$1,45 \pm 0,29$	$1,44 \pm 0.50$
8: 244 - 303	410 - 480	a characteristication of the	2.0 1 20.03	$0,75 \pm 0,17$	
9: 303 - 339	480 - 510	3 00 40.000 1	10 N. 10	1,24 ± 0,18	UT ONCE BARE N
Mittelwert	4)-335	6,35 ± 1,50	1,05 ± 0,25	1,09 ± 0,23	1,15 ± 0,46

¹⁰Be-Flußdichten und ²³⁰Th_{ex} Flußdichten des Sedimentkernes 23059-3

23065

Isotopen- stadium [ka]	Kern- abschnitt [cm]	F _A (²³⁶ Th) [dpm cm ⁻² ka ⁻¹]	F _A /F _P (²³⁰ Th)	F (¹⁰ Be) [10 ⁶ at cm ⁻² a ⁻¹]	F _v (¹⁶ Be) [10 ⁶ at cm ⁻² a ⁻¹]
1:0-12	0 - 15	3,90 ± 0,54	0,53 ± 0,07		
2: 12 - 24	15 - 50	9,44 ± 0,86	1,28 ± 0,12	table - Heating	- A CHEMINING
3: 24 - 59	50 - 120	$5,96 \pm 0,80$	$0,81 \pm 0,11$	D.C. M. Culler	() (souther)
4: 59 - 74	120 - 145	4,65 ± 4,11	0,63 ± 0,56		-1-1-184
5: 74 - 128	145 - 250	$7,87 \pm 3,97$	$1,07 \pm 0,54$	a1 2 100 50 - 22	12,00 ± 00500 :
6: 128 - 186	250 - 460	9.14 ± 3.94	1.24 ± 0.53	0.710.81.815	11/10 556522 1
7: 186 - 244	460 - 530	5.77 ± 1.75	0.78 ± 0.24	2 70 200 / harr	11,50 250,880,3
8: 244 - 303	530 - 605	5.21 ± 2.26	0.71 ± 0.31	225 - 160	101 - 20 13
9: 303 - 339	605 - 650	5,29 ± 1,03	0,72 ± 0,14	1194108.	11,50-10,85
Mittelwert	- the second	6,35 ± 2,15	0,86 ± 0,29	505 - 650	7 186 - 244

¹⁰Be-Flußdichten und ²³⁰Thex Flußdichten des Sedimentkernes 23065

72	3	50	
40	4	37	

Isotopen- stadium	Kern- abschnitt [cm]	F _A (²³⁶ Th) [dpm cm ⁻² ka ⁻⁴]	F _A /F _P (²³⁸ Th)	F (¹⁶ Bc) [10 ⁶ at cm ⁻¹ s ⁻¹]	F, (¹⁰ Be) [10 ⁶ at cm ⁻¹ a ⁻¹]
1:0-12	0 - 50	11,28 ± 0,88	$1,70 \pm 0,20$		
2: 12 - 24	50 - 210	19,90 ± 5,62	3,01 ± 0,85		
3: 24 - 59	210 - 340	11,85 ± 1,85	$1,79 \pm 0,30$	" Depositions	dTatt bars all
4: 59 - 74	340 - 410	2,50 ± 1,30	$0,38 \pm 0,10$	ter bun -bunda	-Hitter and the
5: 74 - 128	410 - 580	10,06 ± 2,78	$1,52 \pm 0,42$	and the	
Mittelwert		11,10 ± 4,50	1,68 ± 0,37	SAC IN	alating and another

¹⁰Be-Flußdichten und ²³⁰Th_{ex} Flußdichten des Sedimentkernes 23259

1	7	7	2	Q
л	1	1	4	o

Isotopen stadium [ka]	Kern- abschnitt [cm]	F _A (²³⁰ Th) [dpm cm ⁻² ka ⁻¹]	F _A /F _P (²³⁰ Th)	F (¹⁶ Be) [10 ⁶ at cm ⁻² a ⁻¹]	F _v (¹⁰ Be) [10 ⁶ at cm ⁻² a ⁻¹]
1:0-12	0 - 13	4,42 ± 0,93	0,68 ± 0,14	107 061 -	14.74 1.42
2: 12 - 24	13 - 40	5,59 ± 0,75	$0,86 \pm 0,11$	- 220 7,22	126 151
3: 24 - 59	40 - 80	$3,30 \pm 0,19$	$0,50 \pm 0,03$	360 5,00	28-196-22
4: 59 - 74	80 - 100	3,70 ± 0,34	$0,57 \pm 0,05$	19,0 018-1	AC. 24
5: 74 - 128	100 - 150	$5,49 \pm 1,44$	0.84 ± 0.22	084+1	ZA COE-DA
6: 128 - 186	150 - 250	5,05 ± 2,82	$0,77 \pm 0,43$	UIC+E	SP 939 855-20
7: 186 - 244	250 - 330	5,71 ± 1,78	0,87±0,27	e,a	Previat
Mittelwert		4,75 ± 1,18	0,72 ± 0,18	1 ²⁰ The Fulldiel	

¹⁰Be-Flußdichten und ²³⁰Th_{ex} Flußdichten des Sedimentkernes 17728

Framstraße

23235-3

Isotopen- stadium [ka]	Kern- abschnitt [cm]	F _A (²³⁸ Th) [dpm cm ⁻² ka ⁻¹]	F _A /F _P (²³⁴ Th)	F (¹⁰ Be) [10 ⁶ at cm ⁻² a ¹¹]	-F _v (¹⁶ Be) [10 ⁶ at cm ⁻² a ⁻¹]
1:0-12	1.	X3 + 0.58	10000000	c 20+122	98-45
2: 12 - 24	10 - 90	10,00 ± 3,70	$1,55 \pm 0,57$	1,23 ± 0,35	0,79 ± 0,37
3: 24 - 59	90 - 180	7,10 ± 0,69	$1,10 \pm 0,11$	$0,68 \pm 0,18$	$0,61 \pm 0,20$
4: 59 - 74	180 - 225	3,55 ± 0,85	$0,55 \pm 0,13$	$0,74 \pm 0,03$	$0,79 \pm 0,24$
5: 74 - 128	225 - 360	9,11 ± 2,14	$1,41 \pm 0,33$	$2,49 \pm 0,72$	$1,77 \pm 0,60$
6: 128 - 186	360 - 505	1,93 ± 0,32	$0,30 \pm 0.05$	$0,54 \pm 0,34$	1,80 ± 1,19
7: 186 - 244	505 - 650	6,92 ± 3,13	1,07 ± 0,48	2,03 ± 0,43	1,90 ± 0,95
Mittelwert		6,44 ± 1,81	0,99 ± 0,28	1,28 ± 0,34	1,28 ± 0,60

¹⁰Be-Flußdichten und ²³⁰Th_{ex} Flußdichten des Sedimentkernes 23235-2

Yermak Plateau

PS1	533-3	
	the survey of the local division in	

Isotopen- stadium [ka]	Kera- abschnitt [cm]	F _A (²³⁰ Th) [dpm cm ⁻² ka ⁻¹]	F _A /F _P (²³⁸ Th)	F(¹⁰ Bc) [10 ⁶ at cm ⁻¹ a ⁻¹]	F. (¹⁰ Be) [10 ⁶ at cm ⁻² a ⁻¹]
1:0-12	0 - 30	10,71 ± 1,08	$2,00 \pm 0,20$	$2,20 \pm 0,16$	1,12 ± 0,14
2: 12 - 24	30 - 115	9,74 ± 4,30	1,82 ± 0,81	1,98 ± 0,95	1,09 ± 0,71
3: 24 - 59	115 - 240	$7,66 \pm 2,69$	$1,43 \pm 0,50$	$3,61 \pm 0,66$	$2,50 \pm 1,00$
4: 59 - 74	240 - 270	$2,23 \pm 0,98$	$0,41 \pm 0,18$	$1,08 \pm 0,30$	$2,65 \pm 1,40$
5: 74 - 128	270 - 400	9,79 ± 2,68	1,83 ± 0,50	3,32 ± 0,75	1,78 ± 0,63
Mittelwert	91.0 ± 12	8,00 ± 2,35	1,50 ± 0,45	2,44 ± 0,55	1,80 ± 0,75

¹⁰Be-Flußdichten und ²³⁰Th_{ex} Flußdichten des Sedimentkernes PS1533-3

Kontinentalhanggebiete der Barents See und Laptev See

PS2138-1	PS2138-1					
Isotopen- stadium [ka]	Kern- abschnitt [cm]	$\begin{bmatrix} F_{A} (^{238} Th) \\ [dpm cm^{-2} ka^{-1}] \end{bmatrix}$	F _A /F _P (²³⁸ Th)	F (¹⁸ Be) [10 ⁶ at cm ⁻² a ⁻¹]	E. (¹⁰ Be) [10 ⁶ at cm ⁻² a ⁻¹]	
1: 0 - 12 2: 12 - 24 3: 24 - 59 4: 59 - 74 5: 74 - 128	0 - 40 40 - 335 335 - 435 435 - 469 469 - 537	$5,80 \pm 0,20$ $18,20 \pm 8,90$ $3,95 \pm 1,80$ $2,10 \pm 0,65$ $2,75 \pm 1,20$	$2,20 \pm 0,10$ 6,95 ± 4,20 1,50 ± 0,60 0,80 ± 0,30 1,05 ± 0,30	$2,10 \pm 0,90$ $4,70 \pm 1,60$ $1,10 \pm 0,40$ $0,70 \pm 0,10$ $0,90 \pm 0,20$	$0,95 \pm 0,40 \\ 0,70 \pm 0,40 \\ 0,75 \pm 0,40 \\ 0,90 \pm 0,50 \\ 0,85 \pm 0,40$	
Mittelwert	a solid Thi	6,60 ± 2,50	2,50 ± 1,10	1,90 ± 0,65	$0,85 \pm 0,40$	

¹⁰Be-Flußdichten und ²³⁰Thex Flußdichten des Sedimentkernes PS2138-1

P	S24	56	-3
-			

Isotopen- stadium [ka]	Kern- abschnitt [cm]	F _A (²³⁰ Th) [dpm cm ⁻² ka ⁻¹]	F _A /F _P (²³⁸ Th)	F (¹⁰ Be) [10 ⁶ at cm ⁻² a ⁻¹]	R _v (¹⁸ Be) [10 ⁶ at cm ⁻² a ⁻¹]
1:0-12	0 - 35	7,60 ± 1,70	$1,20 \pm 0,30$	$2,40 \pm 0,20$	$2,00 \pm 0,50$
2: 12 - 24	35 - 210	24,00 ± 8,10	3,70 ± 1,20	$7,10 \pm 1,00$	1,90 ± 0,70
3: 24 - 59	210 - 410	11,70 ± 5,60	1,80 ± 0,90	2,70 ± 0,60	1,50 ± 0,80
Mittelwert	109 109 109 1 18 119 - 161	14,45 ± 5,15	2,25 ± 0,80	4,10 ± 0,60	1,80 ± 0,65

¹⁰Be-Flußdichten und ²³⁰Th_{ex} Flußdichten des Sedimentkernes PS2456-3
PS2	7	5	7-	8

Isotopen- stadium	Kern- abschnitt	F _A (²³⁶ Tb) [dpm cm ⁻¹ ka ⁺]	P_F, (**Th)	F (¹⁶ Be) [10 ⁶ at cm ⁻² a ⁻¹]	F. (¹⁶ Be) [10/af cm ² .a ⁻¹]
	(cm)	· · · · · · · · · · · · · · · · · · ·		a second to be a second	
1:0-12		PERSONAL PROPERTY.	11 AL 1 10 10	(b) filminada	
2:12-24	10 - 90	3,69 ± 1,52	1,14 ± 0,47	1,16 ± 0,05	$1,02 \pm 0,42$
3: 24 - 59	90 - 180	$6,15 \pm 2,50$	1,90 ± 0,78	1,26 ± 0,39	0,66 ± 0,34
4: 59 - 74	180 - 225	1,32 ± 0,45	0,41 ± 0,14	0,35 ± 0,07	0,85 ± 0,30
5: 74 - 128	225 - 360	4,15 ± 2,99	1,28±0,93	0,81 ± 0,22	0,63 ± 0,49
6: 128 - 186	360 - 505	2,57 ± 0,98	0,80 ± 0,30	$0,59 \pm 0,12$	$0,74 \pm 0,32$
7: 186 - 244	505 - 650	6,28 ± 3,19	1,94 ± 0,99	0,78±0,21	0,40 ± 0,23
Mittelwert	1412 A. 141	4,02 ± 1,94	1,25 ± 0,60	0,83 ± 0,18	0,72 ± 0,35

¹⁰Be-Flußdichten und ²³⁰Th_{ex} Flußdichten des Sedimentkernes PS2757-8

P	\$2	A'	7	1.	A
	24	-9	1	Τ.	

Isotopen- stadium [ka]	Kern- abschnitt [cm]	F _A (²³⁰ Th) [dpm cm ⁻² ka ⁻¹]	F _A /F _P (²³⁸ Th)	F (¹⁰ Be) [10 ⁶ at cm ⁻² a ⁻¹]	F _v (¹⁶ Be) [10 ⁶ at cm ⁻² a ⁻¹]
1:0-12	- 100 - 34	AK 974 1 973	dom day make	Mittel and	
2: 12 - 24	20 - 100	23,91 ± 8,85	2,98 ± 1,10	6,93 ± 1,13	$2,32 \pm 0,94$
3: 24 - 59	100 - 170	11,88 ± 6,12	$1,48 \pm 0,76$	$2,72 \pm 0,75$	$1,84 \pm 1,07$
4: 59 - 74	170 - 220	5,35 ± 2,01	0,67 ± 0,25	1,08 ± 0,16	$1,62 \pm 0,66$
5: 74 - 128	220 - 260	9,90 ± 2,54	1,24 ± 0,32	2,75 ± 1,96	2,22 ± 1,69
Mittelwert	10.9 ± 0.20	12,76 ± 4,90	1,60 ± 0,60	3,40 ± 1,00	2,00 ± 1,09

¹⁰Be-Flußdichten und ²³⁰Thex Flußdichten des Sedimentkernes PS2471-4

PS2474-3

Isotopen- stadium [ka]	Kers- abschnitt [cm]	F _A (²³⁸ Th) [dpm cm ⁻² ka ⁻¹]	F _A /F _P (²²⁸ Tb)	F (¹⁸ Be) [10 ⁶ at cm ⁻² a ⁻¹]	F; (¹⁸ Be) [10 ⁶ af cm ² a ⁻¹
1:0-12	0 - 90	20,86 ± 1,93	5,31 ± 0,49	William and a	
2: 12 - 24	90 - 360	28,75 ± 7,96	$7,32 \pm 2,02$	a firmt	A Participation of the second
3: 24 - 59	360 - 550	$12,59 \pm 3,58$	$3,20 \pm 0,91$	- 38-01 In	A ANY STREET
4: 59 - 74	550 - 700	3,22 ± 0,96	0,82 ± 0,24	26aze	2450,24 -5
Mittelwert	-360 	16,35 ± 3,60	4,16 ± 0,92	1. 219, 1990	7900,681,6

²³⁰Th_{ex} Flußdichten des Sedimentkernes PS2474-3

Zentraler Arktischer Ozean

]

]

-

1

1

Isotopen- stadium [ka]	Kern- abschnitt [cm]	F _A (²³⁶ Th) [dpm cm ⁻² ka ⁻¹]	F _A /F _P (²⁵⁶ Th)	F (¹⁰ Be) [10 ⁶ at cm ⁻¹ a ⁻¹]	F _v (¹⁶ Be) [10 ⁶ at cm ⁻² a ⁻¹]
1:0-12		19 1 1 1 1	- dst-	Linkter 64	"AND LEF" all cas
2: 12 - 24	3 - 10	6,18 ± 1,14	0,64 ± 0,12	$0,35 \pm 0,02$	$0,54 \pm 0,20$
3: 24 - 59	10 - 25	5,98 ± 1,76	$0,62 \pm 0,18$	0,32 ± 0,05	$0,52 \pm 0,34$
4: 59 - 74	25 - 35	3,26 ± 0,63	$0,34 \pm 0,07$	$0,35 \pm 0,11$	1,02 ± 0,36
5: 74 - 128	35 - 70	5,04 ± 1,43	0,53 ± 0,15	0,57 ± 0,20	1,08 ± 0,46
Mittelwert		5,12 ± 1,24	0,53 ± 0,13	0,40 ± 0,10	0,80 ± 0,34

¹⁰Be-Flußdichten und ²³⁰Th_{ex} Flußdichten des Sedimentkernes PS1524-2

m. ~ 4	20.00 1		
1251	571	1.5	
	-74-1	- 1 - 1	

Isotopen- stadium [ka]	Kern- abschnitt [cm]	F _A (²³⁸ Th) [dpm cm ⁻² ka ⁻¹]	F _A /F _P (²³⁰ Th)	F (¹⁰ Be) [10 ⁶ at cm ⁻² a ⁻¹]	F _v (¹⁰ Be) [10 ⁶ at cm ⁻² a ⁻¹]
1:0-12	Seal Comment	- I and a second se	and the second second	and the Card	1 ("Ne)
2: 12 - 24	0 - 70	8,21 ± 2,25	0,83 ± 0,23	$0,74 \pm 0,53$	0,89 ± 0,68
3: 24 - 59	70 - 230	9,29 ± 3,21	0,94 ± 0,33	0,95 ± 0,30	1,00 ± 0,47
4: 59 - 74	230 - 250	1,12 ± 0,06	$0,11 \pm 0,01$	0,16 ± 0,06	$1,37 \pm 0,55$
5: 74 - 128	250 - 425	4,29 ± 2,27	0,43 ± 0,23	0,68 ± 0,20	1,56 ± 0,95
Mittelwert	0,0±84,0	5,73 ± 1,95	0,57 ± 0,20	0,65 ± 0,27	1,20 ± 0,65

¹⁰Be-Flußdichten und ²³⁰Th_{ex} Flußdichten des Sedimentkernes PS1521-15

PS2185-3/6

Isotopenstadium	Kernabschnitt	F (¹⁰ Be)
[ka]	[cm]	[10 ⁶ at cm ⁻² a ⁻¹]
1: 0 - 12 2-4: 12 - 74 5: 74 - 128 6: 128 - 186 7: 186 - 244 8: 244 - 303 9: 303 - 339 10: 339 - 362 11: 362 - 423 Mittelwert	3 - 13 13 - 25 25 - 121 121 - 156 156 - 169 169 - 182 182 - 201 201 - 244	$0,21 \pm 0,03$ $0,13 \pm 0,01$ $0,19 \pm 0,10$ $0,51 \pm 0,10$ $0,09 \pm 0,06$ $0,49 \pm 0,15$ $0,29 \pm 0,05$ $0,60 \pm 0,12$

¹⁰Be-Flußdichten des Sedimentkernes PS2185-3/6

PS2178-5		
Isotopenstadium [ka]	Kernabschaltt [cm]	F ("Be) [10 ⁴ at cm ⁻² a ⁻¹]
6: 128 - 186	180 - 220	1,19 ± 0,75
7: 186 - 244	220 - 270	$0,92 \pm 0,51$
8: 244 - 303	270 - 280	$0,11 \pm 0,06$
9: 303 - 339	280 - 295	0.10 ± 0.05
10: 339 - 362	295 - 310	0.17 ± 0.09
11: 362 - 423	310 - 445	1.49 ± 0.68
12: 423 - 4	445 - 485	0,78 ± 0,35
Mittelwert		0,69 ± 0,36

¹⁰Be-Flußdichten des Sedimentkernes PS2178-5

Isotopenstadium [ka]	Kernabschnitt [cm]	F (¹⁰ Be) [10 ⁶ at cm ⁻² a ⁻¹]	
6: 128 - 186	10 - 85	0,14 ± 0,13	
7: 186 - 244	85 - 118	$0,47 \pm 0,08$	
8: 244 - 303	118 - 127	$0,11 \pm 0,05$	
9: 303 - 339	127 - 137	0.25 ± 0.10	
10: 339 - 362	137 - 162	0.14 ± 0.05	
11: 362 - 423	162 - 195	0,48 ± 0,08	
Mittelwert	altered as to destruction	0.27 ± 0.08	

¹⁰Be-Flußdichten des Sedimentkernes PS2200-5

C.2 ¹⁰Be und ²³⁰Th_{ex} Depositionsflußdichten im Nordatlantik

Nordatlantik

12309-3

Isotopen- stadium [ka]	Kern- abschnitt [cm]	F _A (²³⁶ Th) [dpm cm ⁻² ka ⁻¹]	F _A /F _P (²³⁸ Th)	F (¹⁹ Bc) [10 ⁶ at cm ⁻² a ⁻¹]	F _v (¹⁹ Be) [10 ⁶ at cm ⁻² a ⁻¹]
1: 0 - 12 2: 12 - 24 3: 24 - 59	0 - 110 110 - 440	29,00 ±3,00 20,20 ± 2,00	4,00 ± 0,40	9,81 ± 1,44	2,45 ± 0,45 2,46 ± 0,30
4: 59 - 74	440 - 520	33,20 ± 4,00	4,57 ± 0,40	9,53 ± 1,31	2,40 ± 0,50 2,09 ± 0,40
Mittelwert		27,50 ± 3,00	3,80 ± 0,35	8,75 ± 1,25	2,35 ± 0,40

¹⁰Be-Flußdichten und ²³⁰Th_{ex} Flußdichten des Sedimentkernes 12309-3 [Mangini und Diester-Haass, 1983]

12310

Isotopen- stadium [ka]	Kern- abschnitt [cm]	F _A (²³⁰ Th) [dpm cm ⁻² ka ⁻¹]	F _A /F _P (²³⁶ Th)	F (¹⁰ Be) [10 ⁶ at cm ⁻² a ⁻¹]	F _v (¹⁰ Be) [10 ⁶ at cm ⁻² a ⁻¹]
1:0-12		8,10±0,10	$1,00 \pm 0,20$	1,32 ± 0,08	1,32 ± 0,30
2: 12 - 24		$19,20 \pm 2,00$	$2,37 \pm 0,20$	$3,34 \pm 0,37$	$1,41 \pm 0,30$
3: 24 - 59		$11,20 \pm 1,50$	$1,38 \pm 0,15$	$3,78 \pm 0.28$	$2,74 \pm 0,30$
4: 59 - 74		28,90 ± 3,00	$3,55 \pm 0,50$	$2,27 \pm 0,33$	0,63 ± 0,20
5: 74 - 128		8,90 ± 0,90	1,09 ± 0,15	$1,50 \pm 0,07$	1,37 ± 0,10
Mittelwert		15,30 ± 2,50	2,00 ± 0,25	2,50 ± 0,25	1,50 ±

¹⁰Be-Flußdichten und ²³⁰Th_{ex} Flußdichten des Sedimentkernes 12310 [Mangini und Diester-Haass, 1983]

Anhang D

Meßergebnisse

Tiefe	Th-230		Th-232		U-238		UA
[cm]	[dpm g ⁻¹]		[ppm]	1	[dpm g ⁻¹]		server and
PS2185-3		1 m	-				The second second
0	9.47	± 0.15	10.80	± 0.33	2,18	± 0.28	0.85 ± 0.11
0-5	7,63	± 0,21	11,40	± 0,50	2,16	± 0.15	0.89 ± 0.09
5-10	7,17	± 0,20	11,60	± 0,50	1,80	± 0,15	0,93 ± 0,08
10 - 15	11.30	± 0.30	11.90	± 0,70	2,16	± 0,15	0.87 ± 0.09
15 - 20	6,91	± 0.20	10,70	± 0.47	1,64	± 0,14	1.04 ± 0.12
20 - 25	5,16	± 0.26	13,60	± 0.85	1,85	± 0,21	0.95 ± 0.11
25 - 30	2,95	± 0,16	12,80	± 0,65	1,77	± 0,16	0,88 ± 0,08
PS2185-6							
24 - 29	2,38	± 0,14	9,73	± 0,56	2,02	± 0,25	0,80 ± 0,10
29 - 34	1,79	± 0,11	10,00	± 0,54	1,79	± 0,22	0,89 ± 0,11
34 - 39	1,93	± 0,11	8,04	± 0,45	1,78	± 0,15	1,06 ± 0,09
39 - 44	1,55	± 0,10	7,60	± 0,40	1,67	± 0,26	0,89 ± 0,14
44 - 49	2,10	± 0,12	9,22	± 0,48	1,94	± 0,18	0,98 ± 0,09
49 - 54	1,83	± 0,12	8,44	± 0,50	1,42	± 0,21	0,95 ± 0,14
54 - 59	1,61	± 0,09	7,20	± 0,40	1,53	± 0,24	0,95 ± 0,15
59 - 64	1,80	± 0,11	8,64	± 0,49	1,54	± 0,26	1,01 ± 0,17
64 - 69	2,71	± 0,17	7,84	± 0,58	1,50	± 0,18	$0,98 \pm 0,12$
69 - 73	2,49	± 0,10	7,30	± 0,30	1,60	± 0,10	0,99 ± 0,06
73 - 78	1,74	± 0,07	7,47	± 0,31	1,75	± 0,15	0,82 ± 0,07
78 - 83	1,40	± 0,09	7,73	± 0,42	1,47	± 0,27	0,94 ± 0,17
83 - 88	1,19	± 0,10	6,58	± 0,45	1,34	± 0,15	0,98 ± 0,11
88 - 93	1,37	± 0,10	8,09	± 0,47	1,06	± 0,12	0,95 ± 0,11
93 - 98	1,47	± 0,11	6,89	± 0,47	1,50	± 0,16	0,85 ± 0,09
98 - 103	1,32	± 0,08	6,92	± 0,39	1,59	± 0,16	0,89 ± 0,09
103 - 108	1,75	± 0,13	6,73	± 0,50	1,43	± 0,16	0,83 ± 0,09
108 - 113	1,49	± 0,09	8,61	± 0,45	1,33	± 0,15	$0,98 \pm 0,11$
113 - 118	2,24	± 0,12	8,66	± 0,46	1,63	± 0,17	0,84 ± 0,09
118 - 123	3,07	± 0,13	13,00	± 0,54	2,02	± 0,18	0,88 ± 0,08
123 - 128	2,75	± 0,14	13,30	± 0,60	1,92	± 0,18	0,86 ± 0,08
128 - 133	2,29	± 0,12	11,20	± 0,50	2,38	± 0,30	$0,80 \pm 0,10$
133 - 138	2,20	± 0,07	11,30	± 0,30	1,83	± 0,10	0,91 ± 0,05
138 - 143	2,21	± 0,06	10,10	± 0,26	1,83	± 0,13	0,97 ± 0,07
143 - 148	2,35	± 0,13	13,50	± 0,60	1,79	± 0,17	$0,93 \pm 0,09$
148 - 153	1,70	± 0,12	8,35	± 0,54	1,71	± 0,16	0,86 ± 0,08
153 - 158	1,50	± 0,09	8,77	± 0,45	1,44	± 0,15	0,89 ± 0,09
158 - 163	1,54	± 0,12	8,30	± 0,55	1,52	± 0,15	1,01 ± 0,10
163 - 168	2,02	± 0,10	12,70	± 0,50	1,91	± 0,18	1,08 ± 0,10
168 - 173	1,87	± 0,10	10,60	± 0,49	1,81	± 0,17	0,85 ± 0,08
172 - 178	1,85	± 0,14	10,60	± 0,68	2,00	± 0,19	0.94 ± 0.09
178 - 183	1,82	± 0,34	5,80	± 1,20	1,55	± 0,14	1,01 ± 0,09
183 - 189	1,34	± 0,10	9,75	± 0,55	1,74	± 0,30	0,94 ± 0,10
189 - 194	1,82	± 0,11	11,20	± 0,55	2,22	± 0,14	0,75 ± 0,08
200 - 206	1,65	± 0,07	10,90	± 0,40	1,84	± 0,11	$0,84 \pm 0,08$

Tiefe	Th-230		Th-232		U-238	AU
[cm]	[dpm g ⁻¹]		[ppm]	6	[dpm g ⁻¹]	(*) male *
P\$2185_6						
205 - 210	1 84	+ 0.12	11 70 +	0.60	194 ± 0.16	0.86 ± 0.07
210 - 215	1.55	+ 0.06	11.60 ±	0.35	1.79 ± 0.11	0.89 ± 0.05
215 - 220	1.49	+ 0.08	10.40 ±	0.42	1.83 ± 0.12	0.90 ± 0.06
220 - 225	1.57	+ 0.09	10.90 ±	0.46	1.88 ± 0.15	0.88 ± 0.07
225 - 230	1.68	+ 0.09	12.00 ±	0.46	2.06 ± 0.14	0.86 ± 0.06
230 - 235	1.61	+ 0.09	11.80 ±	0.51	1.94 ± 0.24	0.88 ± 0.11
235 - 240	1.64	± 0.07	11.40 ±	0.35	1.78 ± 0.10	0.85 ± 0.05
250 - 255	141	+ 0.11	7.29 ±	0.51	1.37 ± 0.13	0.93 ± 0.09
255 - 260	1 36	+ 0.09	799 ±	0.40	1.74 ± 0.24	0.88 ± 0.12
260 - 265	1 72	+ 0.08	797 ±	0.36	1.58 ± 0.08	0.95 ± 0.05
265 - 270	145	+ 0.05	746 ±	0.24	172 ± 0.09	0.99 ± 0.05
270 - 275	1 39	+ 0.07	8 56 ±	0.32	166 ± 0.09	0.89 ± 0.05
275 - 280	1 59	+ 0.06	8 57 +	0.26	1.65 ± 0.14	0.58 + 0.05
285 - 290	1.58	+ 0.12	763 ±	0.54	1.61 ± 0.12	0.92 + 0.07
290 - 295	1.56	+ 0.11	7.02 +	0.46	1.62 ± 0.23	0.86 + 0.17
295 - 300	1 34	+ 0.10	861 +	0.50	1 19 + 0 12	1 17 + 0 12
300 - 305	1.88	+ 0.12	10.40 +	0.57	174 + 0.15	0.91 + 0.08
305 - 310	1.57	+ 0.10	10,40 +	0.50	178 ± 0.15	0.93 + 0.08
310 - 315	1.75	+ 0.12	10,00 +	0.60	1.81 + 0.17	0.98 + 0.09
315 - 320	1.86	+ 0.11	12 40 +	0.57	1.88 + 0.16	0.97 + 0.08
320 - 325	2.03	+ 0.09	12 30 +	0.43	1.94 + 0.15	0.89 ± 0.07
325 - 330	1 70	+ 0.11	14.70 +	0.61	196 + 0.15	0,87 ± 0,07
330 - 335	1,69	+ 0.10	12 30 +	0.54	2.09 + 0.24	0.78 + 0.09
335.340	1,61	+ 0.09	13 20 4	0.54	1.01 + 0.16	0.03 + 0.08
340 . 344	1,68	+ 0.08	11.80 4	0.42	202 ± 0.12	0.98 ± 0.06
345 - 350	1,00	+ 0.15	14 30 4	0.78	1 99 + 0.16	1 10 ± 0.00
350 - 355	1.94	+ 0.12	13.40 +	0.67	188 + 017	1,10 ± 0,09
355 - 360	2.09	+ 0.10	12.60 +	0.50	1.95 + 0.18	0.89 + 0.08
360 - 365	1.64	+ 0.11	11 10 +	0.60	1.83 + 0.18	1.09 + 0.11
375 - 380	2 33	+ 0.23	13 70 +	- 1 12	1.93 + 0.70	0.97 + 0.10
380 - 385	1 49	+ 0.11	11.00 +	0.59	1.95 + 0.19	1.04 + 0.10
385 - 390	1.98	+ 0.14	11.10 +	0.66	213 + 0.22	0.89 + 0.09
390 . 395	1,00	+ 0.13	11.20 4	0.67	1.09 + 0.24	0,87 ± 0,07
395 - 400	1,00	+ 0.11	13.00 -	0.55	212 + 014	0,03 ± 0,10
070-400	1,50	- 0,11	15,00 -	. 0,00	2,12 - 0,14	0,91 ± 0,00
PS2200-5						
0-5	8,88	± 0,31	10,40 ±	0,69	1,79 ± 0,19	0.95 ± 0.10
5 - 10	6,17	± 0,26	8,80 ±	= 0,62	1,31 ± 0,15	0.93 ± 0.11
10 - 15	4,38	± 0,16	8.27 ±	= 0.46	1,40 ± 0,16	1.07 ± 0.12
15 - 20	2,93	± 0,15	7.82 ±	= 0.50	1.42 ± 0.16	1.18 ± 0.13
20 - 25	1,95	± 0.10	7.93 ±	0.42	1.65 ± 0.13	0.86 ± 0.07
25 - 30	1.54	± 0,10	7.79 ±	= 0.44	1.48 ± 0.12	$1,23 \pm 0.10$
30 - 33	1.59	± 0,10	7.90 ±	= 0.47	1.70 ± 0.18	0.96 ± 0.10
72 20	1.66	+ 0.10	6 79	0.42	170 + 017	0.02 / 0.00

-

Tiefe	Th-230		ТЪ-232		0-238				AU	in set	-
[cm]	[dpm g ⁻¹]		(ppm)		[dpm g ^{.1}	1]		-		-	
PS2200-5											
38 - 41	1,71	± 0,12	8,42	± 0,54	1,5	1 ±	0,21		0,87	± 0,12	
41 -45,5	1,59	± 0,11	6,90	± 0,47	1,7	8 ±	0,19		0,96	± 0,10	
45,5 - 49	1,49	± 0,11	7,19	± 0,46	1,9	8 ±	0,22		0,91	± 0,10	1
49 - 52	1,71	± 0,11	8,95	± 0,53	1,5	4 ±	0,16		1,05	± 0,11	
52 - 55	1,81	± 0,10	7,47	± 0,42	1,6	9 ±	0,08		1,01	± 0,05	
55 - 60	2,97	± 0,14	10,50	± 0,53	1,8	5 ±	0,19		0,97	± 0,10	
60 - 65	1,60	± 0,09	7,37	± 0,41	1,6	7 ±	0,13		0,99	± 0,08	100
65 - 70	1,28	± 0,09	5,31	± 0,37	1,4	1 ±	0,15		1,02	± 0,11	
70 - 75	1,51	± 0,08	7,69	± 0,35	1,4	1 ±	0,10		1,02	± 0,07	
75 - 80	1,63	± 0,10	9,70	± 0,51	1,5	2 ±	0,12	12.1	0,87	± 0,07	
80 - 84	1,54	± 0,09	5,78	± 0,37	1,44	6 ±	0,11		0,97	± 0,07	
84 - 86,5	2,03	± 0,07	7,17	± 0,27	1,5	4 ±	0,09	-	0,83	± 0,05	
6,5 - 89,5	4,78	± 0,12	11,40	± 0,36	1,7	9 ±	0,10		1,03	± 0,06	
89,5 - 95	3,14	± 0,09	10,70	± 0,34	1,6	7 ±	0,10		0,97	± 0,06	
95 - 100	2,32	± 0,12	11,10	± 0,55	1,6	0 ±	0,12		0,94	± 0,07	P
100 - 105	1,55	± 0,13	9,63	± 0,64	1,5	3 ±	0,11		0,98	± 0,07	
105 - 111	1,75	± 0,09	7,96	± 0,40	1,4	9 ±	0,10		0,92	± 0,06	
111 - 118	1,45	± 0,03	7,51	± 0,16	1,0:	5 ±	0,12		1,08	± 0,12	
120 -127	1,08	± 0,06	7,43	± 0,31	1,1	2 ±	0,11		1,01	± 0,10	0 0
127 - 134	1,51	± 0,04	9,01	± 0,17	1,50	6 ±	0,06	1	0,99	± 0,04	
170 - 177	1,48	± 0,03	10,10	± 0,17	1,7	1 ±	0,06		0,83	± 0,03	
205 - 212	1,56	± 0,04	8,71	± 0,18	1,80	± 0	0,07		0,83	± 0,03	
256 - 263	1,29	± 0,09	8,03	± 0,44	1,5	3 ±	0,15	1.1.10	0,93	± 0,09	
341 - 348	1,43	± 0,06	10,10	± 0,31	1,00	6 ±	0,13	5 m 7 m	0,89	± 0,07	
448 - 454	1,54	± 0,05	9,99	± 0,27	1,5	9 ±	0,12		0,91	± 0,07	
492 - 498	1,83	± 0,06	10,30	± 0,27	1,8	1 ±	0,15	1.1	0,90	± 0,07	
544 - 530	1,54	± 0,09	1,00	± 0,39	1,54	4 ±	0,06		1,00	± 0,04	
370 - 378	2,01	± 0,09	11,30	± 0,44	2,00	U ±	0,08		1,00	± 0,04	
612 640	1,52	+ 0.10	10.00	± 0,38	1,9.		0,09		1,91	± 0,04	
033 - 040	1,00	± 0,10	10,90	± 0,40	2,00) I	0,15	120	3,93	± 0,07	

-

14.5

Tiefe [cm]	[10	Be ⁹ at	g-1]	Tiefe [cm]	¹⁰] [10 ⁹ s	¹⁹ Be Tiefe ¹⁹ Be [cm] [10 ⁹ at g ⁻¹]		s ''l	Tiefe [cm]	¹⁰ Be [10 ⁹ at g ⁻¹]			
PS2185-3				PS2185-6	13	- 10	PS2185-6				PS2185-6	1	
0	1,08	±	0,02	189 - 194	0,31 ±	0,02	390 - 395	0,60	±	0,02	669 - 683	0,31	± 0,01
0-5	1,07	±	0,02	194 - 200	0,73 ±	0,03	395 - 400	0,53	±	0,01	683 - 696	0,20	± 0,01
5 - 10	0,84	±	0,02	200 - 206	0,72 ±	0,03	409 - 405	0,46	±	0,01	696 - 783	0,18	± 0,01
10 - 15	1,11	±	0,03	205 - 210	0,63 ±	0,02	405 - 410	0,32	±	0,01	703 - 709	0,25	± 0,01
15 - 20	1,27	*	0,03	210 - 215	0,42 ±	0,01	410 - 415	0,35	±	0,01	709 - 717	0,37	± 0,01
20 - 25	1,07	±	0,02	215 - 220	0,38 ±	0,01	415 - 420	0,43	±	0,01	717 - 726	0,28	± 0,01
25 - 30	0,51	±	0,01	220 - 225	0,66 ±	0,02	420 - 425	0,26	±	0,01	726 - 735	0,25	± 0,01
				225 - 230	0,90 ±	0,03	425 - 430	0,18	*	0,01	735 - 741	0,19	± 0,01
PS2185-6				230 - 235	0,79 ±	0,06	430 - 435	0,17	±	0,01	741 - 751	0,24	± 0,01
24 - 29	0,56	±	0,01	235 - 240	0,60 ±	0,02	435 - 440	0,20	±	0,02	751 - 760	0,25	± 0,01
29 - 34	0,14	±	0,01	240 - 245	0,33 ±	0,01	440 - 445	0,21	±	0,01	760 - 771,5	0,18	± 0,01
34 - 39	0,09	±	0,01	245 - 250	0,19 ±	0,01	445 - 450	0,33	*	0,02	0.12		
44 - 49	0,01	*	0,01	250 - 255	0,06 ±	0,01	450 - 455	0,39	±	0,02	0.73		
49 - 54	0,03	±	0,01	255 - 260	0,05 ±	0,00	455 - 460	0,36	±	0,02	1.00		
54 - 59	0,02	±	0,01	260 - 265	0,04 ±	0,00	460 - 465	0,44	±	0,02	(11 Mile)		
59 - 64	0,09	±	0,01	265 - 270	0,02 ±	0,00	465 - 470	0,36	±	0,02	2.14		
64 - 69	0,42	±	0,01	270 - 275	0,07 ±	0,01	470 - 475	0,23	±	0,01	2.572		
69 - 73	0,37	±	0,01	275 - 280	0,11 ±	0,01	475 - 480	0,17	±	0,01	0.00		
73 - 78	0,07	+	0,01	280 - 285	0,10 ±	0,01	480 - 485	0,16	±	0,01			
83 - 88	0,02	±	0,01	285 - 290	0,07 ±	0,00	485 - 490	0,14	±	0,01			
88 - 93	0,02	*	0,01	290 - 295	0,16 ±	0,01	490 - 495	0,14	±	0,02	1.11		
93 - 98	0,03	±	0,01	295 - 300	0,19 ±	0,01	495 - 500	0,17	±	0,02	n and		
98 - 103	0,02	±	0,01	300 - 305	0,20 ±	0,02	500 - 505	0,20	±	0,02	U.I.I.		
103 - 108	0,01	±	0,01	305 - 310	0,55 ±	0,02	505 - 513	0,25	±	0,01	Lab.		
108 - 113	0,04	±	0,01	310 - 315	0,69 ±	0,03	513 - 521	0,35	+	0,01	46		
113 - 118	0,23	±	0,01	315 - 320	0,52 ±	0,02	521 - 531	0,45	±	0,01	1.040		
118 - 123	0,81	±	0,02	320 - 325	0,42 ±	0,01	531 - 542,5	0,34	±	0,01	102		
123 - 128	0,82	±	0,02	325 - 330	0,48 ±	0,02	542,5 - 548,5	0,36	±	0,01	100		
128 - 133	0,79	*	0,02	330 - 335	0,38 ±	0,01	548,5 - 556	0,51	±	0,02	100.		
133 - 138	0,66	±	0,02	335 - 340	0,43 ±	0,01	556 - 564	0,18	±	0,01			
138 - 143	0,88	±	0,02	340 - 345	0,62 ±	0,04	564 - 573	0,16	±	0,01			
143 - 148	1,09	±	0,04	345 - 350	0,65 ±	0,02	573 - 582	0,28	±	0,01			
148 - 153	0,55	±	0,02	350 - 355	0,74 ±	0,02	582 - 593,5	0,28	±	0,01			
153 - 158	0,11	±	0,01	355 - 360	0,52 ±	0,04	593,5 - 605	0,12	±	0,01	- 0.92		
158 - 163	0,17	±	0,01	360 - 365	0,29 ±	0,02	605 - 613	0,10	±	0,01			
163 - 168	1,13	±	0,02	365 - 370	0,21 ±	0,01	613 - 624	0,10	±	0,01	1,07		
168 - 173	1,20	±	0,04	370 - 375	0,23 ±	0,01	624 - 631	0,20	±	0,01	1,100		
172 - 178	0,74	±	0,03	375 - 380	0,30 ±	0,01	631 - 638	0,22	±	0,01	0.316		
178 - 183	0,37	±	0,03	380 - 385	0,49 ±	0,02	638 - 651	0,24	±	0,01	Lah		
183 - 189	0,21	±	0,02	385 - 390	0,64 ±	0,02	651 - 663	0,30	±	0,02			

Tiefe [cm]	¹⁰ Be [10 ⁹ at g ⁻¹]	Tiefe [cm]	¹⁰ Be [10 ⁹ at g ⁻¹]	Tiefe [cm]	¹⁶ Be [10 ⁹ at g ⁻¹]
PS2200-5		PS2200-5	1-10	PS2200-5	
0-5	0,87 ± 0,04	148 - 155	0,03 ± 0,01	362 - 369	0,20 ± 0,02
5-10	0,71 ± 0,04	155 - 162	0,12 ± 0.01	369 - 376	0,31 ± 0.04
10 - 15	0,70 ± 0,04	162 - 170	0,49 ± 0,03	376 - 383	0.44 ± 0.02
15-20	0.44 ± 0.02	170 - 177	0,51 ± 0,03	383 - 390	0.49 ± 0.03
20 - 25	0.02 ± 0.01	177 - 184	0,76 ± 0,04	390 - 398	0.26 ± 0.02
25 - 30	0.02 ± 0.01	184 - 191	0,60 ± 0,03	398 - 405	0.27 ± 0.02
30 - 33	0,01 ± 0,01	191 - 198	0,34 ± 0,03	405 - 412	0,35 ± 0,02
33 - 38	0.01 ± 0.01	198 - 205	0.07 ± 0.01	412-419	0.21 ± 0.02
38 - 41	0,02 ± 0,01	205 - 212	0.05 ± 0.01	419 - 426	0.15 ± 0.01
41 - 45.5	0,02 ± 0,01	212 - 219	0,04 ± 0,01	426 - 433	0,18 ± 0.02
45.5 - 49	0,02 ± 0,01	219 - 226	0,04 ± 0.01	433 - 440	0.07 ± 0.01
49 - 52	0,06 ± 0,01	226 - 233	0,17 ± 0.02	440 - 448	0,08 ± 0,01
52 - 55	0,15 ± 0,01	233 - 240	0,03 ± 0.03	448 - 454	0.33 ± 0.03
55 - 60	0,43 ± 0,02	240 - 248	0,17 ± 0.02	454 - 461	0.21 ± 0.02
60 - 65	0,13 ± 0,01	248 - 256	0,11 ± 0.01	461 - 468	0.21 ± 0.01
65 - 70	0,04 ± 0,01	256 - 263	0,26 ± 0,02	468 - 477	0,16 ± 0,01
70 - 75	0,03 ± 0,01	263 - 270	0,28 ± 0,02	477 - 484	0,11 ± 0.01
75 - 80	0,03 ± 0,01	270 - 277	0,20 ± 0,02	484 - 492	0,14 ± 0,01
80 - 84	0,12 ± 0,01	277 - 284	$0,23 \pm 0.02$	492 - 498	0,25 ± 0,02
84 - 86,5	0,27 ± 0,02	284 - 291	0,72 ± 0,06	498 - 505	0,15 ± 0,01
86,5 - 89,5	0,67 ± 0,04	291 - 298	1,17 ± 0,08	505 - 513	0,09 ± 0.01
89,5-95	0,79 ± 0,05	298 - 305	1,02 ± 0,07	513 - 522	0,16 ± 0,02
95 - 100	0,58 ± 0,04	305 - 312	1,30 ± 0,05	522 - 530	0,23 ± 0,01
100 - 105	0,57 ± 0,03	312 - 319	1,14 ± 0,06	530 - 538	0,22 ± 0,02
105 - 110	0,85 ± 0,04	319 - 326	1,02 ± 0,05	538 - 546	0,34 ± 0,02
111 - 120	0,50 ± 0,04	326 - 336	0,82 ± 0,04	546 - 554	0,11 ± 0,02
120 - 127	0,43 ± 0,02	336 - 341	1,05 ± 0,05	554 - 560	0,27 ± 0,02
127 - 134	0,60 ± 0,03	341 - 348	0,36 ± 0,03	560 - 568	0,23 ± 0,02
134 - 141	0,32 ± 0,02	348 - 355	0,33 ± 0,02	568 - 575	0,20 ± 0,02
141 - 148	0,08 ± 0,01	355 - 362	0,20 ± 0,03	A = 112	10-51
		1 10.0 m		19 = ALL	

**

Tiefe	Th-230	Th-232	U-238	AU
(cm)	[dpm g' ¹]	(ppm)	[dpm g ⁻¹]	HEP 1
PS2471-4	Address in			
9 - 12	7,35 ± 0,25	12,40 ± 0.65		
12 - 16	8.08 ± 0.62	18.10 ± 1.86		
30 - 35	3,92 ± 0,08	10,40 ± 0,28		
35 - 40	4,55 ± 0,19	11,11 ± 0,56		
45 - 50	6.36 ± 0.42	12.47 ± 1.02	2.06 ± 1.02	0.96 ± 0.1
50 - 55	5,66 ± 0,29	12,90 ± 0,88	$2,30 \pm 0.06$	0.83 ± 0.0
65 - 70	3,66 ± 0,13	11,70 ± 0,46		
70 - 75	3.02 ± 0.13	12.17 ± 0.51	1.45 ± 0.51	0.95 0.3
85 - 90	3.46 ± 0.14	11.80 ± 0.54	2.23 ± 0.05	0.84 0.0
100 - 105	4.76 ± 0.20	13.20 ± 0.68	2.04 ± 0.04	1.05 ± 0.0
115 - 120	9.79 ± 0.28	14.10 ± 0.67		100 - 010
120 - 125	9.30 ± 0.29	14.40 ± 0.74	215 ± 0.05	104 + 0.0
125 - 130	8.04 ± 0.32	14.44 ± 0.71		1,07 - 0,0
130 - 135	6.32 ± 0.12	14.10 ± 0.37		
135 - 140	4.86 ± 0.20	12.91 ± 0.62	194 ± 0.11	0.91 + 0.0
140 - 145	3.62 ± 0.14	10 30 ± 0.46	173 ± 0.05	0.89 + 0.1
145 - 150	2.88 ± 0.14	10 14 ± 0.51	171 ± 0.12	0.92 + 0.0
155 - 160	3.26 ± 0.17	795 + 0.49	1,71 = 0,12	0,72 - 0,0
160 - 165	413 ± 0.16	14 70 ± 0,60		
165 - 170	340 ± 0.15	977 + 0.48	200 + 0.15	106 + 01
175 - 180	2 36 ± 0 14	896 + 0.54	2,00 - 0,15	1,00 - 0,1
180 - 185	2.26 ± 0.13	965 + 0.57	2 42 + 0.07	106 + 01
185 - 190	2.37 ± 0.13	10.44 + 0.57	2,72 = 0,01	0.75 + 0.1
195 - 200	2.34 ± 0.06	857 + 0.23	221 + 011	0.93 + 0.0
200 - 205	299 + 014	999 + 0.51	2,01 - 0,11	0,00 - 0,0
205 - 210	1.89 ± 0.13	931 + 0.60	220 ± 0.11	0.99 + 0.0
215 - 220	1.09 ± 0.11	885 + 0.47	1.75 + 0.17	0,99 ± 0,0
220 - 225	304 + 0.15	918 + 0.54	2.09 + 0.05	105 ± 0,1
230 - 235	731 + 033	14 39 + 0.79	1.85 + 0.11	0.94 ± 0.0
235 - 240	628 ± 012	13 70 + 0.35	1,00 - 0,11	0,94 1 0,0
240 - 245	805 ± 0.23	12.90 + 0.58	215 + 0.05	0.85 + 0.0
250 - 255	573 + 019	14.20 + 0.62	2,10 - 0,00	0,05 1 0,0
260 - 265	136 + 0.08	577 + 035	231 + 0.05	0.84 + 0.0
265 - 270	290 + 017	11 72 + 0.67	2,51 - 0,05	0,04 1 0,0
275 - 280	2,70 = 0,17 2.24 ± 0.17	10.77 + 0.76	2 37 + 0 24	106 + 01
280 - 285	256 + 016	11 70 + 0.69	2,37 ± 0,05	0.86 ± 0.0
285 - 290	210 + 019	844 + 0.78	2,03 ± 0,03	0,80 ± 0,0
295 - 300	235 + 014	1031 + 061	2,05 ± 0,15	0,94 ± 0,0
300 - 305	435 + 014	10.90 + 0.44		
315 - 320	291 + 0.22	1156 + 0.89	193 + 014	0.02 + 0.0
320 - 325	261 + 014	1180 + 0.59	1,75 = 0,14	0,92 ± 0,0
325 - 330	3 30 + 0.15	11 27 + 0.55		
335 - 340	174 + 0.12	10 14 ± 0.50		
340 - 345	221 + 012	987 + 0.51		
360 - 365	245 + 0.08	10.50 + 0.35		
380 - 385	217 + 0.09	10.70 + 0.39		
100 - 300	2,17 ± 0,09	11.40 + 0.39		

-

-

ſ

[

Į

ļ

Tiefe	Th-230		Тъ-232	U-238		AU
[cm]	[dpm g ⁻¹]	1	(ppm)	[dpm g ⁻¹]	·	111 1 m.y
PS2474-3	1					
0-5	4,43 ±	0,09	10,40 ± 0,28	2,70	± 0,14	1.06 ± 0.09
22 - 25	3,98 ±	0,09	11,00 ± 0,29			
30 - 40	4.05 ±	0,18	10,50 ± 0,58	2,63	± 0,13	1.07 ± 0.08
40 - 50	4,31 ±	0,16	9,99 ± 0,49			
80 - 90	3,63 ±	0,21	10,10 ± 0,72	2,22	± 0,10	0,92 ± 0,08
90 - 110	1.71 ±	0,06	5,59 ± 0,20			and the second second
140 - 150	2.87 ±	0,13	10,50 ± 0,50	2,02	± 0,10	0,95 ± 0,08
150 - 170	2,91 ±	0,12	11,10 ± 0,48			
180 - 190	1,89 ±	0,10	8,65 ± 0,45	2.24	± 0,15	0.97 ± 0.09
220 - 230	4.04 ±	0,17	14,70 ± 0,65	2,05	± 0.10	1.10 ± 0.09
250 - 260	2.74 ±	0,14	9,99 ± 0,53	1,93	± 0.08	0.91 ± 0.07
300 - 320	2.64 ±	0,12	11.60 ± 0.52	1.75	± 0.08	1.15 ± 0.09
360 - 380	3,21 ±	0,17	12.08 ± 0.67	4-225	0.1.71	
390 - 400	4,52 ±	0,28	13,60 ± 0,97	2.14	± 0,15	0.89 ± 0.08
420 - 440	3,24 ±	0,18	12.91 ± 0.73			
460 - 470	4,58 ±	0,21	16,90 ± 0,80	2,53	± 0,20	0.91 ± 0.08
470 - 490	3,10 ±	0,18	14,16 ± 0.78		A CONTRACTOR OF	and second the
500 - 520	3,06 ±	0,17	11,46 ± 0.67			
530 - 540	3,16 ±	0,16	14,60 ± 0,70	2,49	± 0,20	1.07 ± 0.05
560 - 580	2,52 ±	0,15	$14,20 \pm 0.77$			
600 - 610	2,47 ±	0,14	14,10 ± 0.65	1.89	± 0.10	0.99 ± 0.05
610 - 630	2,77 ±	0,15	16,69 ± 0,78			
680 - 690	2,27 ±	0,12	12.20 ± 0.56	1.71	± 0.08	0.93 ± 0.09
700 - 707	2,55 ±	0,11	10.30 ± 0.43			Par Par Part

Tiefe ¹⁸ Be [cm] [10 ⁹ at g ⁻¹]		Tiefe ¹⁰ Be [cm] [10 ⁹ at g ⁻¹]		Tiefe [cm]	¹⁶ Be [10 ⁹ at g ⁻¹]						
PS2471-4				PS2471-4				PS2471-4			
12 - 16	0,99	±	0,05	130 - 135	0,68	±	0,04	245 - 250	1,16	±	0,05
16 - 20	0,80	*	0,04	135 - 140	0,62	±	0,03	250 - 255	3,22	±	0,09
20 - 25	0,64	±	0,03	140 - 145	0,62	±	0,03	255 - 260	0,23	*	0,02
25 - 30	0,47	±	0,02	145 - 150	0,54	±	0,03	260 - 265	0,15	±	0,01
30 - 35	0,55	±	0,02	150 - 155	0,57	±	0,03	270 - 275	0,29	+	0,02
35 - 40	0,56	±	0,03	160 - 165	0,89	±	0,03	275 - 280	0,12	±	0,01
40 - 45	0,63	±	0,03	165 - 170	0,48	±	0,03	280 - 285	0,17	*	0,01
45 - 50	0,60	±	0,03	170 - 175	0,15	±	0,02	290 - 295	0,20	*	0,01
50 - 55	0,75	±	0,04	180 - 185	0,13	±	0,01	300 - 305	0,68	±	0,03
55 - 60	0,64	±	0,06	190 - 195	0,12	±	0,01	310 - 315	0,89	*	0,04
65 - 70	0,72	±	0,03	195 - 200	0,15	±	0,01	315 - 320	0,54	±	0,03
70 - 75	0,65	±	0,03	200 - 205	0,15	±	0,01	320 - 325	0,46	*	0,02
75 - 80	0,72	±	0,03	205 - 210	0,09	±	0,01	325 - 330	0,31	±	0,02
85 - 90	0,60	±	0,03	215 - 220	0,07	±	0,01	330 - 335	0,39	±	0,04
95 - 100	0,57	±	0,04	220 - 225	0,29	±	0,02	350 - 355	0,13	*	0,01
100 - 105	0,86	±	0,03	225 - 230	0,49	±	0,04	380 - 385	0,04	*	0,01
105 - 110	0,74	±	0,04	230 - 235	1,14	±	0,04	400 - 405	0,50	±	0,02
110 - 115	1,01	±	0,04	235 - 240	0,65	±	0,04	410 - 417	0,04	±	0,01
115 - 120	1,06	±	0,05	240 - 245	1,24	±	0,04	10 6 10			

Danksagung

Nach drei Jahren Doktorarbeit möchte ich mich bei denen bedanken, die diesen meist schönen, aber manchmal auch hollprigen Weg mit mir gegangen sind. Wahrscheinlich werden dennoch einige unerwähnt bleiben, die wichtige Impulse in meinem Leben gesetzt haben und die ich hiermit bitte mir zu verzeihen.

Mein Dank gebührt Augusto Mangini, der mir bei der Verwirklichung meiner Arbeit und bei der Betreung von Diplomanden viel Freiheit zugestanden hat und stets ein offenes Ohr hatte, selbst dann, wenn ich mal wieder kurz vor knapp vor seiner Tür auftauchte, um mit ihm noch wichtige Berichte zu verfassen. Weiterhin seien Dr. A. Eisenhauer und Dr. M. Frank angeführt, die die Radionukliduntersuchungen in der Arktis und Antarktis etablierten und mir dadurch eine sichere Basis lieferten.

Hern Prof Till Kirsten danke ich für die Übernahme des Referats.

Unserer Arbeitsgruppe gebührt ein besonderer Dank, denn diese Menschen sind nicht nur Kollegen geblieben, sondern wurden Freunde. Herausgestellt seien Ulrike Beck und Kirsten Chlormann, unsere CTA's, die oftmals bei unseren Veröffentlichungen unberücksichtigt bleiben, obwohl sie wesentlich zum Gelingen beigetragen.

Meinen Kollegen in Kiel, Bremerhaven und Freiberg danke ich für die gute Zusammenarbeit und die freundliche Aufnahme in ihrer Mitte. Neben den wissenschaftlichen Gesichtspunkten haben mir die drei Expeditionen in die Laptev See gezeigt, wie wichtig ein gemeinsames Anpacken zum Erreichen der angestrebten Ziele ist. An dieser Stelle sei Heidi Kassens herausgehoben, die die Truppe zusammgehalten hat und durch ihren Einsatz die Fortführung unserer wissenschaftlichen Forschung ermöglichte.

Den russischen Kollegen danke für ihre freundliche Zusammenarbeit. Die Bereitstellung durchsichtiger Flüssigkeit auf den Schiffsexpiditionen war allerdings oftmals zuviel für meinen Kopf. Ihre wunderschönen melancholischen Lieder werde ich wohl nie mehr vergessen.

Der Züricher Arbeitsgruppe danke ich für ihre Geduld. Unsere Anmeldung kam zwar immer zu spät, aber dafür waren wir stets vorort und haben nächtelang Messungen am Beschleuniger betreut. Wir geloben Besserung und hoffen weiterhin auf eure Geduld. Erwähnt seien Dr. Kubik, Prof. Bonani, M. Suter und G. Wagner.

Meinen Freunden in Heidelberg danke ich für das Gefühl, daß ich auch morgens um vier vor eurer Haustüre stehen kann und Kaffee und ein offenes Ohr erhalte. Diese Jahre mit euch waren eine wunderschöne Zeit, die durch eure ständig neuen Ideen bereichert wurden. Mein Dank sei auch meinem Fernseher, denn er hat es wirklich geschafft, "Kerner", "Sonja", "Meisner", "Ilona", "Unter uns", "Verbotene Liebe" und "Marienhof" ohne bleibende Schäden zu überstehen. Wichtig waren für mich auch all unsere Fußballabende mit euch (Sven, Clemens), auch wenn Kaiserslautern in der Saison 97/98 wohl Meister wird und der KSC absteigt. Aber noch besteht Hoffnung und alles kann anders werden! Bitte laßt uns die Fußball WM in Frankreich woanders ansehen!! Meiner Freundin Verena danke ich für die Unterstützung, die sie mir zukommen ließ und die Kraft mich in der Zeit des Zusammenschreibens nicht zu erwürgen. Dank!!!

Christiane danke ich dafür, daß sie endlich mit meiner Zubereitung des Morgenkaffees einverstanden ist. Das meist reibungslose Zusammenleben in unserer chaotischen WG bedeutet mir sehr viel. Dank auch für die Bereitschaft in den vielen Stunden der Verzweiflung über meine Dissertation mir dennoch zu helfen. An dieser Stelle möchte ich noch unbedingt Andreas und ganz besonders Jens erwähnen, die sich bei der Korrektur meiner Arbeit viel Mühe gegeben haben. Ich hoffe, es bieten sich Gelegenheiten euch einiges eurer Hilfe zurückgeben zu können. Jens nun ist es mir doch noch gelungen dich kurzzeitig ins Reich des Radioisotops ¹⁰Beryllium zu entführen und ich erlaube Dir ab jetzt wieder deiner Leidenschaft der Fliegerei ("Grüß mir die Sonne ") zu fröhnen.

Matthias dank ich für seine Danksagung und Jochen bzw. Thilo für die nach oben offene Strobl'sche Jammerskala.

.T.

Ich hoffe, daß ich mit dieser Arbeit die Interessen der Heidelberger "Berylliumfront" (Sabine, Volker und Andreas) vertreten habe und wünsche den Mitgliedern viel Erfolg auf ihren Wegen.

Zuletzt danke ich meinen Eltern, die für mich von großer Bedeutung sind. Sie haben mir nicht nur das Gefühl geben, daß ihr Haus und Ihre Arme für mich jederzeit geöffnet sind, sondern haben stets meine Art zu leben akzeptiert und unterstützt.

Annaclem zum Erwichen der angestrebten Ziele ist. An dieser Stelle tei Heidi Kass

and die freundlichte Aufnahmte in Enter Mine. Neben den winsamschaft

"... Rückenwind.... wir fahren über Wasser, wenn da Brücken sind " Thomas D.

Den rumischen Kollogen danler für ihre freundliche Zusammeaarbeit Die Bereinsninnig durchsichtiger Flüssigigeit auf den Schiffurspicitionen var allerdings oftenda zuviel für natioen Kopf. Ihre wurderschönen melanebolischen Lieder werde ich wohl nie melar vergesten.

Der Züricher Arbeitsgruppe danies ich für ihre Geduld. Untere Anmeldung imm zwar manne m spät, aber dafür waren wir stets vorort und haben ralebtoltog Messungen am Benchleuniger betreut. Wir geloben Besterung und hoffen weiterhin auf eure Geduld Erwähnt zeien Dr. Kubik, Prof. Besant, M. Stater und O. Wagter.

Mediaen Freunden in Heidelberg dimite feit für das Gefühl, daß sch mich mingenn um vier vor somer Hausture stehen kann und Kaffee und ein offenes Ohr erhalts. Diese Jahre mit each werden eine wanderschoter Zeit, die durch eure ständig neuen Ideen bereichtet wurden. Mein D. sie sei auch meinem Fernscher, dem er hat es withlich geschuft, "Kerner", "Souja", "D. sie sei auch meinem Fernscher, dem er hat es withlich geschuft, "Kerner", "Souja", "D. sie sei auch meinem Fernscher, dem er hat es withlich geschuft, "Kerner", "Souja", "D. sie sei auch meinem Kurscher, dem er hat es withlich geschuft, "Kerner", "Souja", "D. sie sei auch meinem Kurscher, dem er hat es withlich geschuft, "Kerner", "Souja", "D. sie sei auch meinem Kurscher uns", "Verboteus Liebte" und "Murtenhof" ohne bielbende Schuten in Obernehen, Wichtig waren für mich auch all untere Fußhellebende mit euch (Svent: Ofenens), auch wern Katserstuttern in der Satern 97/98 wohl Meiner wird und der KSC athrenet, werden Hoffnung und alles kunn anders werdent Hitte lath une die Fußhalt i wird in Frankreich wernefers muchen!!