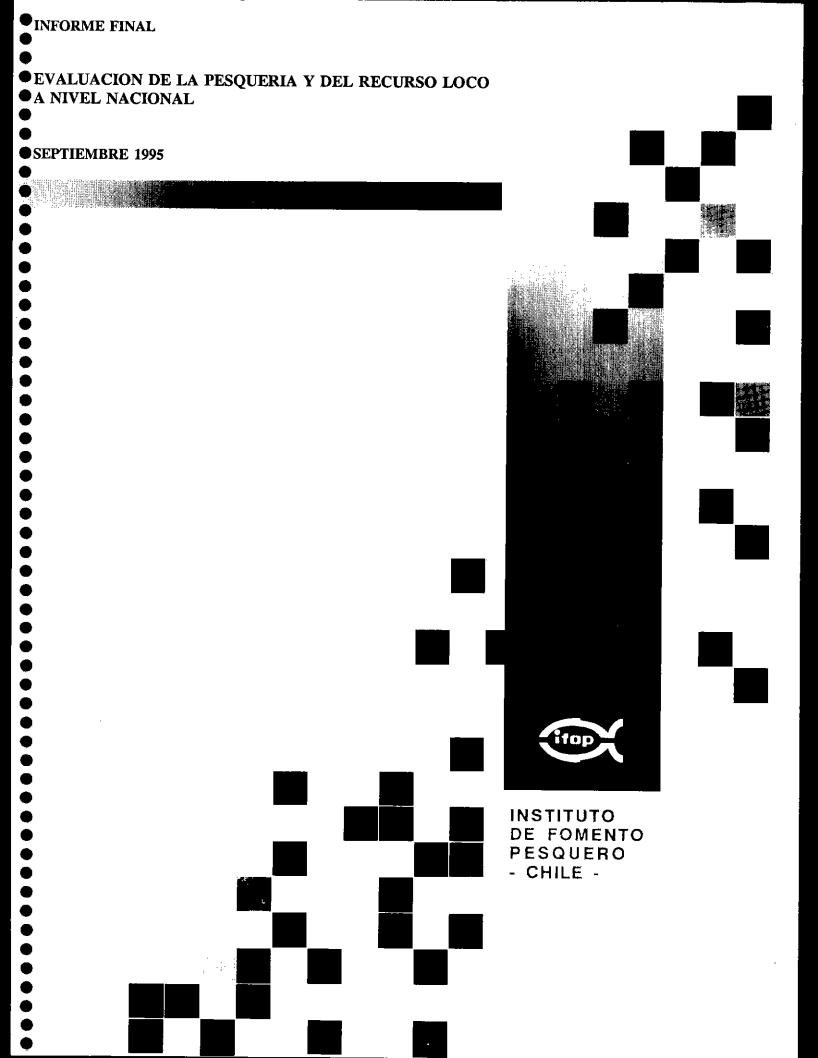


FONDO DE INVESTIGACION PESQUERA

INFORMES TECNICOS FIP

FIP - IT / 94 - 07


INFORME FINAL EVALUACION DE LA PESQUERIA Y DEL

STOCK DE LOCO A NIVEL NACIONAL

UNIDAD

INSTITUTO DE FOMENTO PESQUERO

EJECUTORA

INFORME FINAL

PROYECTO

Evaluación de la Pesquería y del Recurso Loco a Nivel Nacional

REQUIRENTE: FONDO DE INVESTIGACION PESQUERA

Presidente del Consejo de Investigación Pesquera:

Patricio Bernal Ponce

EJECUTOR : INSTITUTO DE FOMENTO PESQUERO

Director Ejecutivo: Pablo Alvarez Tuza

	·	
	•	

JEFE DE PROYECTO: Hugo Robotham V.

AUTORES MONITOREO: Hugo Robotham V.

Carlos Vera E. Zaida Young U. Hernán Miranda P.

AUTORES EVALUACION: Alejandro Zuleta V.

Pedro Rubilar M. Carlos Moreno M. Luis Vergara B.

•	

INDICE

		rag.
RESUME	EN EJECUTIVO	i
INDICE	DE TABLAS Y FIGURAS	vi
I. 0	BJETIVOS	1
1. Ob 2. Ob	ojetivo General	1
2.1 E 2.2 E	Valuación de las pesquerías	1
II. A	NTECEDENTES	2
III.	METODOLOGIA	3
A. ME	TODOLOGIA DEL MONITOREO	3
Et	apa 1	
1.	1 Desembarque	3
1.:	4 Composición longitud-peso del desembarque	4 7 8 9
Eta	apa 2	
1. 2. 3. 4. 5.	Coordinaciones	12 13 17 17 18 18
Eta	apa 3	
1. 2. 3. 4.	Acopio de formularios	19 19 20 20 20

в.	METODOLOGIA DE EVALUACION DE STOCK	27
	1. Antecedentes	
	2.1 Notación	
	2.2.1 Estructura del stock 2.2.2 Abundancias 2.2.3 Mortalidades por pesca 2.2.4 Estimación de parámetros 2.2.5 Parámetros de entrada	32 34 34
	2.3 Puntos biológicos de referencia	
IV.	RESULTADOS	39
A1	MONITOREO TEMPORADA INVIERNO 1994	39
	1. Desembarque	39 39 41
	2. Captura	51 51 53
	3. Rendimiento y esfuerzo de pesca	55 59 66 71
A2	MONITOREO TEMPORADA PRIMAVERA 1994	79
	1. Desembarque	79 79 82
	2. Captura 2.1 Composición en número 2.2 composición en peso 2.3 Rendimiento y esfuerzo de pesca 2.4 Esfuerzo de muestreo 2.5 Indicadores Estadísticos Descriptivos 2.6 Cobertura de procedencias	108

•••••••••••••••••••••••

в.	RESULTADOS EVALUACION	123
	 Composiciones de tallas	123
	3.1 I Región	130
	3.4 IV Región	139 142 145 148 151 154
٧.	DISCUSION Y CONCLUSIONES	160
A. B.	MONITOREO EVALUACION	160 161
VI.	REFERENCIAS	168
VII.	COMPOSICION Y ORGANIZACION DEL EQUIPO PROFESIONAL Y TECNICO	169

ANEXOS

		•
		•
		•
		•
		•
		•
		•
		•
		•
		•

RESUMEN EJECUTIVO

A continuación se presenta una síntesis de los resultados, considerados como los más relevantes, de las dos etapas del Monitoreo; invierno de 1994 y primavera de 1994, en el marco del proyecto FIP Nº32 "Evaluación de la pesquería y del recurso loco a nivel nacional".

Monitoreo invierno 1994

- La duración efectiva del monitoreo de invierno de 1994 fue de 31 días, desde el 01 al 31 de agosto.
- El desembarque final de los 44 centros de muestreo fue de 9.144.706 ejemplares, que equivalen al 64,6% de la cifra nacional estimada por SERNAP.
- La cifra estimada para el desembarque nacional por SERNAP durante la temporada de invierno fue de 14.147.979 equivalente al 50,8% de la cuota total nacional (27.844.844).
- Cinco regiones: III, IV, VIII, X y XI desembarcaron el 95% de las capturas realizadas en la primera temporada de pesca de 1994.
- En general se aprecia que el esfuerzo de pesca lo concentró principalmente la flota de la X Región, con un nivel cercano al 50%, similar a lo observado en la temporada anterior, le sigue en importancia la flota de la XI y VIII Región con un 15% y 13%, respectivamente.
- El Rendimiento promedio nacional medido como el cuociente entre el desembarque y las horas de buceo fue de 149 ejemplares/horabuceo, similar a la temporada de invierno de 1993.

- Los precios por unidad fluctuaron entre \$150 y \$900 pesos con un precio promedio nacional de \$415 la unidad, cayendo en un 61,1% respecto al precio promedio de la temporada de invierno de 1994. El precio promedio más alto por unidad fue de \$535 en la I región, seguido de la X región con \$448.
- La muestra total de ejemplares medidos fue de 308.683 unidades, 245.705 correspondieron al muestreo de longitud y 62.978 al muestreo de longitud peso.
- La longitud peristomal mínima y máxima registrada fue de 80 y 173 mm, siendo la longitud promedio de los ejemplares extraídos a nivel nacional de 114 mm.
- El peso mínimo y máximo medido fue de 100 y 1.440 g. respectivamente, siendo el peso promedio de los ejemplares desembarcados a nivel nacional de 332 g.
- Un total de 359 procedencias fueron detectadas en el monitoreo de invierno, de los cuales 73 procedencias, es decir, un 20,31% correspondieron a nuevas procedencias no detectadas en temporadas anteriores al año 1993.

Monitoreo primavera 1994

- La duración efectiva del monitoreo de primavera de 1994 fue de 41 días, desde el 21 de noviembre al 31 de diciembre.
- El desembarque final de los 43 centros de muestreo fue de 5.828.652 que equivalen al 62,38% de la cifra nacional estimada por SERNAP.

- La cifra estimada para el desembarque nacional por SERNAP durante la temporada de invierno fue de 9.344.781 ejemplares, equivalente al 33,66% de la cuota total nacional (27.844.844).
- Cinco regiones: IV, V, VIII, X y XI desembarcaron el 94,7% de las capturas obtenidas durante la segunda temporada de pesca.
- Los precios por unidad fluctuaron entre \$100 y \$700 pesos con un precio promedio nacional de \$336 la unidad, bajando en un 19% respecto a la temporada de invierno. El precio promedio más alto por unidad fue de \$463 en la XI región.
- La muestra total de ejemplares medidos fue de 285.427 unidades, 223.556 correspondieron al muestreo de longitud y 61.871 al muestreo de longitud peso.
- La longitud peristonal mínima y máxima registrada fue de 80 y 167 mm, siendo la longitud promedio de los ejemplares extraídos a nivel nacional de 113 mm.
- El peso mínimo y máximo medido fue de 100 y 1.000 g, respectivamente, siendo el peso promedio de los ejemplares desembarcados a nivel nacional de 330 g.
- Un total de 371 procedencias fueron detectadas en el monitoreo de primavera, de los cuales 131 procedencias, es decir, un 35,3% correspondieron a nuevas procedencias no detectadas en la temporada anterior.

A continuación se presentan tabulada la distribución final de unidades capturadas por región, según fuente SERNAP y corregidas según monitoreos IFOP. El cumplimiento de la cuota a nivel nacional para

las dos temporadas llegó al 84,4% (23.492.760 ejemplares aproxima-damente).

REGION	CUOTA	UNIDADES POR TEMPORADAS		
	ASIGNADA	INVIERNO	PRIMAVERA	TOTAL
I	124.000 239.500	6.924 87.716	52.036 102.036	58.960 189.752
III	1.736.000	1.272.108	475.346	1.747.454
IV V	3.820.000 937.500	2.188.233 140.541	1.466.930 237.970*	3.655.163 378.511
VI	36.000	22.295*	33.288*	55.583
VII	58.000 2.804.048	18.643* 1.462.743	2.010* 542.352	20.653 2.005.875
IX X	31.000 12.778.800	23.600 6.134.744*	0 4.841.774*	23.600 10.976.518
XI	4.000.000	2.652.803*	1.424.201*	4.077.004
XII	1.280.000	137.629		304.467
TOTAL	27.844.848	14.147.979	9.344.781	23.492.760

Fuente : SERNAP

* Información IFOP

Evaluación

La evaluación de las poblaciones de "Locos" por Región fue realizada usando un modelo de Análisis de Captura a la Talla (ACT-II), desarrollado en base a la versión anterior (ACT-I), con el objetivo de ganar independencia respecto a las suposiciones de equilibrio hechas sobre la población del recurso.

Este modelo hace uso de la información de las dos temporadas de pesca anteriores y posibilita agregar nuevas series de datos en el futuro. El modelo está basado en el seguimiento de cohortes

verdaderas, de una manera análoga al Análisis Secuencial de Capturas, salvo que las cohortes son reconstruidas a través de las tallas en vez de las edades.

Usando el modelo perfeccionado, se entregan los resultados de su aplicación a las composiciones de tallas acumuladas durante los años 1993 y 1994, obtenidas de las regiones I a XII con la excepción de IX que no muestra desembarques propios.

Se incluyó además en este informe un procedemiento basado en tallas para el cálculo de la CTP en función del tamaño del stock, en número de individuos, proyectado a comienzo del año 1995 y a un nivel recomendable de mortalidad por pesca $(F_{0.1} \ \text{ó} \ F_{\text{mix}})$ determinado mediante el modelo de Rendimiento por Recluta (Y/R) de Thompson y Bell.

Los resultados obtenidos se presentan en la siguiente Tabla:

REGION	F _{0.1}	CTP (Nº de ind.)	F _{máx}	CTP (Nº de ind.)
I	0,379	10.529	2,000	43.707
II	0,222	83.556	2,220	521.052
III	0,311	217.039	2,087	979.096
IV	0,169	722.571	0,590	2.203.474
V	0,276	619.999	1,183	2.728.926
VI	0,186	61.763	1,092	248.409
VII	0,188	39.495	1,048	166.344
VIII	0,204	349.839	1,957	2.230.655
IX	no eval.	0	no eval.	0
X	0,377	1.591.769	0,837	6.360.491
XI	0,172	210.279	0,634	684.324
XII	0,154	54.070	0,478	149.808
TOTAL		3.960.909		16.316.286

INDICE DE TABLAS Y FIGURAS

TABLAS

- TABLA la. Número de centros de desembarque oficiales y centros de muestreo por región. Monitoreo invierno 1994
- TABLA 1b. Número de centros de desembarque oficiales y centros de muestreo por región. Monitoreo primavera 1994
- TABLA 2a. Centros de muestreo seleccionados por región. Monitoreo invierno 1994
- TABLA 2b. Centros de Muestreo Seleccionados por Región. Monitoreo primavera 1994
- TABLA 3a. Distribución de personal y número de centros de muestreo por región. Monitoreo invierno 1994
- TABLA 3b. Distribución de personal y número de centros de muestreo por región. Monitoreo primavera 1994
- TABLA 4. Estructura de los archivos de desembarque, longitud, biológico y maestros de puertos y procedencias.

 Monitoreos invierno-primavera 1994
- TABLA 5. Nombre de los archivos de desembarque, longitud, biológico, maestro de puertos y procedencias. Monitoreos invierno y primavera 1994
- TABLA 6a. Resumen de archivos de desembarque, longitud y biológicos por puntos de desembarque. Monitoreo invierno 1994

- TABLA 6b. Resumen de archivos de desembarque, longitud y biológicos por puntos de desembarque. Monitoreo primavera 1994
- TABLA 7. Desembarque (en unidades) de C. concholepas por región y día. Monitoreo invierno 1994
- TABLA 8. Indicadores del desembarque de C. concholepas de la I región. Monitoreo invierno 1994
- TABLA 9. Indicadores del desembarque de C. concholepas de la II región. Monitoreo invierno 1994
- TABLA 10. Indicadores del desembarque de C. concholepas de la III región. Monitoreo invierno 1994
- TABLA 11. Indicadores del desembarque de C. concholepas de la IV región. Monitoreo invierno 1994
- TABLA 12. Indicadores del desembarque de C. concholepas de la V región. Monitoreo invierno 1994
- TABLA 13. Indicadores del desembarque de C. concholepas de la VI región. Monitoreo invierno 1994
- TABLA 14. Indicadores del desembarque de C. concholepas de la VII región. Monitoreo invierno 1994
- TABLA 15. Indicadores del desembarque de C. concholepas de la VIII región. Monitoreo invierno 1994
- TABLA 16. Indicadores del desembarque de C. concholepas de la IX región. Monitoreo invierno 1994
- TABLA 17. Indicadores del desembarque de C. concholepas de la X región. Monitoreo invierno 1994

viii

- TABLA 18. Indicadores del desembarque de C. concholepas de la XI región. Monitoreo invierno 1994
- TABLA 19. Indicadores del desembarque de C. concholepas de la XII región. Monitoreo invierno 1994
- TABLA 20. Composición en número de las capturas por unidad de pesquería según clase de longitud. Monitoreo invierno 1994
- TABLA 21. Coeficiente de variación de la captura en número por unidad de pesquería según clase de longitud. Monitoreo invierno 1994
- TABLA 22. Composición en peso de la captura (kg) por unidad de pesquería según clase de longitud. Monitoreo invierno 1994
- TABLA 23. Coeficiente de variación de la captura en peso por unidad de pesquería, según clase de longitud, Monitoreo invierno 1994
- TABLA 24. Desembarque (Nº unidades), esfuerzo estimado (Horasbuceo) y rendimiento de pesca promedio (unid/h-buceo) por región. Monitoreo invierno 1994
- TABLA 25. Desembarque (unidades), rendimiento de pesca (unidades/hora-buceo) de C. concholepas y esfuerzo estimado por caleta y región. Monitoreo invierno 1994
- TABLA 26. Esfuerzo de muestreo en número de embarcaciones y ejemplares pedidos por región y tipo de muestreo.

 Monitoreo invierno 1994

- TABLA 27. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la I región. Monitoreo invierno 1994
- TABLA 28. Ejemplares muestreados de **C. concholepas** por caleta y tipo de muestreo en la II región. Monitoreo invierno 1994
- TABLA 29. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la III región. Monitoreo invierno 1994
- TABLA 30. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la IV región. Monitoreo invierno 1994
- TABLA 31. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la V región. Monitoreo invierno 1994
- TABLA 32. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la VI región. Monitoreo invierno 1994
- TABLA 33. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la VII región. Monitoreo invierno 1994
- TABLA 34. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la VIII región. Monitoreo invierno 1994
- TABLA 35. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la IX región. Monitoreo invierno 1994

- TABLA 36. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la X región. Monitoreo invierno 1994
- TABLA 37. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la XI región. Monitoreo invierno 1994
- TABLA 38. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la XII región. Monitoreo invierno 1994
- TABLA 39. Indicadores estadísticos del muestreo de longitud, del desembarque de C. concholepas. Monitoreo invierno 1994
- TABLA 40. Indicadores estadísticos de muestreo de peso del desembarque de C. concholepas. Monitoreo invierno 1994
- TABLA 41. Número total de áreas procedencias del monitoreo invierno de 1994 por región, desagregadas en repetidas y no repetidas respecto a las temporadas conjuntas de invierno y verano 1993
- TABLA 42. Capturas en número del monitoreo de invierno de 1994 por áreas de procedencias y región, desagregada en repetidas y no repetidas respecto a la temporada de invierno y verano 1993
- TABLA 43. Número total de áreas procedencias del monitoreo invierno de 1994 por región, desagregadas en repetidas y no repetidas respecto a la temporada de verano 1993
- TABLA 44. Capturas en número del monitoreo de invierno de 1994 por áreas de procedencias y región, desagregadas en repetidas y no repetidas respecto a la temporada de verano 1993

- TABLA 45. Número total de áreas procedencias del monitoreo de invierno de 1994 por región, desagregada en repetidas y no repetidas respecto a la temporada de invierno 1993
- TABLA 46. Capturas en número del monitoreo de invierno de 1994 por áreas de procedencias y región, desagregada en repetidas y no repetidas respecto a la temporada de invierno 1993
- TABLA 47. Desembarque (en unidades) de C. concholepas por región y día. Monitoreo primavera 1994
- TABLA 48. Indicadores del desembarque de C. concholepas de la I región. Monitoreo primavera 1994
- TABLA 49. Indicadores del desembarque de C. concholepas de la II región. Monitoreo primavera 1994
- TABLA 50. Indicadores del desembarque de C. concholepas de la III región. Monitoreo primavera 1994
- TABLA 51. Indicadores del desembarque de C. concholepas de la IV región. Monitoreo primavera 1994
- TABLA 52. Indicadores del desembarque de C. concholepas de la V región. Monitoreo primavera 1994
- TABLA 53. Indicadores del desembarque de C. concholepas de la VI región. Monitoreo primavera 1994
- TABLA 54. Indicadores del desembarque de C. concholepas de la VII región. Monitoreo primavera 1994
- TABLA 55. Indicadores del desembarque de C. concholepas de la VIII región. Monitoreo primavera 1994

- TABLA 56. Indicadores del desembarque de C. concholepas de la X región. Monitoreo primavera 1994
- TABLA 57. Indicadores del desembarque de C. concholepas de la XI región. Monitoreo primavera 1994
- TABLA 58. Indicadores del desembarque de C. concholepas de la XII región. Monitoreo primavera 1994
- TABLA 59. Composición en número de la captura por unidad de pesquería según clase de longitud. Monitoreo primavera 1994
- TABLA 60. Coeficiente de variación de la captura en número por unidad de pesquería y clase de longitud. Monitoreo primavera 1994
- TABLA 61. Composición en peso de la captura (kg) por unidad de pesquería según clase de longitud. Monitoreo primavera 1994
- TABLA 62. Coeficiente de variación de la captura en peso por unidad de pesquería y clase de longitud. Monitoreo primavera 1994
- TABLA 63. Desembarque (Nº unidades), esfuerzo de pesca (horas de buceo) y rendimiento de pesca promedio (unidades/h-buceo) por región. Monitoreo primavera 1994
- TABLA 64. Desembarque (Nº unidades), esfuerzo de pesca (horas de buceo) y rendimiento de pesca promedio (unidades/h-buceo) por caleta y región. Monitoreo primavera 1994
- TABLA 65. Esfuerzo de muestreo en número de embarcaciones y ejemplares medidos por región y tipo de muestreo.

 Monitoreo primavera 1994

- TABLA 66. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la I región. Monitoreo primavera 1994
- TABLA 67. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la II región. Monitoreo primavera 1994
- TABLA 68. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la III región. Monitoreo primavera 1994
- TABLA 69. Ejemplares muestreados de **C. concholepas** por caleta y tipo de muestreo en la IV región. Monitoreo primavera 1994
- TABLA 70. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la V región. Monitoreo primavera 1994
- TABLA 71. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la VI región. Monitoreo primavera 1994
- TABLA 72. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la VII región. Monitoreo primavera 1994
- TABLA 73. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la VIII región. Monitoreo primavera 1994
- TABLA 74. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la X región. Monitoreo primavera 1994

- TABLA 75. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la XI región. Monitoreo primavera 1994
- TABLA 76. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la XII región. Monitoreo primavera 1994
- TABLA 77. Indicadores estadísticos del muestreo de longitud, del desembarque de C. concholepas. Monitoreo primavera 1994
- TABLA 78. Indicadores estadísticos del muestreo de peso del desembarque de C. concholepas. Monitoreo primavera 1994
- TABLA 79. Número total de áreas de procedencias de monitoreo de primavera de 1994 por región, desagregada en repetidas y no repetidas respecto a la temporada de verano-93
- TABLA 80. Capturas en número del monitoreo de primavera de 1994 por áreas de procedencia y región, desagregada en repetidas y no repetidas respecto a la temporada de verano-93
- TABLA 81. Número total de áreas de procedencias del monitoreo de primavera de 1994 por región desagregadas en repetidas y no repetidas respecto a la temporada de invierno-93
- TABLA 82. Capturas en número del monitoreo de primavera de 1994 por áreas de procedencias y región, desagregadas en repetidas y no repetidas respecto a la temporada de invierno-93
- TABLA 83. Número total de áreas de procedencias del monitoreo de primavera de 1994 por región desagregada en repetidas y no repetidas respecto a la temporada de invierno-94

- TABLA 84. Capturas en número del monitoreo de primavera de 1994 por áreas de procedencia y región, desagregadas en repetidas y no repetidas respecto a la temporada de invierno-94
- TABLA 85. Número total de áreas de procedencias del monitoreo del año 1994 por región desagregadas en repetidas y no repetidas respecto a la temporada del año 1993
- TABLA 86. Capturas en número del monitoreo del año 1994 por áreas de procedencia y región, desagregadas en repetidas y no repetidas respecto a la temporada del año 1993
- TABLA 87a. Composiciones de tallas en la captura de macrozona 1 durante las temporadas de pesca 1993 y 1994
- TABLA 87b. Composiciones de tallas en la captura de macrozona 2 durante las temporadas de pesca de 1993 y 1994
- TABLA 88a. Parámetros fijos
- TABLA 88b. Parámetros estimados
- TABLA 88c. Mortalidades y abundancias a la talla de 1993
- TABLA 88d. Mortalidades y abundancias a la talla de 1994
- TABLA 88e. Parámetros de entrada
- TABLA 88f. Análisis de rendimiento y biomasa por recluta
- TABLA 88g. Estrategias de explotación
- TABLA 88h. Proyección del stock al 1º de enero de 1995

- TABLA 89a. Parámetros fijos
- TABLA 89b. Parámetros estimados
- TABLA 89c. Mortalidades y abundancias a la talla de 1993
- TABLA 89d. Mortalidades y abundancias a la talla de 1994
- TABLA 89e. Parámetros de entrada
- TABLA 89f. Análisis de rendimiento y biomasa por recluta
- TABLA 89g. Estrategias de explotación
- TABLA 89h. Proyección del stock al 1º de enero de 1995
- TABLA 90a. Parámetros fijos
- TABLA 90b. Parámetros estimados
- TABLA 90c. Mortalidades y abundancias a la talla de 1993
- TABLA 90d. Mortalidades y abundancias a la talla de 1994
- TABLA 90e. Parámetros de entrada
- TABLA 90f. Análisis de rendimiento y biomasa por recluta
- TABLA 90g. Estrategias de explotación
- TABLA 90h. Proyección del stock al 1º de enero de 1995
- TABLA 91a. Parámetros fijos
- TABLA 91b. Parámetros estimados

xvii

- TABLA 91c. Mortalidades y abundancias a la talla de 1993
- TABLA 91d. Mortalidades y abundancias a la talla de 1994
- TABLA 91e. Parámetros de entrada
- TABLA 91f. Análisis de rendimiento y biomasa por recluta
- TABLA 91g. Estrategias de explotación
- TABLA 91h. Proyección del stock al 1º de enero de 1995
- TABLA 92a. Parámetros fijos
- TABLA 92b. Parámetros estimados
- TABLA 92c. Mortalidades y abundancias a la talla de 1993
- TABLA 92d. Mortalidades y abundancias a la talla de 1994
- TABLA 92e. Parámetros de entrada
- TABLA 92f. Análisis de rendimiento y biomasa por recluta
- TABLA 92g. Estrategias de explotación
- TABLA 92h. Proyección del stock al 1º de enero de 1995
- TABLA 93a. Parámetros fijos
- TABLA 93b. Parámetros estimados
- TABLA 93c. Mortalidades y abundancias a la talla de 1993
- TABLA 93d. Mortalidades y abundancias a la talla de 1994

xviii

- TABLA 93e. Parámetros de entrada
- TABLA 93f. Análisis de rendimiento y biomasa por recluta
- TABLA 93g. Estrategias de explotación
- TABLA 93h. Proyección del stock al 1º de enero de 1995
- TABLA 94a. Parámetros fijos
- TABLA 94b. Parámetros estimados
- TABLA 94c. Mortalidades y abundancias a la talla de 1993
- TABLA 94d. Mortalidades y abundancias a la talla de 1994
- TABLA 94e. Parámetros de entrada
- TABLA 94f. Análisis de rendimiento y biomasa por recluta
- TABLA 94g. Estrategias de explotación
- TABLA 94h. Proyección del stock al 1[™] de enero de 1995
- TABLA 95a. Parámetros fijos
- TABLA 95b. Parámetros estimados
- TABLA 95c. Mortalidades y abundancias a la talla de 1993
- TABLA 95d. Mortalidades y abundancias a la talla de 1994
- TABLA 95e. Parámetros de entrada
- TABLA 95f. Análisis de rendimiento y biomasa por recluta

- TABLA 95g. Estrategias de explotación
- TABLA 95h. Proyección del stock al 1º de enero de 1995
- TABLA 96a. Parámetros fijos
- TABLA 96b. Parámetros estimados
- TABLA 96c. Mortalidades y abundancias a la talla de 1993
- TABLA 96d. Mortalidades y abundancias a la talla de 1994
- TABLA 96e. Parámetros de entrada
- TABLA 96f. Análisis de rendimiento y biomasa por recluta
- TABLA 96g. Estrategias de explotación
- TABLA 96h. Proyección del stock al 1[™] de enero de 1995
- TABLA 97a. Parámetros fijos
- TABLA 97b. Parámetros estimados
- TABLA 97c. Mortalidades y abundancias a la talla de 1993
- TABLA 97d. Mortalidades y abundancias a la talla de 1994
- TABLA 97e. Parámetros de entrada
- TABLA 97f. Análisis de rendimiento y biomasa por recluta
- TABLA 97g. Estrategias de explotación

TABLA 97h. Proyección del stock al 1º de enero de 1995

TABLA 98a. Parámetros fijos

TABLA 98b. Parámetros estimados

TABLA 98c. Mortalidades y abundancias a la talla de 1993

TABLA 98d. Mortalidades y abundancias a la talla de 1994

TABLA 98e. Parámetros de entrada

TABLA 98f. Análisis de rendimiento y biomasa por recluta

TABLA 98g. Estrategias de explotación

TABLA 98h. Proyección del stock al 1º de enero de 1995

TABLA 99. Resumen de CTP's estimada por Región para 1995, utilizando las estrategias de explotación $F_{0,1}$ y F_{mix}

FIGURAS

- Fig. 1. Ranking del desembarque de C. concholepas de las caletas muestreadas
- Fig. 2. Ranking del desembarque de C. concholepas de las caletas muestreadas
- Fig. 3. Ranking del desembarque de C. concholepas de las caletas muestreadas
- Fig. 4. Ranking del desembarque de C. concholepas de las caletas muestreadas

- Fig. 5. Ranking del desembarque de C. concholepas de las caletas muestreadas
- Fig. 6. Ranking del desembarque de C. concholepas de las caletas muestreadas
- Fig. 7. Ranking del desembarque de C. concholepas de las caletas muestreadas
- Fig. 8. Ranking del desembarque de C. concholepas de las caletas muestreadas
- Fig. 9. Rendimientos de pesca de C. concholepas, por región.
 Monitoreos verano-invierno 1993 e invierno 1994
- Fig. 10. Distribución e indicadores descriptivos del muestreo de longitud del desembarque por región (I a VI regiones).

 Monitoreo invierno 94
- Fig. 11. Distribución e indicadores descriptivos del muestreo de longitud del desembarque por región (VII a XII regiones).

 Monitoreo invierno 94
- Fig. 12. Ranking del desembarque de C. concholepas de las caletas muestreadas de la I Región. Monitoreo primavera 1994
- Fig. 13. Ranking del desembarque de C. concholepas de las caletas muestreadas de la II Región. Monitoreo primavera 1994
- Fig. 14. Ranking del desembarque de C. concholepas de las caletas muestreadas de la III Región. Monitoreo primavera 1994
- Fig. 15. Ranking del desembarque de C. concholepas de las caletas muestreadas de la IV Región. Monitoreo primavera 1994

xxii

- Fig. 16. Ranking del desembarque de C. concholepas de las caletas muestreadas de la V Región. Monitoreo primavera 1994
- Fig. 17. Ranking del desembarque de C. concholepas de las caletas muestreadas de la VIII Región. Monitoreo primavera 1994
- Fig. 18. Ranking del desembarque de C. concholepas de las caletas muestreadas de la X Región. Monitoreo primavera 1994
- Fig. 19. Ranking del desembarque de C. concholepas de las caletas muestreadas de la XI Región. Monitoreo primavera 1994
- Fig. 20. Rendimiento de pesca (unidades/h. buceo) por región.

 Monitoreo invierno y primavera, 1994
- Fig. 21. Distribución e indicadores descriptivos del muestreo de longitud del desembarque por región (I a VI). Monitoreo primavera 1994
- Fig. 22. Distribución e indicadores descriptivos del muestreo de longitud del desembarque por región (VII a XII).

 Monitoreo primavera 1994

I OBJETIVOS

1. Objetivo general

Caracterizar la pesquería y evaluar el stock de recurso loco (Concholepas concholepas) en cada unidad de pesquería regional (I a XII Regiones), con el propósito de disponer de información actualizada y oportuna para su administración.

2. Objetivos específicos

2.1 Evaluación de las pesquerías:

- 2.1.1 Estimar el esfuerzo de pesca y la captura por unidad de esfuerzo por unidad de pesquería regional y en la o las temporadas extractivas que se autorizarán al efecto para el año 1994.
- 2.1.2 Estimar la composición por talla y peso de las capturas por área de procedencia por unidad de pesquería regional y en la o las temporadas extractivas que se autorizarán al efecto para el año 1994.

2.2 Evaluación de stock

- 2.2.1 Formular un modelo de evaluación de stock ad hoc para estimar cuantitativamente la abundancia, biomasa y composición de los stocks del recurso loco de cada una de las unidades de pesquerías.
- 2.2.2 Elaborar un programa para la ejecución del modelo antes citado.
- 2.2.3 Estimar la abundancia total (en número) y la biomasa total (en peso) de los stocks del recurso por intervalos de talla para cada unidad de pesquería regional (I a XII Regiones), respectivamente.

II. ANTECEDENTES

El presente documento corresponde al Informe Final del Proyecto FIP Nº32 "Evaluación de la pesquería y del recurso loco a nivel nacional".

En este informe se presenta la información recopilada durante la temporada extractiva 1994. Se incluyen los análisis y presentación de resultados más relevantes de los monitoreos de invierno y verano de 1994. El período extractivo de invierno duró un mes y se realizó entre el 1 y el 31 de agosto de 1994. El segundo período correspondiente a primavera duró 41 días entre el 24 de noviembre y 31 de diciembre de 1994. La cuota global asignada por la Subsecretaría de Pesca fue de 27.844.844 unidades.

En este informe se entregan los resultados de la aplicación del modelo de Evaluación de Stock en tallas ACTII, en su versión actual, a las composiciones de tallas acumuladas de los años 1993 y 1994 para las regiones VII a la XII, exceptuando la IX Región que fue descartada del análisis al comprobarse que sus desembarques provienen enteramente de la X Región.

Se incluye además en este informe un procedimiento basado en tallas para calcular la CTP en función del tamaño de stock proyectado a comienzo del año objeto de la regulación y un nivel recomendable de mortalidad por pesca $(F_{0,1} \circ F_{max})$ determinado mediante el modelo de Y/R de Thompson & Bell. Los pasos principales del procedimiento: estimación de $F_{0,1}$ y F_{max} , proyección del stock y cálculo de la CTP, se ilustran para el año 1995 con los resultados de la evaluación de las regiones indicadas anteriormente en un anexo que se agrega un documento complementario que responde a comentarios y observaciones del FIP. Se entrega además un listado del programa que calcula los puntos biológicos de referencia (escrito en MATLAB para Windows, versión 4b).

III. METODOLOGIA

A. METODOLOGIA DEL MONITOREO

El monitoreo del recurso abarcó desde la I a XII Región inclusive. Este se desarrolló dentro de un plan metodológico que contempló un total de tres etapas.

Etapa 1

1. Diseños de Muestreo

1.1 Desembarque

La población bajo estudio se caracteriza por estar constituida por un gran número de centros de desembarque y de embarcaciones; además, de lo disperso que se localizan estos centros a lo largo de toda la costa. Características que hacen impracticable la realización de una enumeración completa.

En consecuencia para la formulación de la estrategia de muestreo se realizó una selección de centros de muestreo, teniendo en consideración tres elementos:

- Temporada de pesca
- Presupuesto
- Desembarque por centro

La prolongación de la temporada extractiva incrementa fuertemente los costos del monitoreo, particularmente porque la propuesta técnica exige el desarrollo de actividades de muestreo biológico por área de pesca (procedencias), que como quedó demostrado en los monitoreos del año 1993, requiere de un alto esfuerzo de muestreo.

A lo anterior se suma el incremento en el insumo de tiempo de las actividades de control y operación del sistema de monitoreo.

Por otra parte el presupuesto del FIP para este proyecto, condicionaba fuertemente la posibilidad de continuar con un muestreo intensivo de centros, como ocurrió en los monitoreos anteriores en donde la actividad de pesca tuvo una corta duración.

En este contexto, se realizó un análisis de los datos de los monitoreos previos, estudio que dió base a la selección de un total de 39 centros de desembarque a ser incorporados en el actual monitoreo. Estos centros representan el 85% del desembarque controlado por IFOP en invierno de 1993 y cubren las 12 unidades de pesquerías (regiones). Sin embargo y como resultado de readecuaciones de muestreadores y capacidades naturales del IFOP, se cubrieron un total de 44 centros de muestreo, es decir, 5 centros adicionales a los indicados en la oferta inicial.

1.2 Estimación de la captura por unidad de esfuerzo y del esfuerzo de pesca

Se reconoce ampliamente que existen muchos problemas asociados con el empleo de los datos de la captura y del esfuerzo de pesca para estimar la abundancia de los recursos (Paloheimo y Dickie, 1964; Ultang, 1976). En el caso particular de la pesquería del loco, el índice de captura por unidad de esfuerzo (rendimiento) presenta complicaciones adicionales que dicen relación por una parte, con la actividad de apozamiento que realizan los pescadores y que contribuye a magnificar el valor del índice y por otra parte, con la actividad de transporte, lo cual dificulta en muchos casos la estimación del esfuerzo insumido en la obtención de la captura.

La unidad básica que se empleará para describir el esfuerzo de pesca corresponde a las horas de buceo.

El esfuerzo de pesca se estimará utilizando la captura por unidad de esfuerzo promedio de la caleta, estimada a partir de la información de una muestra de embarcaciones y la información de desembarque de la caleta (centro de desembarque), que se asume igual a la captura.

Indices:

Variables

- $\hat{\mathbf{U}}_{hi}$ = Estimador de razón del rendimiento de pesca promedio por unidad de pesquería h y centro de desembarque i
- Y_{hij} = Captura en número en la unidad de pesquería h, en el centro i en el viaje j
- E_{hij} = Esfuerzo de pesca en horas de buceo en la unidad de pesquería h, en el centro i en el viaje j
- \bar{E}_{hi} = Esfuerzo promedio por viaje en la unidad de pesquería h en el centro i
- $V(\hat{\overline{U}}_{hi}) = \text{Estimador de la varianza de } \hat{\overline{U}}_{hi}$
- $V(\hat{E}_{bi})$ = Estimador de la varianza de \hat{E}_{bi}
- Y_h = Captura en número en la unidad de pesquería h

- $\stackrel{\circ}{U_h}$ = Estimador del rendimiento de pesca promedio en la unidad de pesquería h
- $\stackrel{\triangle}{E_h}$ = Estimador del esfuerzo de pesca en la unidad de pesquería h
- a) Estimador del rendimiento de pesca por centro de desembarque

$$\overline{U}_{hj} = \frac{\sum_{j=1}^{n_{hi}} Y_{hij}}{\sum_{j=1}^{n_{hi}} E_{hij}} = R_{hi}$$

Estimador de la varianza

$$V(\overline{U}_{hi}) = \frac{1}{n_{hi}} \left(1 - \frac{n_{hi}}{N_{hi}}\right) \frac{1}{\overline{E}^2_{hi}} \frac{\sum_{j=1}^{n_{hi}} Y_{hij}^2 - 2R_{hi} \sum_{j=1}^{n_{hi}} Y_{hij} E_{hij} + R_{hi}^2 \sum_{j=1}^{n_{hi}} E_{hij}^2}{n_{hi} - 1}$$

b) Estimador del esfuerzo de pesca por centro de desembarque

$$\widehat{E}_{hi} = \frac{Y_{hi}}{\overline{U}_{hi}}$$

Estimador de la varianza

$$\hat{V}(\hat{E}_{hi}) = Y_{hi}^2 \frac{1}{\overline{U}_{hi}^4} \hat{V}(\overline{U}_{hi}^{\Lambda})$$

 c) Estimador del rendimiento de pesca y esfuerzo de pesca por unidad de pesquería

$$\frac{\bigwedge_{\tilde{U}_{h}}^{\Lambda} = \frac{\sum_{j=1}^{L} Y_{hj} \tilde{U}_{hj}}{\sum_{j=1}^{L} Y_{hj}}$$

$$\frac{\stackrel{\wedge}{\overline{E}}_{h}}{\overline{U}_{h}} = \frac{Y_{h}}{\stackrel{\wedge}{\overline{U}}_{h}}$$

1.3 Composición de Longitud del Desembarque

El criterio de selección de la muestra de longitud se fundamentó en los resultados del monitoreo de verano de 1993, tomando en consideración una medida de la proporción a la clase de longitud, p_i , entre 0,05 y 0,21, conjuntamente con aspectos prácticos de terreno como son número de muestreadores, rendimiento día por persona y número efectivo de días de pesca.

La distribución de longitud del desembarque estimada de cada unidad de pesquería está dado por el estimador de proporción, P que se expresa como el vector

$$\bar{P} = (p_1, p_2, \ldots, p_i, \ldots p_k)$$

con

$$p_i = \frac{n_i}{n} \qquad i = 1, 2 \dots k$$

donde

n : Tamaño de la muestra de longitudes

 n_i : Número de ejemplares en la muestra n que pertenecen a la clase de longitud i (i = 1,2,...k)

La estructura de la varianza de este estimador (Cochran W., 1977) por clase de longitud i está dado por

$$\hat{V}(p_i) = [1 - \frac{n}{N}] \frac{1}{n} p_i (1-p_i)$$

1.4 Composición Longitud-Peso del Desembarque

Sobre la base de submuestreos aleatorios de los datos de muestreos biológicos (longitud-peso) del monitoreo de Verano 93, se estimó un tamaño de muestra, por unidad de pesquería y punto de muestreo, que proporcionara una adecuada estimación de los pesos medios de los ejemplares desembarcados.

Ecuación longitud - peso del desembarque por centro de muestreo

$$W_i = \alpha I_i^{\beta} \qquad i = 1, 2, \dots n$$

donde W_i representa el peso del ejemplar i-ésimo, l_i es la talla del ejemplar i-ésimo, α y β son parámetros a estimar.

Dado que el modelo no es lineal en B, los parámetros se estimaron mediante procedimientos de estimación no lineal, usando el software SPSS/PC Windows 6.0.

1.5 Composición en Número y Peso de la Captura

Las estimaciones de las capturas en número y peso por clase de longitud se obtuvo a partir de los estimadores siguientes

Estimador de la captura en número por unidad de pesquería procedencia y clase de longitud

$$\hat{N}_{zlj} = N_{zl} p_{zlj}$$

donde

 \hat{N}_{zj} : Captura estimada en número unidad de pesquería z de la procedencia ly clase de longitud j

 N_{zl} : Captura en número de la unidad de pesquería z procedencia l

 p_{zi} : Proporción estimada de ejemplares en la unidad de pesquería z procedencia l y clase de longitud j.

Estimador de la captura en número por unidad de pesquería y clase de longitud

$$\hat{N}_{zj} = \sum_{l=1}^{r} \hat{N}_{zlj}$$

La estructura de las varianzas de estos estimadores son de la forma

$$\hat{V}(\hat{N}_{zj}) = \sum_{l=1}^{r} \hat{V}(\hat{N}_{zlj})$$

$$\hat{V}[\hat{N}_{zlj}] = N_{zl}^2 \hat{V}(p_{zlj})$$

donde

$$\hat{V}(p_{zlj}) = [1 - \frac{n_{zl}}{N_{zl}}] \frac{1}{n_{zl}} p_{zlj} (1 - p_{zlj})$$

El coeficiente de variación del estimador \hat{N}_{xt} está dado por

$$CV(\hat{N}_{zj}) = \frac{\sqrt{\hat{V}[\hat{N}_{zj}]}}{\hat{N}_{zj}}$$

Estimador de la captura en peso de la captura por unidad de pesquería procedencia y clase de longitud

$$\hat{C}_{zlj} = \hat{N}_{zlj} \; \overline{W}_{zlj}$$

donde

 \hat{c}_{zlj} : Captura estimada en peso de la unidad pesquería z, procedencia ly clase de longitud j

 \hat{N}_{xlj} : Captura estimada en número por unidad pesquería z, procedencia ly clase de longitud j

 $\overline{\textit{W}}_{\textit{zlj}}$: Peso medio estimado por unidad pesquería z, procedencia l a la clase de longitud j

Estimador de la captura en peso por unidad de pesquería y clase de longitud

$$\hat{C}_{zj} = \sum_{l=1}^{T} \hat{C}_{zlj}$$

 $\hat{\mathcal{C}}_{zj}$: Captura estimada de la unidad de pesquería z y clase de longitud j

La estructura de la varianza de estos estimadores tienen la forma

$$V(\hat{C}_{zj}) = \sum_{l=1}^{z} \hat{V}(\hat{C}_{zlj})$$

$$\hat{V}[\,\hat{C}_{zlj}] \ = \ \hat{N}_{zlj}^2 \ \hat{V}(\,\overline{W}_{zlj}) \ + \ \overline{W}_{zlj}^2 \ \hat{V}(\,\hat{N}_{zlj})$$

donde

$$\widehat{V}(\overline{W}_{zlj}) = \frac{1}{n_{zlj}^*} \sum_{i=1}^{r_j} \frac{\left[W_{zlij} - \overline{W}_{zlj}\right]^2}{\left(n_{zlj}^* - 1\right)}$$

 $n_{z_{ij}}^{\star}$: Representa la muestra por unidad de pesquería z, procedencia ly clase de longitud j

El coeficiente de variación del estimador $\hat{\mathcal{C}}_{zj}$ está dado por

$$CV(\hat{C}_{zj}) = \frac{\sqrt{\hat{V}[\hat{C}_{zj}]}}{\hat{C}_{zj}}$$

Etapa 2

1. Coordinaciones

Las operaciones de terreno se coordinaron a través de las regiones mediante las Direcciones Zonales del IFOP. Las actividades programadas previamente se pudieron desarrollar sin contratiempos esto durante los 72 días que duró la tarea extractiva monitoreada. Paralelamente se coordinan algunas actividades con instituciones tales como: Subsecretaría de Pesca (SUBPESCA), Servicio Nacional de Pesca (SERNAP), Instituto de Fomento Pesquero (IFOP), Gobernación Marítima, Carabineros de Chile y Federaciones de Pescadores Artesanales.

2. Cobertura del muestreo

El número total de centros de muestreo durante los monitoreos de invierno y primavera de 1994 fueron 44 y 43 respectivamente, de un total de 120, centros oficiales lo que representa aproximadamente un 37% de la cobertura total. Inicialmente se tenía contemplado cubrir el 32,5% de los centros, es decir 39 centros, una redecuación de muestreadores permitió incrementar la cobertura en un 13,8%. Las tablas 1 y 2 presentan la distribución de centros durante los dos monitoreos de invierno y primavera de 1994.

TABLA 1a. Número de centros de desembarque oficiales y centros de muestreo por región. Monitoreo invierno 1994

REGION	NUMERO	COBERTURA	
	OFICIALES	MUESTREADOS	8
I	8	2	25
II	16	3	19
III	9	3	33
IV	22	7	32
V	16	9	56
VI	4	1	25
VII	6	1	17
VIII	10	6	60
IX	1	1	100
X	18	8	44
XI	5	2	40
XII	5	1	20
TOTAL	120	44	37

TABLA 1b. Número de centros de desembarque oficiales y centros de muestreo por región. Monitoreo primavera 1994

REGION	NUMERO	COBERTURA	
	OFICIALES	MUESTREADOS	*
I	8	2	25
II	16	3	19
III	9	3	33
IV	22	9	41
V	16	7	44
VI	4	1	25
VII	6	1	17
VIII	10	6	60
IX	1	1	100
X	18	7	39
XI	5	2	40
XII	5	1	20
TOTAL	120	43	35,8

TABLA 2a. Centros de muestreo seleccionados por región. Monitoreo invierno 1994

REGION	CENTROS DE MUESTREO
I	CAMARONES ARICA
II	PAPOSO TALTAL CIFUNCHO
III	PAN DE AZUCAR PTO. VIEJO HUASCO

	CENTROS DE
REGION	MUESTREO
IV	PTA. CHOROS CTA. HORNOS PTO. ALDEA PICHIDANGUI CHUNGUNGO CTA. SIERRA SAN PEDRO
v	LOS MOLLES HORCON EL QUISCO QUINTAY VENTANA QUINTERO SAN ANTONIO PAPUDO PICHICUY
VI	LA BOCA
VII	PELLUHUE
VIII	LOTA TUBUL TALCAHUANO SAN VICENTE LEBU LLICO
IX	QUEULE
X	NIEBLA BAHIA MANSA MAULLIN CARELMAPU CHINQUIHUE ANCUD PUDETO QUELLON
XI	PTO. CHACABUCO MELINKA
XII	PTO. NATALES

TABLA 2b. Centros de Muestreo Seleccionados por Región. Monitoreo primavera 1994

REGION	CENTROS DE MUESTREO
I	CAMARONES ARICA
II	PAPOSO TALTAL CIFUNCHO
III	PAN DE AZUCAR PTO. VIEJO HUASCO
IV	PTA. CHOROS CTA. HORNOS PTO. ALDEA PICHIDANGUI CHUNGUNGO CTA. SIERRA MAITENCILLO SAN PEDRO LAS CONCHAS
V	HORCON QUINTAY VENTANA QUINTERO SAN ANTONIO PAPUDO PICHICUY
VI	LA BOCA
VII	PELLUHUE
VIII	LOTA TUBUL TALCAHUANO SAN VICENTE LEBU LLICO

REGION	CENTROS DE MUESTREO
IX	QUEULE
х	NIEBLA BAHIA MANSA MAULLIN CARELMAPU ANCUD PUDETO QUELLON
XI	PTO. CHACABUCO MELINKA
XII	PTO. NATALES

3. Diseño de Formularios

Para la colecta de los datos en terreno se utilizaron tres tipos de formularios.

- registro diario del desembarque
- muestreo de longitud del desembarque
- muestreo de longitud y peso del desembarque

4. Selección, Capacitación y Equipamiento de Personal

A parte de personal especializado del IFOP, se seleccionó, contrató y capacitó a un importante contingente de muestreadores ocasionales a quienes se les dotó con el material y equipo necesario. Paralelamente se construyeron instructivos para las actividades de operación de terreno.

5. Procedencias geo-referenciadas

Las procedencias de los desembarques fueron geo-referenciadas en latitud y longitud (grados y minutos).

6. Personal por Región y Centro de Muestreo

El personal utilizado por región y centro de muestreo durante los monitoreos de invierno y primavera de 1994 fue distribuido según se muestra en la tabla 3.

TABLA 3a. Distribución de personal y número de centros de muestreo por región. Monitoreo invierno 1994

REGION	CENTRO DE	NUMERO		
	MUESTREO	MUESTREADOR	COORDINADOR	TOTAL
I II IV V VI VII VIII IX X XI	2 3 7 9 1 6 1 8 2	3 4 7 17 16 2 2 13 2 16 3	1 1 1 1 - - 1 - 3 1	4 5 8 18 17 2 2 14 2 19 4
TOTAL	44	86	10	96

TABLA 3b. Distribución de personal y número de centros de muestreo por región. Monitoreo primavera 1994

REGION	CENTRO DE	NUMERO		
	MUESTREO	MUESTREADOR	COORDINADOR	TOTAL
I	2	3	1	4
II	3	4	1	5
III	3	6	1	7
IV	9	18	1	19
v	7	10	1	11
VI	1	2	_	2
VII	1	2	-	2
VIII	6	12	1	13
IX	1	1	_	1
X	. 7	15	3	18
XI	2	3	-	3
XII	1	2	_	2
TOTAL	43	78	9	87

Etapa 3

1. Acopio de Formularios

Cada formulario completado por día y punto de desembarque fue centralizado regionalmente y posteriormente enviado a Santiago para su digitación.

2. Definición de Archivos

La estructura de los archivos de la base de datos fue definida a partir de los formularios de registro de desembarque, muestreo de longitud y muestreo longitud-peso.

3. Programas de Ingreso de Datos

A partir de la definición de la estructura de los archivos de la base de datos, se construyó los programas ingresadores de datos y de conversión a ASCII.

4. Generación de la Base de Datos

Los datos fueron digitados, corregidos y validados. En este proceso se realizaron dos correcciones antes de ser finalmente enviados para conversión a ASCII.

5. Características de la Base de Datos

La base de datos se compone de cinco tipos de archivos.

- Archivo de desembarque: Contiene información sobre las variables asociadas con la actividad de pesca, niveles desembarcados por embarcación y procedencias.
- Archivo de longitud: Contiene información sobre el muestreo de longitud de los ejemplares desembarcados por embarcación y procedencia.
- 3. Archivo biológico: Contiene información del muestreo de longitud y peso de los ejemplares para los principales centros de desembarque y procedencias más importantes.
- 4. Archivo de puertos: Contiene información de los puntos de desembarque considerados en el monitoreo.
- 5. Archivo de procedencias: Contiene la información sobre el nombre y posición geo-referenciada de las procedencias.

El detalle de la estructura de los registros por tipo de archivo y nombre de los archivos se entregan en las tablas 4 y 5, respectivamente.

TABLA 4. Estructura de los archivos de desembarque, longitud, biológico y maestros de puertos y procedencias. Monitoreos invierno-primavera 1994

TIPO	CAMPOS			
ARCHIVOS	NOMBRE	TIPO	POSICION	
Desembarque	Región	numérico	2	
	Caleta	numérico	3	
	Tipo de embarcación	alfanumério		
	Matrícula	alfanumério	0 7	
	Procedencia	numérico	· 4	
	Captura	numérico	12	
	Mes	numérico	2	
	Día	numérico	2	
	Año	numérico	2	
	Profundidad promedio	numérico	2	
	Horas y minutos promedio		4	
	Número de buzos Precio unitario	numérico numérico	2 4	
	Precio unitario	numerico	4	
Longitud	Mes	numérico	2	
•	Día	numérico	2	
	Año	numérico	2	
	Región	numérico	2	
, 🔻	Matrícula	alfanumério		
*	Procedencia	numérico	4	
	Caleta	numérico	3	
	Tipo embarcación	alfanuméric		
	Captura	numérico	12	
	Talla	numérico	3	
	Frecuencia	numérico	5	

Biológico Mes numérico Día numérico Año numérico Región numérico Matrícula alfanumérico Procedencia numérico Caleta numérico Tipo embarcación alfanumérico Captura numérico Número de individuo numérico Longitud numérico	CAMPOS	0	
Día numérico Año numérico Región numérico Matrícula alfanumérico Procedencia numérico Caleta numérico Tipo embarcación alfanumérico Captura numérico Número de individuo numérico Longitud numérico	TIPO	VOS NOMBRE	POSICION
Año numérico Región numérico Matrícula alfanumérico Procedencia numérico Caleta numérico Tipo embarcación alfanumérico Captura numérico 1 Número de individuo numérico Longitud numérico	nun	ógico Mes	mérico 2
Región numérico Matrícula alfanumérico Procedencia numérico Caleta numérico Tipo embarcación alfanumérico Captura numérico 1 Número de individuo numérico Longitud numérico	num	Día	mérico 2
Matrícula alfanumérico Procedencia numérico Caleta numérico Tipo embarcación alfanumérico Captura numérico 1 Número de individuo numérico Longitud numérico	nun	Año	mérico 2
Procedencia numérico Caleta numérico Tipo embarcación alfanumérico Captura numérico 1 Número de individuo numérico Longitud numérico	חטת	Región	mérico 2
Caleta numérico Tipo embarcación alfanumérico Captura numérico 1 Número de individuo numérico Longitud numérico	alf	Matrícula	fanumérico 7
Tipo embarcación alfanumérico Captura numérico 1 Número de individuo numérico Longitud numérico	num	Procedencia	mérico 4
Captura numérico 1 Número de individuo numérico Longitud numérico	num	Caleta	mérico 3
Número de individuo numérico Longitud numérico			-
Longitud numérico	•	Captura	·
	o num	Número de indivi	mérico 3 mérico 3
Peso numérico		Longitud	
	num	Peso	mérico 4
Puertos Código numérico :	num	os Código	
Región numérico	num	Región	mérico 2
Nombre alfanumérico 20	alf	Nombre	fanumérico 20
Procedencias Región numérico 2	num	dencias Región	mérico 2
	num		
	alf		
		Grados latitud	
	num	Minutos latitud	
Grados longitud numérico		Grados longitud	
	num		

TABLA 5. Nombre de los archivos de desembarque, longitud, biológico, maestro de puertos y procedencias. Monitoreos invierno y primavera 1994

TIPO ARCHIVO	NOMBRE ARCHIVO
Desembarque	cl xxx y zz
Longitud	tl xxx y zz
Biológico	bl xxx y zz
Puertos	ptos 1-12
Procedencia	proc 1-12

xxx: Código del lugar del desembarque

y : temporada (I invierno ; P primavera)

zz : año

La tabla 6 contienen un resumen de los archivos generados por región y centro de muestreo para las temporadas de invierno y primavera de 1994, respectivamente.

TABLA 6a. Resumen de archivos de desembarque, longitud y biológicos por puntos de desembarque. Monitoreo invierno 1994

REGION	PUNTOS DE	TIP	O DE ARCHIVO	0
	DESEMBARQUE	DESEMBARQUE	LONGITUD	BIOLOGICO
I	CAMARONES	x	×	×
	ARICA	×	×	x
II	PAPOSO	x		x
	TALTAL	x	x	x
	CIFUNCHO	×	×	×
III	PAN DE AZUCAR	x	x	x
	PTO. VIEJO	X	X ,	x
,	HUASCO	x	×	x
IV	PTA. CHOROS	x	x	x
	CTA. HORNOS	x	x	x
	PTO. ALDEA	x	x	x
	PICHIDANGUI	x	x	x
	CHUNGUNGO	x	x	x
	CTA. SIERRA	x	x	x
	SAN PEDRO	x	×	x
v	LOS MOLLES	x	x	x
	HORCON	x	. x	x
!	EL QUISCO	x	x	x
	QUINTAY	x		
	VENTANA	x	x	X.
	QUINTERO	x	x	x
	SAN ANTONIO	x	x	x
•	PAPUDO	x	x	x
	PICHICUY	x	x	x
vi	LA BOCA	×	x	x
VII	PELLUHUE	x	x	х
VIII	LOTA	x	×	×
	TUBUL	x		
	TALCAHUANO	x	x	x
	SAN VICENTE	x	x	x
	LEBU	x	x	x
	LLICO	x	x	x

REGION	PUNTOS DE	TIPO DE ARCHIVO		
	DESEMBARQUE	DESEMBARQUE	LONGITUD	BIOLOGICO
IX	QUEULE	×	x	×
x	NIEBLA	×	×	×
	BAHIA MANSA	x	x	x
	MAULLIN	x	x	x
	CARELMAPU	x	×	×
	CHINQUIHUE	x	x	
	ANCUD	x	x	x
	PUDETO	x	x	x
	QUELLON	x	×	x
XI	PTO. CHACABUC	x	x	x
	MELINKA	x	x	×
XII	PTO. NATALES	×	х	x

TABLA 6b. Resumen de archivos de desembarque, longitud y biológicos por puntos de desembarque. Monitoreo primavera 1994

REGION	PUNTOS DE	TIPO DE ARCHIVO		
	DESEMBARQUE	DESEMBARQUE	LONGITUD	BIOLOGICO
I	CAMARONES	х	×	x
	ARICA	x	×	×
II	PAPOSO	×	-	×
	TALTAL	x	×	x
	CIFUNCHO	x	×	x
III	PAN DE AZUCAR	x	×	×
	PTO. VIEJO	x	×	x
	HUASCO	x	x	x

REGION	PUNTOS DE	TIPO DE ARCHIVO		
	DESEMBARQUE	DESEMBARQUE	LONGITUD	BIOLOGICO
IV	PTA. CHOROS	x	·x	х
	CTA. HORNOS	x	x	x
	PTO. ALDEA	x	-	x
İ	PICHIDANGUI	x	x	x
}	CHUNGUNGO	x	x .	x
	CTA. SIERRA	X	x	x
	MAITENCILLO	X		
	SAN PEDRO LAS CONCHAS	X 	x	x .
	LAS CONCHAS	x	X	
V	HORCON	x	×	x
	QUINTAY	X	X	X
	VENTANA	X	X	X
	QUINTERO SAN ANTONIO	x x	x x	X
	PAPUDO	x X	_ <u>x</u>	x -
	PICHICUY	×	×	x
•	110111001	^	^	_ ^
VI	LA BOCA	x	x	×
VII	PELLUHUE	x	x	x
VIII	LOTA	x	×	x
	TUBUL	X	x	x
	TALCAHUANO	x	x	x
	SAN VICENTE	x	x	x
	LEBU	X	x	X
	LLICO	x	×	x
IX	QUEULE	-	-	-
X	NIEBLA	x	x	×
	BAHIA MANSA	x	x	x
	MAULLIN	x	x	x
	CARELMAPU	x	x	x
	ANCUD	x	x	x
	PUDETO	x	x	x
	QUELLON	x	x	x
XI	PTO. CHACABUC	x	x	x
	MELINKA	x	x	×
XII	PTO. NATALES	x	x	х

B. METODOLOGIA DE EVALUACION DE STOCK

1. Antecedentes

El Instituto de Ecología de la Universidad Austral de Chile ha desarrollado dos modelos de Evaluación de stock en tallas (ACTI y ACTII), con financiamiento del Fondo de Investigación Pesquera (FIP), para estimar la abundancia y mortalidad de las poblaciones regionales de loco en el país. El Análisis de la Composición de Tallas de la I Temporada extractiva (ACTI) fue usado para analizar la primera temporada de pesca de 19931, después de la apertura de la veda que durante cuatro años aproximadamente prohibió la pesca y comercialización de esta especie a nivel nacional. El análisis de la Composición de Tallas de la II temporadas extractivas (ACTII), es una generalización del modelo anterior, fue desarrollado durante 1994^2 y probado con los datos de las temporadas de ese año, como un primer paso hacia el modelo que se prevé, a corto plazo, será un instrumento fundamental del bagaje de métodos y técnicas necesarias para instrumentar el sistema de regulación por cuotas de captura, instaurado por el Régimen Bentónico de Extracción y Proceso en la Pesquería del "loco" (D.S. Nº 574 de 1992) mediante el cual la Subsecretaría de Pesca pretende normalizar y ordenar las actividades productivas en esta pesquería.

EL ACTI fue creado tomando en cuenta la situación de "nueva pesquería" que después de la prolongada moratoria, representaba el estado de la pesquería, del conocimiento sobre el recurso y su extracción, caracterizado por una escasez más o menos generalizada, a lo largo

Informe final al FIP del proyecto "Monitoreo de la Pesquería y Evaluación Indirecta del Stock de loco (I a XII Regiones)", 1993.

Informe final FIP del proyecto "Monitoreo de la Pesquería y Evaluación Indirecta del Stock de loco (I a XII Regiones), 1994.

del país, de información sobre la dinámica del recurso y los principales indicadores de la explotación. La carencia de datos para estimar el tamaño de los stocks y calcular capturas totales permisibles en la mayoría de las regiones, y la urgencia de poner en práctica un sistema de cuotas por región para detener el agotamiento progresivo del recurso, sugirió la conveniencia de desarrollar un modelo de evaluación basado en las composiciones de tallas de la captura generadas a partir del muestreo intensivo de la actividad extractiva durante la temporada de pesca. Este medio se consideró el más directo y económico para crear en el más breve plazo una base de datos con la cobertura espacial requerida por la administración pesquera e iniciar un proceso coordinado de recopilación de datos, evaluación y manejo.

Según las hipótesis básicas del modelo ACTI, la población de cada región se consideró cerrada y en equilibrio, y la composición de tallas de la captura anual, representativas de la estructura de una pseudocohorte.

El ACTII fue desarrollado previéndose que el supuesto de equilibrio no se podía continuar sosteniendo en las temporadas siguientes. Asimismo, resultaba necesario disponer de un método que hiciera uso de la información de las dos temporadas de pesca y abriera la posibilidad de aprovechar la serie de composiciones de tallas que se acumularán a futuro. Para ese efecto, se creó un nuevo método basado en el seguimiento de cohortes verdaderas en tallas³, a partir de

Se trata de un enfoque análogo al Análisis Secuencial de Capturas para reconstruir las cohortes que pasan por la pesquería, sólo que éstas se siguen a través de las tallas y no de las edades como suele ocurrir en este tipo de modelos. Debe tenerse presente también que ACTII a diferencia de otros modelos basados en la ecuación de captura, como por ejemplo el Análisis de la Población Virtual o el Análisis de la Reducción del Stock, no resuelve la ecuación, sino la estima buscando reducir al mínimo los residuales entre la predicción de la captura y su valor observado.

la condición inicial de equilibrio, menteniendo el supuesto de reclutamiento estacionario, pero permitiendo mortalidad por pesca variable entre las temporadas.

El ACTII fue probado con los datos de las dos primeras temporadas de 1993, para analizar su comportamiento antes de utilizarlo como instrumento de evaluación del recurso. Ajustes recientes del ACTII, dentro de las actividades del proyecto FIP en curso, lo han dejado habilitado como herramienta de análisis de las composiciones de tallas de dos temporadas de pesca sucesivas y sugieren la conveniencia de aplicarlo a períodos anuales y no estacionales como fue el planteamiento original. Se logra así una menor dependencia de las aperturas variables de las temporada que complican el seguimiento de las cohortes, la estructura del modelo y el cálculo de la CTP, sin un beneficio aparente a cambio del mayor detalle.

2. METODOLOGIA

2.1 Notación

- l; talla a comienzo del intervalo i [mm]
- ρ coeficiente de Brody [exp(año-¹)]
- K constante de crecimiento de la ecuación de von Bertalanffy [año-1]
- L_∞ talla asintótica [mm]
- R reclutamiento al intervalo de talla inicial
- N_{ij} abundancia en el intervalo de talla i a comienzos del año j [# individuos]
- C_{ij} número de individuos en el intervalo de talla i capturados en el año j [#individuos]
- $N(l_i)$ número de individuos a la talla $l_i[\# individuos]$
- M tasa instantánea de mortalidad natural [año-1]

- r; selectividad (o reclutamiento parcial) del intervalo de talla i4
- F_0 tasa instantánea de mortalidad por pesca histórica de los intervalos de talla completamente reclutados [año-1]
- F_j tasa instantánea de mortalidad por pesca del año j de los intervalos de tallas completamente reclutados [año-1]
- F_{rec} tasa de mortalidad por pesca recomendada según el punto biológico de referencia adoptado como política de manejo [año-1]
- $F_{0,1}$ tasa instantánea de mortalidad por pesca a la cual se logra un 10% del incremento marginal del rendimiento por recluta de una pesquería incipiente [año-1]
- F_{max} tasa instantánea de mortalidad por pesca a la cual se logra el rendimiento por recluta máximo (año-1)
- Δt intervalo de tiempo transcurrido entre el comienzo de las dos temporadas [año]
- δ_1 duración de la primera temporada [año]
- a,b,c parámetros de la ecuación de selectividad

2.2 Modelo de evaluación

La abundancia y la mortalidad por pesca por intervalos de tallas al primero de enero de 1993 y 1994 se estimaron mediante el modelo ACTII (A. Zuleta, C. Moreno y P. Rubilar, 1994) usando las composiciones de tallas de las cuatro temporadas extractivas autorizadas desde 1993 a la fecha. Antes de analizarlas, estas composiciones de tallas se consolidaron para obtener las composiciones representativas de los años 1993 y 1994.

La relación de la selectividad, o el reclutamiento parcial, respecto de la edad o la talla suele denominarse patrón de explotación.

Los aspectos más importantes del modelo se describen a continuación. Para obtener mayores detalles sobre su formulación se recomienda consultar el informe citado.

2.2.1 Estructura del stock

La población se supone compuesta de n intervalos de tallas

$$l_1, l_2, [l_2, l_3), \ldots, [l_i, l_{i+1}), \ldots, [l_{n-1}, l_n), [l_n, L_n)$$

que representan las cohortes anuales presentes en el stock cuyos extremos siguen la relación de crecimiento de von Bertlanffy

$$l_{i+1} = L + \rho l_i \tag{1}$$

donde

$$\rho = \exp(-\Delta t \ K) \tag{2}$$

$$L = L_{\infty}(1-\rho) \tag{3}$$

La estructura de tallas que se adopte depende del intervalo de tiempo Δt empleado para hacer el seguimiento de las cohortes. La elección de Δt a su vez depende del problema particular de que se trata y de consideraciones de orden práctico. En este caso, el intervalo de la proyección de las cohortes y el cálculo de la CTP aconsejan elegir $\Delta t = 1$ año.

Por otra parte, para evitar que la captura por intervalo de talla varíe por otras causas que no sean los procesos de la dinámica poblacional y el muestreo es conveniente que el tamaño mínimo del intervalo sea mayor que la precisión empleada en la medición de la

talla. Para $\Delta t = 1$ la mayoría de los intervalos, recorriéndolos en orden ascendente suelen tener amplitudes mayores a 1 mm que es la precisión aceptada en esta especie. Sin embargo, hacia los intervalos superiores, la ecuación (1) muestra que para valores admisibles del coeficiente de Brody, es decir, valores comprendidos entre 0 y 1, la amplitud de los intervalos de tallas se reducirá al punto que, a partir de uno de ellos, todos los siguientes serán inevitablemente más estrechos que lo recomendable. En este caso el problema se resuelve confundiendo en un sólo intervalo terminal dos o más intervalos contiguos, hasta alcanzar el tamaño que cumpla la condición deseada.

2.2.2 Abundancias

Las abundancias de la estructura de tallas del primer año se obtiene mediante la ecuación

$$N_{1,1} = R$$

$$N_{i,1} = R \exp \left[-\left(\sum_{j=1}^{i-1} Z_j + \frac{(F_i + F_1)}{2}\right) \Delta t\right]; \quad i = 2, 3, \dots, n$$
 (4)

donde

$$F_i = I_i F_0$$

Esta es una reparametrización en R y aproximación de la versión exponencial de la ecuación cuya forma original es

$$N_{i,1} = N(l_1) \prod_{j=1}^{i-1} \left(\frac{(L_{\infty} - l_{j+1})}{(L_{\infty} - L_j)} \right) \frac{r_j F_0 + M}{K} - 1 \frac{K(L_{\infty} - l_i) \left(1 - \left(\frac{L_{\infty} - l_{i+1}}{L^{\infty} - l_i} \right) \frac{r_i F_0 + M}{K} \right)}{r_i F_0 + M}$$
 (5)

$$i=1,2,3,...,n-1$$

Los sobrevivientes al segundo año, hasta el penúltimo intervalo, se obtienen como

$$N_{1,2} = R$$

$$N_{1,2} = (N_{i-1,1} - C_{i-1,1}) \exp(-M(\Delta t - \delta_1)); \quad i=2,3,\ldots,n-1$$
 (6)

mientras el último intervalo recibe los sobrevivientes del intervalo anterior y del propio

$$N_{n,2} = ((N_{n-1,1} + N_{n,1}) - (C_{n-1,1} + C_{n,1})) \exp(-M(\Delta t - \delta_1))$$
 (7)

2.2.3 Mortalidades por pesca

Las mortalidades por pesca para cada intervalo se estiman multiplicando un patrón de explotación común para los dos años por la mortalidad por pesca del intervalo completamente reclutado

$$F_{i,j} = r_i \tilde{F}_j ; i=1,2,...,n \quad j=1,2$$
 (8)

El patrón de explotación se supone logístico y determinado por tres parámetros

$$I_{i} = \frac{1}{(1 + \exp(\tilde{a} - \tilde{D}(I_{i} - I_{1})^{e})}$$

$$\tag{9}$$

2.2.4 Estimación de parámetros

Los parámetros $[\tilde{R}, \tilde{F}_0, \tilde{F}_1, \tilde{F}_2, \tilde{a}, \tilde{b}, \tilde{c}]$ fueron estimados minimizando la suma de cuadrados

$$SSQ = \sum_{j=1}^{2} \sum_{i=1}^{n} (C_{i,j} - \tilde{C}_{i,j})^{2}$$
 (10)

sin restricciones mediante el programa ACTII codificado en lenguaje MATLAB para WINDOWS versión 4.2 (op.cit.).

2.2.5 Parámetros de entrada

Los parámetros $[L_{\infty},K,M]$ no son estimados por ACTII y deben suponerse conocidos o calcularse a partir de otras fuentes de información. En el caso de L_{∞} , algunos valores disponibles de ajustes anteriores con ACTI o de la ecuación de crecimiento de von Bertlanffy no son los mejores para usar en ACTII porque suele suceder que en la composición de tallas se presenten ejemplares de tamaños mayores que L_{∞}

estimado (Jones, 1984). Por tal razón, siguiendo las recomendaciones de Jones (op. cit.), se eligió en primer lugar L_{∞} mayor que el máximo extremo superior entre las composiciones de tallas de los dos años, y en seguida, se calculó un valor de K compatible con L_{∞} a partir de la tasa de crecimiento observada en ejemplares de tallas comerciales, mediante la ecuación

$$K = -\ln\left(\frac{(L_{\infty} - l(t + \Delta t))}{(L_{\infty} - l(t))}\right)$$
 (11)

Las tasas de crecimiento usadas en el cálculo de K se presentan a continuación.

REGION	TASA DE INCREMENTO ANUAL (mm)	FUENTE DE INFORMACION
VII	8	Tobella (1975)
VIII	8	Tobella (1975)
X	9	Lepez (1988)
XI	9	Lepez (1988)
XII	9	Lepez (1988)

La mortalidad natural M se eligió en el intervalo K < M \leq 0,2, usando de preferencia valores menores hacia las regiones más australes.

Los valores de los parámetros [L_{∞} , K, M] usados en los cálculos se entregan en el capítulo de resultados, de las tablas VIIa a la XIIa.

2.3 Puntos biológicos de referencia

Las CTP se basan en estrategias de explotación constante $F_{0,1}$ y F_{max} calculadas según una versión en tallas del modelo de Thompson & Bell. Este procedimiento comprende los siguientes pasos:

- 1. Ingreso del vector de tallas l y de los parámetros de entrada:
 - tasa instantánea de mortalidad natural (M).
 - constante de crecimiento y talla asintótica (K y L_{∞}).
 - vector de peso promedio a la talla (w).
 - tasa de mortalidad por pesca de las tallas completamente reclutadas (F).
 - patrón de explotación obtenido en la evaluación (r).
- 2. Cálculo de los sobrevivientes por recluta a la talla li

$$(N/R)_{i} = \prod_{j=1}^{i-1} \left(\frac{(L_{\infty} - I_{j+1})}{(L_{\infty} - I_{j})} \right)^{\frac{r_{j}F+M}{K}}$$

3. Cálculo del número y biomasa medio por recluta en el intervalo de talla i

$$(\overline{N/R})_{i} = \frac{(N/R)_{i+1} - (N/R)_{i}}{r_{i}F + M}$$

4. Cálculo de la biomasa media por recluta en el intervalo de talla i

$$(\overline{B/R})_i = (\overline{N/R})_i w_i$$

5. Cálculo de rendimiento por recluta

$$Y/R = \sum_{i=1}^{n} r_{i} F(\overline{B/R})_{i}$$

6. Cálculo de F_{max} mediante la función "fmin" de MATLAB. La subrutina fmin encuentra el máximo de una función no lineal de una variable en un intervalo determinado, es decir

Máximiza
$$Y/R(F,r)$$
 sujeto a $0 \le F \le F^*$

7. Cálculo de $F_{0,1}$ resolviendo la ecuación

••••••••

$$0,1\frac{\partial (Y/R)}{\partial F}\big|_{F=0} - \frac{\partial (Y/R)}{\partial F}\big|_{F=F_{o,1}} = 0$$

por una combinación de los métodos de bisección, secante e interpolación cuadrática inversa. La solución fue encontrada desarrollando un algoritmo que utiliza la función "f cero" de MATLAB.

Adicionalmente, para un análisis más completo del efecto de las estrategias de explotación es útil calcular la biomasa por recluta

$$B/R = \sum_{i=1}^{n} (\overline{B/R})_{i}$$

Mediante este indicador es posible evaluar cuanto se está dispuesto a reducir el stock si se adopta cualquiera de las estrategias de manejo consideradas: F_{max} o $F_{0,1}$. Puede ocurrir que estas tasas de mortalidad por pesca, aunque recomendables desde el punto de vista del aprovechamiento de los excedentes del crecimiento, signifiquen tamaños de stock menores que algún nivel crítico para el éxito del reclutamiento y la sustentabilidad del stock. Puede suceder también

que tasas como esas produzcan caídas en el tamaño de stock, y por comnsiguiente de la captura por unidad de esfuerzo, incompatibles con el buen desempeño económico del pescador.

La evaluación de los efectos laterales, biológicos y económicos, de las estrategias consideradas enriquecen su análisis y puede sugerir modificaciones de las tasa de explotación recomendadas.

El procedimiento descrito fue programado en lenguaje MATLAB con el nombre YPR.M. Un listado del programa se entrega en un anexo a este documento.

2.4 Proyección del stock y cálculo de CTP

El tamaño del stock al 1ºº de enero de 1995 se obtuvo proyectando el stock estimado al 1^{∞} de enero de 1994 mediante las ecuaciones (5) y (6) y suponiendo el reclutamiento constante.

El cálculo de la CTP se efectuó aplicando la ecuación de captura

$$C_{i,95} = \frac{N_{i,95} (1 - \exp(-(M + r_i F_{rec})))}{M + r_i F_{rec}}$$
(12)

para cada edad y luego sumando a través de las edades.

$$CTP_{95} = \sum_{i=1}^{n} C_{i,95}$$
 (13)

En la mortalidad por pesca recomendada, F_{rec} , se usaron valores de las estrategias de explotación constante $F_{0,1}$ y F_{max} calculadas con el programa YPR.M según el procedimiento descrito en la sección precedente.

IV. RESULTADOS

A1. Monitoreo Temporada Invierno 1994

1. Desembarques

1.1 Desembarque por Región

En la tabla 7 se entrega la distribución del desembarque por región y día de los 44 centros de muestreo monitoreados entre la I y XII región, durante el período comprendido entre el 1 y 31 de agosto de 1994.

La actividad extractiva comienza a incrementarse a partir de la segunda semana del mes de agosto. Las últimas dos semanas registran el 90,9% de los desembarques y en los últimos tres días del mes se desembarcó el 17,3%, superando el nivel de desembarque de las primeros dos semanas en un 91%.

Un total de cinco regiones III, IV, VIII, X y XI concentran el 96,7% del total desembarcado en los 44 centros de muestreo, destacando la X región con un 54,2% del desembarque nacional

TABLA 7. Desembarque (en unidades) de C. concholepas por región y día. Monitoreo invierno 1994

						D.	IAS ME	s AGOS	TO				
REGION	1	2	3	4	5	6	7	8	9	10	11	12	13
1	-	-	-	-	-	41	-	97	-	-	-	38	210
11			<u></u>	<u>-</u>	[<u>-</u>			-					l:
111	1350				28268		50		4060				3060
IV	3082	2535	17333	21316	12085	1826	100	3105	1690	6581	8468	5032	888
٧		-	-	-	1 -	-	-	1255	-	2000	-	1900	•
VI	-	-	-	2470	í -	-	-	-	-	-	-	-	-
VII		-	-	2700		_ [200	4500	-	1800	2550	1700	.
VIII	-	-	275	-	302	-	-	150	-	14100	366	301	-
IX	-		-	-	-	_	-	-	-	-		-	-
X	69130	4750	390	-	2410	910	2860	19760	18720	38023	23307	42460	91703
XI		-	_			-	-	-	-	-	2100	22700	6000
XII	-	•	-	-	-	-	-	-	-	-	-	-	•
TOTAL	73562	31035	41698	54161	43065	17677	3210	28867	24470	69639	40831	84571	101861

REGION	-	DIAS MES AGOSTO											
KEBION	14	15	16	17	18	19	20	21	22	23	24	25	26
I	137	-		33		517		-	-	-	77		147
ΙΙ		-	-			-		1 -	} -	-	- 1	-	
111	-	3385	36850	20970	400	30000	129150	13800	11210	17794	44327	24300	62740
IV :	530	8131	10177	12893	591	4689	14100	-	85430	90880	120896	112295	50834
٧	-	950	-	5000		1700	700	-	1200	1400	3564	30250	4200
V1	-	-	-	-	-	-		-				3245	1527
VII .	-	1200	-		-	-	-	-	-	-	1279	760	1050
VIII	-	-	150	9923	1300	4050	2700	5830	10951	1200	9600	51600	39640
IX	-	-	-	-			-	_	1500	-		16300	
х	185152	263605	393200	244901	264814	169130	241215	292931	346333	284238	482906	496031	174428
IX	28500	136800.	85800	56800	139000	201500	230200	71600	80400	24000	15000	295400	_
XII	-	-		-	-	59190	-	-	•	2126	3500		17000
TOTAL	214319	414071	526177	350520	406105	470776	618065	384161	537024	421638	681149	1030181	351566

REGION		DIAS MES AGOSTO							
	27	28	29	30	31				
1	232	461		612	-	2602			
11	600	3555	5981	5853	282	16271			
111	10600	6050	11940	3950	18400	594294			
IV	117724	24990	72500	143696	171521	1125918			
ν	700	5055	30400	6400	800	97474			
VI	1040		-	-	j -	8282			
VII	•		-	-	-	17739			
1117	87500	83250	58398	207500	176482	765568			
IX]	2600	1800	-	-	-	22200			
x {	98288	99164	194508	177018	238007	4960292			
ΧI	-	-	-	-	-	1395800			
X11	-	-	-	45050	11400	138266			
TOTAL	319284	224325	373727	590079	616892	9144706			

1.2 Desembarque y Precios por Caleta

En las tablas 8 a 19 se sintetizan los principales indicadores del desembarque por región. En las figuras 1 a 18 se incluye el ranking del desembarque por centro de muestreo para cada una de las regiones.

Como se indicara anteriormente, las regiones III, IV, VIII, X y XI concentraron el 96,7% del desembarque en los 44 centros de muestreo, coincidiendo este porcentaje con lo registrado por SERNAP a nivel nacional. Los centros de muestreo seleccionados en estas regiones cubren del desembarque regional (según cifras SERNAP corregidas por IFOP) el: 44,9% en la III región; 54,0% en la IV región; 52,4% en la VIII; 69,7% en la X región y 100% en la XI región.

Con respecto a los precios, estos bajaron considerablemente respecto a las temporadas anteriores del año 1993. Mientras en la actual temporada invierno de 1994, se transaron entre \$150 y \$900 la unidad con un precio promedio nacional de \$415, en la temporada invierno de 1993 los precios fluctuan entre 280 y 1850 por unidad con un promedio nacional de \$1068 la unidad.

A nivel regional se verifica que el precio promedio más alto se obtuvo en la I región y alcanzó a \$535 a su vez el precio promedio más bajo correspondió a la II región en sólo \$170 la unidad. Un precio promedio alto más realista dado el volúmen de desembarque es de \$416 en la X región.

TABLA 8. Indicadores del desembarque de C. concholepas de la I región. Monitoreo invierno 1994

CALETAS	I	DESEMBARQI	JE	PRECIO (\$ UNIDAD)			
	VIAJES	UNIDADES	8	MINIMO	MAXIMO	PROMEDIO	
CAMARONES ARICA	15 9	1262 1340	48,5% 51,5%	500 600	500 600	500 600	
TOTAL	24	2602	100,0%	500	600	535	

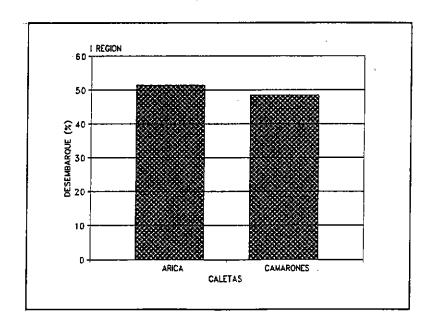


Fig. 1: Ranking del desembarque de C. concholepas de las caletas muestreadas

TABLA 9. Indicadores del desembarque de C. concholepas de la II región. Monitoreo invierno 1994

CAT DELC		DESEMBARQU	JE	PRECIO (\$ UNIDAD)			
CALETAS	VIAJES	UNIDADES	8	MINIMO	MAXIMO	PROMEDIO	
PAPOSO	6	2000	12,3%	150	180	165	
TALTAL	9	3857	23,7%	170	200	173	
CIFUNCHO	18	10414	64,0%	170	170	170	
TOTAL	33	16271	100.0%	150	200	170	

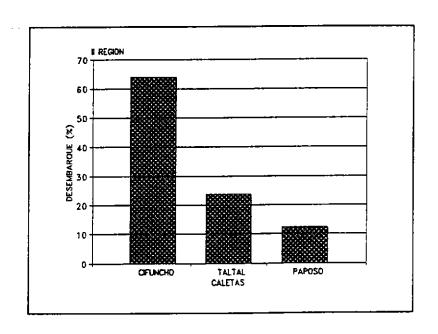


Fig. 2: Ranking del desembarque de C. concholepas de las caletas muestreadas

TABLA 10. Indicadores del desembarque de C. concholepas de la III región. Monitoreo invierno 1994

CALETAS		DESEMBAR	QUE	PRECIO (\$ UNIDAD)			
CALLIAS	VIAJES	UNIDADES	. %	MINIMO	MAXIMO	PROMEDIO	
PAN DE AZUCAR PTO. VIEJO HUASCO	121 194 234	101245 234950 258099	17,0% 39,5% 43,4%	180 250 280	280 500 300	190 315 292	
TOTAL	549	594294	100,0%	180	500	265	

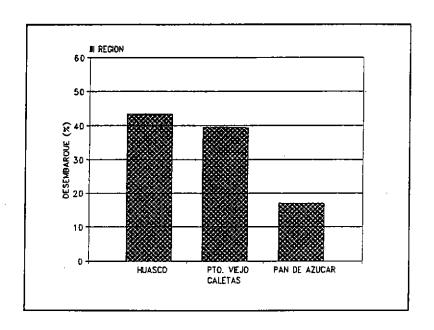


Fig. 3 Ranking del desembarque de C. concholepas de las caletas muestreadas

TABLA 11. Indicadores del desembarque de C. concholepas de la IV región. Monitoreo invierno 1994

CALDUAC	1	DESEMBARQ	JE	PRECIO (\$ UNIDAD)			
CALETAS	VIAJES	UNIDADES	8	MINIMO	MAXIMO	PROMEDIO	
PTA. CHOROS CTA. HORNOS PTO. ALDEA	284 332 154	344500 275925 75131	30,6% 24,5% 6,7%	360 320 230	360 360 370	360 349 295	
PICHIDANGUI CHUNGUNGO CTA. SIERRA	100 171 158	62826 131649 61360	5,6% 11,7% 5,4%	430 350 440	430 370 440	430 359 440	
SAN PEDRO	179	174527	15,5%	420	420	420	
TOTAL	1378	1125918	100,0%	230	440	372	

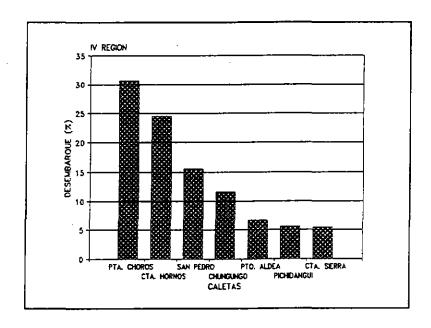


Fig. 4 Ranking del desembarque de C. concholepas de las caletas muestreadas

TABLA 12. Indicadores del desembarque de C. concholepas de la V región. Monitoreo invierno 1994

CALETAS		DESEMBAR	QUE	PRECIO (\$ UNIDAD)			
CALETAS	VIAJES	UNIDADES	8	MINIMO	OMIXAM	PROMEDIO	
LOS MOLLES	42	43400	44,5%	442	490	466	
HORCON	13	2200	2,3%	400	600	503	
EL QUISCO	14	5314	5,5%	380	380	380	
QUINTAY	4	8100	8,3%	300	400	350	
VENTANA	10	5205	5,3%	300	400	324	
QUINTERO	8	3800	3,9%	330	330	330	
SAN ANTONIO	15	16255	16,7%	350	600	430	
PAPUDO	12	12000	12,3%	318	400	325	
PICHICUY	1	1200	1,2%	400	400	400	
TOTAL	119	97474	100,0%	300	600	416	

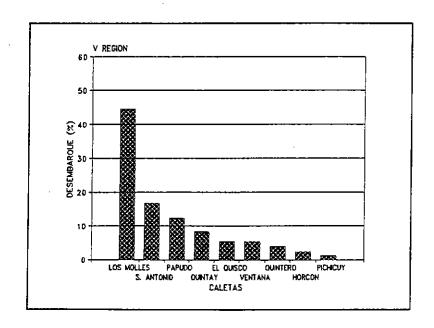


Fig. 5 Ranking del desembarque de C. concholepas de las caletas muestreadas

TABLA 13. Indicadores del desembarque de C. concholepas de la VI región. Monitoreo invierno 1994

CALETAS		DESEMBAR	QUE	PRECIO (\$ UNIDAD)			
	VIAJES	UNIDADES	8	MINIMO	OMIXAM	PROMEDIO	
LA BOCA	28	8282	100,0%	300	400	346	
TOTAL	28	8282	100,0%	300	400	346	

TABLA 14. Indicadores del desembarque de C. concholepas de la VII región. Monitoreo invierno 1994

CALETAS	1	DESEMBARQ	UE	PRECIO (\$ UNIDAD)			
	VIAJES	UNIDADES	8	MINIMO	OMIXAM	PROMEDIO	
PELLUHUE	45	17739	100,0%	300	500	369	
TOTAL	45	17739	100,0%	300	500	369	

TABLA 15. Indicadores del desembarque de C. concholepas de la VIII región. Monitoreo invierno 1994

CALETAS		DESEMBA	RQUE	PRECIO (\$ UNIDAD)			
CALETAS	VIAJES	UNIDADES	8	MINIMO	MAXIMO	PROMEDIO	
LOTA	17	249250	32,6%	200	300	282	
TUBUL	3	9000	1,2%	250	250	250	
TALCAHUANO	25	4709	0,6%	350	800	514	
SAN VICENTE	11	14848	1,9%	270	450	306	
LEBU	70	400811	52,4%	250	300	262	
LLICO	47	86950	11,4%	250	300	276	
TOTAL	173	765568	100,0%	200	800	310	

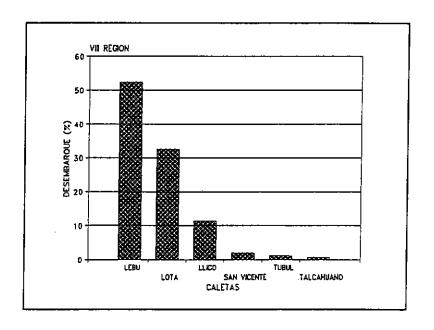


Fig. 6 Ranking del desembarque de **C. concholepas** de las caletas muestreadas

TABLA 16. Indicadores del desembarque de C. concholepas de la IX región. Monitoreo invierno 1994

CALETAS		DESEMBA	RQUE	PRECIO (\$ UNIDAD)			
	VIAJES	UNIDADES	8	MINIMO	MAXIMO	PROMEDIO	
QUEULE	16	22200	100,0%	270	285	279	
TOTAL	16	22200	100,0%	270	285	279	

TABLA 17. Indicadores del desembarque de C. concholepas de la X región. Monitoreo invierno 1994

		DESEMBAR	QUE	PRECIO (\$ UNIDAD)			
CALETAS	VIAJES	UNIDADES	8	MINIMO	MAXIMO	PROMEDIO	
NIEBLA	326	598548	12,1%	250	400	337	
BAHIA MANSA	182	312390	6,3%	200	380	309	
MAULLIN	255	230150	4,6%	250	640	407	
CARELMAPU	2718	1606491	32,4%	270	800	488	
CHINQUIHUE	8	43900	0,98	330	430	343	
ANCUD	316	243284	4,9%	230	900	365	
PUDETO	146	140960	2,8%	200	500	370	
QUELLON	429	1784569	36,0%	200	660	408	
TOTAL	4380	4960292	100,0%	200	900	448	

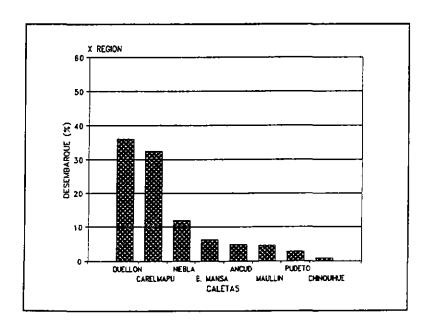


Fig. 7 Ranking del desembarque de C. concholepas de las caletas muestreadas

TABLA 18. Indicadores del desembarque de C. concholepas de la XI región. Monitoreo invierno 1994

CALETAS		DESEMBAR	QUE	PRECIO (\$ UNIDAD)			
CALETAS	VIAJES	UNIDADES	*	MINIMO	MAXIMO	PROMEDIO	
PTO. CHACABUCO MELINKA	34 136	723100 672700	51,8% 48,2%	200 260	300 570	233 371	
TOTAL	170	1395800	100,0%	200	570	368	

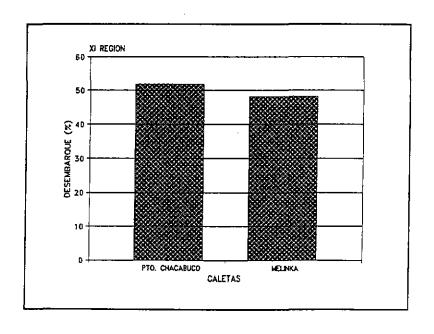


Fig. 8 Ranking del desembarque de C. concholepas de las caletas muestreadas

TABLA 19. Indicadores del desembarque de C. concholepas de la XII región. Monitoreo invierno 1994

CAL PRAC	I	DESEMBARQI	JE	PRE	CIO (\$ UI	NIDAD)
CALETAS	VIAJES	UNIDADES	8	MINIMO	MAXIMO	PROMEDIO
PTO. NATALES	10	138266	100,0%	200	450	279
TOTAL	10	138266	100,0%	200	450	279

2. Captura

La composición en número y peso de las capturas por clase de longitud cada 3 mm de largo peristomal, se obtuvo a partir de la información del monitoreo. La estimación final se obtuvo mediante una expansión simple, con base en los datos finales, del Servicio Nacional de Pesca.

Los coeficientes de variación deben entenderse como una medida de la variabilidad relativa del estimador, que puede fácilmente traducirse en una medida del error dependiendo del nivel de confianza elegido por el decisor.

2.1 Composición en número

Las tablas 20 y 21 entregan por unidad de pesquería y clase de longitud, el número estimado de ejemplares y el coeficiente de variación de la estimación, respectivamente. Resulta oportuno destacar a la luz de las cifras, que hay una importante diferencia entre los registros de captura y desembarque de la región XI, explicados básicamente por el transporte de la pesca extraída en áreas de la XI Región hacia la X Región, para desembarque. Los coeficientes de variación indican niveles aceptables de estimación

del número por clase de longitud, entre 1 y 20% con excepción obviamente de los extremos de la distribución.

TABLA 20. Composición en número de las capturas por unidad de pesquería según clase de longitud. Monitoreo invierno 1994

-		1					REGIO	NES						
	SE DE GITUD	ı	11	11	14	V	VI	VII	VIII	IX	x	IX	IIX	TOTAL
80	83	D	0	0	0	0	0	0	539	0	0	0	0	539
83	86	0	0	0		0		0	2631				0	2788
86	89	3	0) 0		0			7893			_	1 0	7896
89	92	40	0	75		0			15659				174	18425
92	95	226	23	1270		0	62	0	25232		1		116	35858
95	98	812	91	24058		370	379		42793				4986	115612
98	101	1847	4602	123654	124410	5778	865	1024	141786				22813	610267
101	104	1522	11948	270396		12459	2301	1420	175164	263		165133	20465	1174674
104	107	899	11789	248056		15155	3301	2208	206513		506808	256647	16725	1523290
107	110	705	13127	200163	310363	18340	.3963	2799	220936		716211	313156	17740	1819682
110	113	330	12492	144799	268791	20019	4257	1833	184547		776562	333092	14812	1763861
113	116	250	9976	96383	283616	20794	2968	2248	148030	3495	726852	305622	11682	1611916
116	119	130	10180	69859	218864	16877	2369	1678	113479	2980	660520		7247	1348429
119	122	90	5146	41019	198588	11865	1006	1581	79436	3317	619199	203905	8406	1173559
122	125	35	3083	22714	131033	8146	537	1123	47516		499817	144727	5363	866506
125	128	16	2335	13150	80087	5089	175	583	23076		410573	124949	3073	665233
128	131	13	1451	8518	45444	2807	34	807	15817		284356	97165	1478	459143
131	134	5	725	4857	29345	1335	23	367	6530		148198	76602	580	269491
134	137	0	363	1943	14927	809	17	332	3297	418	105090		1304	194113
137	140	0	272	523	6114	336	0	408	1109	206	74720	62788	348	146824
140	143	0	68	299	1732	207	0	115	571	57	51652	40184	29	94914
143	146	0	45	149	611	86	0	118	190	0	45593	39243	203	86239
146	149	0	D	149	51	69	0	0	0	57	30758	26371	87	57542
149	152	0	0	_0	0	0	0	0	0	0	16699	26214	0	42914
152	155	0	0	75	0	D	0	0	0	0	11806	12872	0	24752
155	158	0	0	0	0	0	0	0	0	D	9864	10831	0	20695
158	161	0	0	0	Ď	0	0	0	0	0	4505	7535	0	12040
161	164	0	0	0	0	0	0	0	0	0	388	0	0	388
164	167	0	0	0	0	0	0	0	0	0	233	0	0	233
167	170	0	0	0	0	0	0	0	0	0	0	0	0	0
170	173	0	0	0	0	0	0	0	0	0	155	0	0	155
173	176	0	0	0	0	0	0	゜゜゜	0	0	. 0	0	0	0
		6924	87717	272108	2188233	40541	22295	18643	1462743	23600	6134744	2652803	137629	14147980

TABLA 21. Coeficiente de variación de la captura en número por unidad de pesquería según clase de longitud. Monitoreo invierno 1994

						REG	ONES						
	E DE	I	11	111	ΙV	ν	VI	117	IIIV	IX	X	ΧI	XII
80	83	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,242	0,000	0,000	0,000	0,000
83	86	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,110	0,000	0,000	1,000	0,000
86	89	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,063	0,000	0,000	0,000	0,000
89	92	0,257	0,000	1,000	0,354	0,000	0,378	0,000	0,045	0,000	0,289	0,378	0,408
92	95	0,107	1,000	0.242	0,121	0,000	0,301	0,000	0,035	0,000	0,167	0,242	0,500
95	98	0,054	0,500	0,055	0,050	0,152	0,121	0,046	0,027	0,000	0,100	0,105	0,075
98	101	0,033	0,068	0,023	0,020	0,038	0,079	0,039	0,014	0,000	0,027	0,044	0,033
101	104	0,037	0,040	0,015	0,015	0,025	0,047	0,030	0,013	0,147	0,015	0,030	0,035
104	107	0.051	0,041	0,016	0,013	0,023	0.038	0,026	0,011	0,058	0,012	0,024	0,039
107	110	0,058	0,038	0,018	0,012	0.020	0,034	0,034	0,011	0,049	0,010	0,021	0,038
110	113	0,088	0,039	0,021	0,013	0,019	0,033	0,030	0,012	0,047	0,009	0,020	0,042
113	116	0,101	0,045	0,027	0,013	0,019	0,041	0,035	0,014	0,037	0,010	0,021	0,048
116	119	0,142	0,044	0,032	0,014	0,021	0,046	0,037	0,016	0,041	0,010	0,024	0,062
119	122	0,170	0,064	0,042	0,015	0,026	0,073	0,044	0,019	0,038	0,011	0,027	0,057
122	125	0,277	0,084	0,057	0,019	0,032	0,101	0,062	0,025	0,046	0,012	0,032	0,072
125	128	0,408	0.097	0,075	0,025	0,040	0,179	0,052	0,037	0,049	0,013	0,035	0,096
128	131	0,447	0,124	0,093	0,033	0,055	0,408	0,079	0,045	0,066	0,016	0,039	0,139
131	134	0,707	0,176	0,124	0,041	0,080	0,500	0,083	0,070	0,077	0,023	0,045	0,223
134	137	0,000	0,249	0,196	0,058	0,103	0,577	0,074	0,098	0,116	0,027	0.048	0,148
137	140	0,000	0,288	0,378	0,091	0,160	0,000	0,141	0,169	0,166	0,032	0,049	0,288
140	143	0,000	0,577	0,500	0,171	0,204	0,000	0,140	0,236	0,316	0,039	0,062	1,000
143	146	0,000	0,707	0,707	0,289	0,316	0,000	0,000	0,408	0,000	0,041	0,063	0,378
146	149	0,000	0,000	0,707	1,000	0,353	0,000	0,000	0,000	0,316	0.050	0,077	0,577
149	152	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,068	0,077	0,000
152	155	0,000	0,000	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,081	0,110	0,000
155	158	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,089	0,120	0,000
158	161	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,131	0,144	0,000
161	164	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,447	0,000	0,000
164	167	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,577	0,000	0,000
167	170	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
170	173	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,707	0,000	0,000
173	176	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

2.2 Composición en peso

Las tablas 22 y 23 entregan por unidad de pesquería y clase de longitud, el peso estimado de los ejemplares en kg y el coeficiente de variación de la estimación, respectivamente.

Los coeficientes de variación también indican un nivel de estimación aceptable por clase de longitud al igual que el obtenido para el número, aunque algo mayor dado la estructura del estimador que

resulta de un producto de dos estimadores independientes, número y peso medio a la clase de longitud.

TABLA 22. Composición en peso de la captura (kg) por unidad de pesquería según clase de longitud. Monitoreo invierno 1994.

SI A	SE DE						REGI	ONES					-	7071
	SITUD	1	11	111	IV	V	VI	AII	AIII	IX	Х	ΧI	XII	TOTAL
80	83	٥	0	0	0	0	0	0	119	0	0	0	0	119
83	86	0	ا آ	0	Ö	D	. 0	0	579	0	0	l ō		579
86	89	1 0	0	0	0	0	j o	0	1373	0	0	0	0	1374
89	92	. 7	0	18	77	0	7	0	3298	0	210	0	37	3653
92	95	42	5	315	728	0	12	0	5554	0	629	614	24	7922
95	98	154	17	6229	4787	95	87	0	8901	0	1676	3227	1168	26341
98	101	362	917	32731	33230	1487	222	225	32809	0	25030	18260	5366	150637
101	104	317	2546	74954	57457	3469	626	360	42407	64	85943	40507	5286	313936
104	107	208	2686	75111	79583	4592	963	602	54561	417	146467	66523	4671	436384
107	110	176	3195	65754	106144	6027	1256	899	63873	580	229617	86400	5592	569513
110	113	91	3229	52519	99856	7147	1438	644	52577	710	267603	99961	4928	590703
113	116	75	2737	37541	113815	7879	1081	852	42174	1090	266827	101619	4365	. 580057
116	119	39	3012	28614	94287	6842	927	670	34634	983	258528	88100	2850	519486
119	122	31	1655	18561	90238	5057	415	660	26929	1175	262726	80746	3705	491899
122	125	13	1065	11037	62896	3694	241	511	17747	891	223768	62073	2397	386334
125	128	7	876	6951	41013	2448	87	278	9332	855	197157	57801	1442	318245
128	131	6	572	4657	24785	1448	16	400	6121	511	149770	47251	767	236303
131	134	3	297	2895	16568	699	12	184	2808	425	82502	40001	325	146720
134	137	0	149	1340	8437	494	10	168	1605	188	61772	35208	852	110224
137	140	0	122	343	3485	207	0	208	301	101	46072	36781	198	87819
140	143	0	34	221	1123	135	0	58	206	26	35418	24424	20	61665
143	146	0	24	112	263	50	0	61	41	0	34528	25115	172	60366
146	149	0	0	215	21	41	0	0	0	30	23293	18950	65	42616
149	152	0	0	0	0	0	0	0	0	0	12675	22568	0	35243
152	155	0	0	0	0	0	D	0	0	0	9224	11538	0	20762
155	158	0	0	0	0	0	0	0	0	D	8796	10295	0	19091
158	161	0	0	D	0	0	0	0	0	0	4326	8718	0	13044
161	164	0	0	0	0	0	0	0	0.	0	408	0	0	408
164	167	0	0	0	0	0	0	0	0	0	217	0	0	217
167	170	0	0	0	0	0	0	0	0	0	0	0	0	0
170	173	0	0	0	0	0	0	0	0	0	155	0	0	155
173	176	D	D	0	0	0	٥	D	0	0		0	0	0
		1531	23137	420119	838792	51809	7401	6782	407949	8045	2435338	986681	44231	5231815

TABLA 23. Coeficiente de variación de la captura en peso por unidad de pesquería, según clase de longitud, Monitoreo invierno 1994

						REC	JONES					
CLASE D		11	111	17	V	VI	VII	VIII	11	X	ΧI	111
80 83	0,000	0,000	0,000	0,000	0,000	0,000	0,000	2,244	0,000	0,000	0,000	0,000
83 86	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,460	0,000	0,000	0,000	0,000
86 89	0,012	0,000	0,000	0,000	0,000	0,000	0,000	0,156	0,000	0,000	0,000	0,000
89 92	0,138	0,000	0,202	3,631	0,000	3,780	0,000	0,142	0,000	2,657	0,000	2,141
92 95	0,194	0,003	0,203	0,470	0,000	2,426	0,000	0,241	0,000	0,886	0,617	3,200
95 98	0,181	0,081	0,177	0,209	1,038	0,424	0,162	0,152	0,000	0,346	0,173	0,325
98 101	0,155	0,249	0,191	0,192	0,204	0,245	0,155	0,150	0,000	0,220	0,162	0,135
101 104	0,162	0,240	0,191	0,176	0,201	0,175	0,116	0,185	0,611	0,232	0,149	0,143
104 107	0,203	0,221	0,189	0,166	0,184	0,172	0,089	0,207	0,173	0,227	0,163	0,164
107 110	0,179	0,221	0,177	0,174	0,173	0,155	0,084	0,231	0,186	0,237	0,165	0,146
110 113	0,196	0,215	0,179	0,182	0,185	0,149	0,073	0,255	0,150	0,232	0,162	0,164
113 116	0,169	0,205	0,169	0,167	0,169	0,151	0,088	0,287	0,126	0,223	0,172	0,213
116 119	0,154	0,210	0,162	0,174	0,167	0,155	0,095	0,301	0,146	0,211	0,173	0,156
119 122	0,176	0,191	0,169	0,171	0,164	0,207	0,132	0,288	0,145	0,208	0,170	0,165
122 125	0,131	0,195	0,159	0,173	0,167	0,316	0,241	0,277	0,131	0,220	0,203	0,144
125 128	0,192	0,196	0,174	0,162	0,181	0,865	0,176	0,244	0,134	0,211	0,209	0,226
128 131	0,100	0,226	0,142	0,178	0,208	4,413	0,373	0,300	0,203	0,207	0,166	0,262
131 134	0,122	0,228	0,168	0,162	0,324	6,604	0,413	0,300	0,211	0,215	0,218	0,646
134 137	0,000	0,172	0,295	0,183	0,492	8,806	0,351	0,406	0,388	0,203	0,154	0,303
137 140	0,000	0,001	0,239	0,281	1,128	0,000	1,188	1,154	0,753	0,224	0,135	1,067
140 143	0,000	0,002	0,200	0,865	1,824	0,000	1,165	2,166	2,686	0,204	0,133	12,798
143 146	0,000	0,002	0,001	2,420	4,354	0,000	0,000	6,359	0,000	0,224	0,209	1,828
146 149	0,000	0,000	0,001	0,000	5,442	0,000	0,000	0,000	2,686	0,229	0,098	4,267
149 152	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,270	0,105	0,000
152 155	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,277	0,138	0,000
155 158	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,299	0,160	0,000
158 161	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,614	0,250	0,000
161 164	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	6,380	0,000	0,000
164 167	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
167 170	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
170 173	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
173 176	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

3. Rendimiento y Esfuerzo de Pesca

El rendimiento de pesca, al igual que lo observado en las dos temporadas anteriores, está influenciado por dos factores importantes, difíciles de controlar y que invalidan el uso de este índice como un indicador de la abundancia del recurso. El primero dice relación con el apozamiento que realizan los pescadores previo a la venta del recurso, por consiguiente el índice que se obtiene a partir de estos datos provee información de una población de loco que aparece con un densidad mucho mayor a la que en la realidad

presenta. El otro factor, que afecta básicamente a los índices obtenidos en la VIII, X, XI y XII Región, es la actividad de transporte, puesto que al muestrear este tipo de embarcaciones se dificulta la obtención de datos de horas de buceo que realmente se insumen en la extracción del recurso.

En la tabla 24 se entrega el desembarque de loco por región durante la temporada de invierno de 1994, una estimación del esfuerzo de pesca global y el rendimiento de pesca promedio regional. En general se aprecia que el esfuerzo de pesca lo concentró principalmente la flota de la X Región, con un nivel cercano al 50%, similar a lo observado en la temporada anterior, le sigue en importancia la flota de la XI y VIII Región con un 15% y 13% respectivamente.

TABLA 24. Desembarque (Nº unidades), esfuerzo estimado (Horasbuceo) y rendimiento de pesca promedio (unid/h-buceo) por región. Monitoreo invierno 1994.

REGION	DESEMBARQUE	ESFUERZO	RENDIMIENTO
I .	6924	302	22,93
II	87716	416	210,80
III	1272108	7036	180,79
IV	2188233	10485	208,69
V	80541	497	162,03
VI	4170	57	72,70
VII	19110	519	36,84
VIII	1462743	12304	118,89
IX	23600	231	102,30
X	7135244	47139	151,37
XI	1631050	14125	115,48
XII	137629	1076	127,86
TOTAL	14049068	94187	149,16

En cuanto al rendimiento a nivel nacional, éste se estimó en 149 unidades/hora-buceo siendo similar al índice estimado durante el invierno de 1993. Los valores más altos correspondieron a las regiones II a IV y X. Comparativamente con las temporadas anteriores se aprecia que se mantiene una patrón característico, que presenta rendimientos más altos en la zona norte (excepto la I Región) y la zona sur y niveles más bajos entre la V y VII Región (Fig.9) Durante la última temporada llama la atención los bajos rendimientos de pesca obtenidos en la XI y XII, lo cual se relaciona con la calidad de la información reportada, que no permitió obtener una adecuada estimación del esfuerzo y por consiguiente del rendimiento de pesca producto de la actividad de transporte.

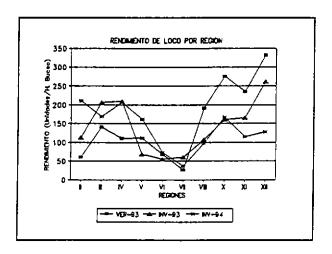


Fig. 9. Rendimientos de pesca de C. concholepas, por región.
Monitoreos verano-invierno 1993 e invierno 1994.

A nivel de caleta se estimó el rendimiento y el esfuerzo de pesca, con su correspondiente coeficiente de variación (CV) (Tabla 25). En general se aprecia que los CV de los estimadores son relativamente bajos (excepto VIII y XII Región) y esto obedece a que la información que se recopiló en cada centro es prácticamente censal. Los rendimientos más altos correspondieron a las caletas Pta.

Choros, Los Molles y Chinquihue; sin embargo, éstos índices presentan serios sesgos como resultado de la calidad del dato al traducir el tiempo efectivo y real de horas de buceo cuando se apozó el recurso o bien hubo transporte, por esta razón estos centros no fueron incorporados en la estimación del índice de rendimiento a nivel regional.

TABLA 25. Desembarque (unidades), rendimiento de pesca (unidades/hora-buceo) de C. concholepas y esfuerzo estimado por caleta y región. Monitoreo invierno 1994

	1	·		,		
REGION CALETA	DESEMBARQUE	Nº VIAJES	RENDIMIEN (Nº/H-BUC	CV (%) RENDIMIEN	ESFUERZO H-BUCEO	CV(%) ESFUERZO
I CAMARONES ARICA	1262 1340	15 9	31,55 14,81	- -	40 91	-
II PAPOSO TALTAL CIFUNCHO	2593 3857 10414	8 9 18	111,11 220,40 226,39	3,57 -	23 18 46	3,57 -
III PAN AZUCAR PTO. VIEJO HUASCO	101245 234950 301478	131 241 439	206,59 231,70 97,14	2,85 3,34 3,60	490 1014 3104	2,85 3,34 3,60
IV PTA. CHOROS C. HORNOS PTO. ALDEA PICHIDANGUI CHUNGUNGO CTA. SIERRA S. PEDRO	415758 275925 75131 62826 194933 61360 248425	442 332 178 100 280 158 255	519,07 275,93 88,28 177,34 218,41 103,37 188,68	1,76 3,07 5,02	801 - 851 354 893 594 1317	1,76 3,07 5,02
V LOS MOLLES HORCON EL QUISCO QUINTAY VENTANA QUINTERO S. ANTONIO PAPUDO PICHICUY	44048 2200 5314 8100 5205 3800 16255 12000	46 13 14 4 10 8 15	488,89 169,23 120,77 197,56 89,74 77,55 135,46 255,32 100,00	2,22	90 13 44 41 58 49 120 47	2,22

Cont.

Cont.' Table 25

			_			
REGION CALETA	DESEMBARQUE	SELAIV *W	RENDIMIEN (Nº/H-BUC	CV (%) RENDIMIEN	ESFUERZO H-BUCEO	
VI LA BOCA	8282	28	72,70	-	114	-
VII PELLUHUE	17739	45	36,84	1,80	482	1,80
VIII LOTA TUBUL	255572 109917	114 37	102,27 346,15	8,63 7,37	2499 318	8,63 7,36
TALCAHUANO S. VICENTE	4709 57146	25 41	22,48 125,43	28,39 6,57	210 456 7864	28,39 6,57
LLICO	595045 187673	378 139	75,66 161,33	3,06	1163	3,06
QUEULE	23600	17	102,30	-	231	0,00
NIEBLA B. MANSA MAULLIN	642880 503170 697060	464 299 772	90,40 199,04 97,48	1,83 2,74 2,95	7111 2528 7151	1,83 2,74 2,95
CARELMAPU CHINQUIHUE	1793734 43900	3340 10	189,63 553,45	0,85 2,91	9459 79	0,85 2,91
ANCUD PUDETO QUELLON	582510 140960 2325890	764 150 896	122,51 104,99 91,78	6,11 1,00 2,40	4755 1343 5341	6,11 1,00 2,40
XI MELINKA PTD CHACABU	723100 750870	178 s/i	115,48 s/i	2,72 s/i	6262 s/i	2,72 s/i
XII PTO NATALES	138266	74	127,86	31,58	1081	31,58

4. Esfuerzo de Muestreo

Un análisis de las estimaciones de p_i por unidad de pesquería del monitoreo de verano de 1993, permitió establecer un rango de valores críticos que fluctuaron entre 0,05 \leq p_i \leq 0,21, y en base a los cuales cuales se determinó los tamaño mínimos de muestra para alcanzar niveles de coeficiente de variación entre el rango de 0,01 \leq CV \leq 0,05.

Se optó por elegir un tamaño mínimo por punto de muestreo que alcanzara un nivel óptimo en los grupos de tallas más frecuentes sobre un p_i de 13% y un CV de 0,04 la cual arrojó un tamaño mínimo de 4.000 unidades por punto de desembarque. Se consideraron además

aspectos prácticos recogidos del monitoreo de verano, como son rendimiento de lecturas de medidas hora por muestreador; número de horas y días de operación.

La afijación de la muestra dependió de la importancia relativa del punto de muestreo en cuanto a magnitud de desembarques y número de muestreadores disponibles. En la tabla 26 se indica el esfuerzo de muestreo regional y nacional, expresado en número de embarcaciones encuestadas y muestreadas y en número de ejemplares medidos en el muestreo de longitud y biológico (longitud - peso).

De las embarcaciones seleccionadas por día se midieron entre 100 y 200 ejemplares por cada una de ellas, excepto cuando la embarcación efectuaba transporte, en cuyo caso el muestreo de longitud se incrementaba proporcionalmente al número de ejemplares.

Las procedencias más importantes, quedan siempre adecuadamente representadas en este tipo de muestreo, dado que la aleatoriedad de la selección recoge la variabilidad en cuanto al número de procedencias presente.

El análisis de los datos del monitoreo Verano 93 para los muestreos biológicos indica que una muestra de 1000 ejemplares seleccionados aleatoriamente en los puntos de muestreo proporciona una adecuada estimación de los pesos medios de los ejemplares desembarcados.

En términos generales se muestreó el 18,1% de los viajes encuestados y se midió un total de 308.683 ejemplares que representan el 3,35% del desembarque de los 44 puntos de muestreo.

TABLA 26. Esfuerzo de muestreo en número de embarcaciones y ejemplares pedidos por región y tipo de muestreo.

Monitoreo invierno 1994

REGION	NUMERO DE E	MBARCACIONES	NUMERO DE	MUESTREOS
REGION	ENCUESTADAS	MUESTREADAS	LONGITUD	BIOLOGICO
I	24	23	2602	2602
II	33	33	3869	3404
III	549	103	17026	5890
IV	1378	247	42952	7011
V	119	97	16322	5764
VI	28	24	3944	3311
VII	45	42	8087	2998
VIII	173	164	46146	14818
IX	16	10	4126	1440
Х	4380	440	78983	8739
XI	170	62	16900	5948
XII	10	10	4748	.1053
TOTAL	6925	1255	245705	62978

En las tablas 27 a 37 se entrega información detallada sobre el número de ejemplares muestreados por región y centro de muestreo.

TABLA 27. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la I región. Monitoreo invierno 1994

CALETA	LONGITUD	BIOLOGICO
CAMARONES ARICA	1262 1340	1262 1340
TOTAL	2602	2602

TABLA 28. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la II región. Monitoreo invierno 1994

CALETA	LONGITUD	BIOLOGICO
PAPOSO TALTAL CIFUNCHO	551 3318	1198 1192 1014
TOTAL	3869	3404

TABLA 29. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la III región. Monitoreo invierno 1994

CALETA	LONGITUD	BIOLOGICO
PAN DE AZUCAR PTO. VIEJO HUASCO	4669 5150 7207	1037 2807 2046
TOTAL	17026	5890

TABLA 30. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la IV región. Monitoreo invierno 1994

CALETA	LONGITUD	BIOLOGICO
PTA. CHOROS CTA. HORNOS PTO. ALDEA PICHIDANGUI CHUNGUNGO CTA. SIERRA SAN PEDRO	6015 6567 5392 6559 6234 5971 6214	997 1040 923 1003 1011 1000 1037
TOTAL	42952	7011

TABLA 31. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la V región. Monitoreo invierno 1994

CALETA	LONGITUD	BIOLOGICO
LOS MOLLES HORCON EL QUISCO QUINTAY VENTANA QUINTERO	8063 822 2388 913 648	1326 500 626 479 420
SAN ANTONIO PAPUDO PICHICUY TOTAL	2996 295 197 16322	2211 100 102 5764

TABLA 32. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la VI región. Monitoreo invierno 1994

CALETA	LONGITUD	BIOLOGICO
LA BOCA	3944	3311
TOTAL	3944	3311

TABLA 33. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la VII región. Monitoreo invierno 1994

CALETA	LONGITUD	BIOLOGICO
PELLUHUE	8087	2998
TOTAL	8087	2998

TABLA 34. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la VIII región. Monitoreo invierno 1994

CALETA	LONGITUD	BIOLOGICO
LOTA TUBUL	6452	888
TALCAHUANO	4076	2980
SAN VICENTE	2009	1378
LEBU	23991	4876
LLICO	9618	4696
TOTAL	46146	14818

TABLA 35. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la IX región. Monitoreo invierno 1994

CALETA	LONGITUD	BIOLOGICO
QUEULE	4126	1440
TOTAL	4126	1440

TABLA 36. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la X región. Monitoreo invierno 1994

CALETA	LONGITUD	BIOLOGICO
NIEBLA	27663	524
BAHIA MANSA	9295	605
MAULLIN	6864	1004
CARELMAPU	5899	1000
CHINQUIHUE	792	
ANCUD	9901	2369
PUDETO	7528	2223
QUELLON	11041	1014
TOTAL	78983	8739

TABLA 37. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la XI región. Monitoreo invierno 1994

CALETA	LONGITUD	BIOLOGICO	
PTO. CHACABUCO MELINKA	11027 5873	5449 499	
TOTAL	16900	5948	

TABLA 38. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la XII región. Monitoreo invierno 1994

CALETA	LONGITUD	BIOLOGICO
PTO. NATALES	4748	1053
TOTAL	4748	1053

5. Indicadores Estadísticos Descriptivos

En las tablas 39, 40 y figuras 10 y 11 se entregan algunos indicadores estadísticos descriptivos del muestreo de longitud y biológico del desembarque, tales como: longitud y peso mínimo, máximo, medio y desviación estándar.

En términos globales se tiene que los ejemplares más pequeños fueron extraídos en la VIII Región, reflejándose en una talla y peso promedio inferior al resto de las regiones. De igual manera se

observó que alrededor del 10,5% de los ejemplares desembarcados en esta región estaban bajo la talla mínima legal de 10 cm. Por su parte, en la X y XI Región se extrajeron los ejemplares de mayor tamaño y se comprobó que en estas regiones el porcentaje bajo la talla mínima no superó el 0,3% y 0,5%, respectivamente. Esta misma tendencia se encontró en la temporada anterior en el año 1993.

TABLA 39. Indicadores estadísticos del muestreo de longitud, del desembarque de C. concholepas. Monitoreo invierno 1994

PROTON	NUMERO	LONGITUD			
REGION	ON EJEMPLARES	MINIMA	MAXIMA	MEDIA	DESV. EST.
I	2602	87	134	104	6.07
II	3869	95	146	112	7.78
III	17026	92	154	108	6.85
IV	42952	92	148	113	8.37
V	16322	96	149	114	7.92
VI	3944	90	137	111	6.29
VII	8087	100	145	115	9.96
VIII	46146	80	145	110	8.34
IX	4126	100	138	119	8.08
X	78983	90	165	117	10.03
XI	16900	85	173	118	12.17
XII	4748	92	147	110	8.79
TOTAL	245705	80	173	114	9.79

TABLA 40. Indicadores estadísticos del muestreo de peso del desembarque de C. concholepas. Monitoreo invierno 1994

REGION	NUMERO EJEMPLARES	PESO			
		AMINIMA	MAXIMA	MEDIA	DESV. EST.
I	2602	100	690	221	54,99
II	3404	100	620	249	68,46
III	5890	109	1440	335	95,77
IV	7011	125	870	375	101,73
V	5764	100	825	358	90,39
VI	3311	125	675	329	70,77
VII	2998	200	750	371	86,72
VIII	14818	100	730	282	80,06
IX	1440	200	630	351	64,72
X	8739	125	1300	403	140,33
XI	5948	150	1300	350	140,12
XII	1053	153	850	311	94,57
TOTAL	62978	100	1440	332	112,50

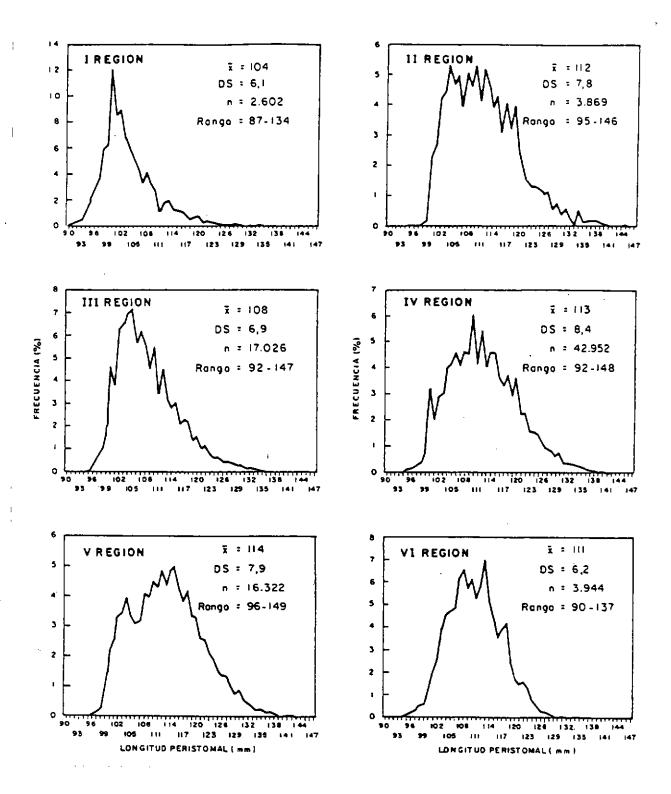


Fig 10. Distribución e indicadores descriptivos del muestreo de longitud del desembarque por región (I a VI regiones).

Monitoreo invierno 94

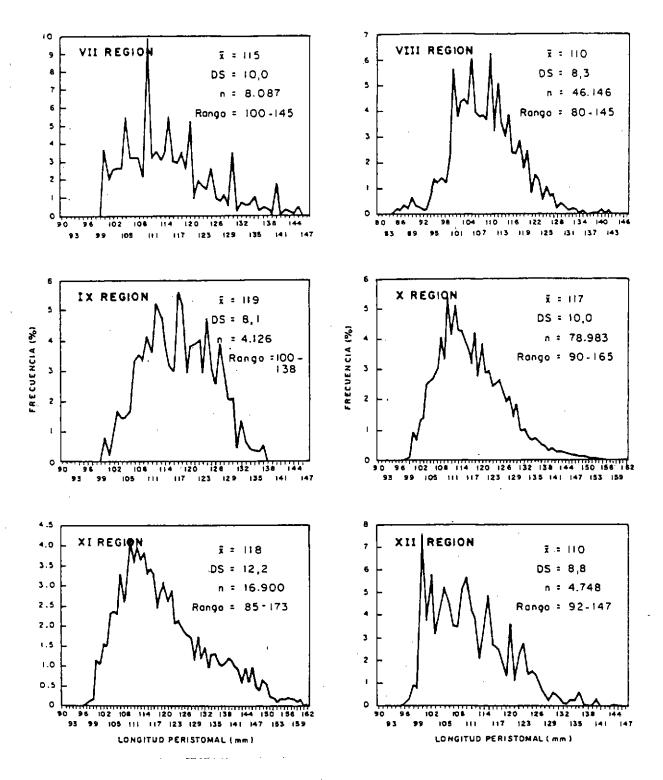


Fig 11. Distribución e indicadores descriptivos del muestreo de longitud del desembarque por región (VII a XII regiones).

Monitoreo invierno 94

6. Cobertura de Procedencias

La base de los análisis contemplan información que provienen de los centros de muestreo seleccionados en las temporadas extractivas de los años 1993 y 1994, siendo el centro y cantidad de éstos, variables, según sea el año y temporada.

Temporada invierno 1994 vs. invierno y verano 1993

El número de procedencias (Tabla 40) de la temporada de invierno 1994 fue de 359, que representan un 64,4% de las 565 procedencias visitadas durante las dos temporadas realizadas durante el año 1993. De éstas, 286 (79,7%) corresponden a procedencias que fueron visitadas durante las dos temporadas del año 1993 y las 73 restantes (20,3 %) corresponden a nuevas procedencias presentes en el monitoreo de la temporada invierno 1994.

Las regiones IV, X, y XI presentan el mayor número de procedencias visitadas 89, 98 y 74, respectivamente y representan el 72.7% de todas las procedencias visitadas en la temporada.

En términos de captura (Tabla 41) las procedencias no repetidas aportaron un total de 782.873 unidades, las que representan el 8,5% del total capturado; en tanto las 8.421.613 unidades restantes que equivalen al 91,5% del total, fueron extraídas de las procedencias repetidas en ambas temporadas. Estos resultados dejan en evidencia que la flota centró su actividad en las áreas tradicionales de pesca.

En las dos temporadas de 1993, las regiones IV, X y XI aportaron con el mayor número de unidades extraídas de la temporada. Del desembarque total que proviene de las procedencias repetidas, estas regiones aportaron con 5.960.922 unidades (70,8 %) y mientras que las procedencias no repetidas aportaron con 464.510 unidades (59,3 %). El aporte de estas regiones al desembarque total fué de 6.425.432 unidades (69,8 %) de un valor total de 9.204.486 unidades registradas durante toda la temporada invierno 1994.

TABLA 41. Número total de áreas procedencias del monitoreo invierno de 1994 por región, desagregadas en repetidas y no repetidas respecto a las temporadas conjuntas de invierno y verano 1993.

DEGION	NUMERO PRO	TOTAL	
REGION	REPETIDAS NO REPETIDA		
I	10	1	11
II	5	2	7
III	20	8	28
īv	76	13	89
v	9	0	9
vi	1	0	1
VII	11	0	11
VIII	20	0	20
ıx	1	1	2
x	82	17	98
XI	49	25	74
XII	2	7	9
TOTAL	286	73	359

TABLA 42. Capturas en número del monitoreo de invierno de 1994 por áreas de procedencias y región, desagregada en repetidas y no repetidas respecto a la temporada de invierno y verano 1993.

REGION	CAPTURAS POR PI	TOTAL		
REGION	REPETIDAS	NO REPETIDAS	TOTAL	
I	2.593	9	2.602	
II .	11.387	4.884	16.271	
III	482.964	111.330	594.294	
IV	1.065.408	60.510	1.125.918	
V	83.474	0	83.474	
vı	22.282	0	22.282	
VII	18.639	0	18.639	
VIII	765.568	0	765.568	
ıx	3.000	8.740	11.740	
х	3.698.162	73.740	3.771.902	
xı	2.262.760	390.770	2.653.530	
xII	5.376	132.890	138.266	
TOTAL	8.421.613	782.873	9.204.486	

Temporada invierno 1994 vs. verano 1993

Las procedencias registradas durante la temporada invierno-1994 (359) representan un 70,3% de las 511 procedencias visitadas durante la temporada verano 1993 (Tabla 43).

De las procedencias visitadas durante la temporada de invierno 1994 se tiene que 239 (66,6%) corresponden a procedencias visitadas en ambas temporadas, las 120 (33,4%) restantes fueron visitadas sólo en la temporada de invierno 1993.

Las procedencias no repetidas aportaron un total de 1.603.915 unidades (Tabla 44), las cuales representan un 17,4 % del total capturado, las 7.600.571 (82,6%) unidades restantes provienen de las 239 procedencias visitadas en ambas temporada.

Temporada invierno 1994 vs. invierno 1993

Las 359 procedencias (Tabla 45) registradas durante la temporada invierno 1994 representan un 63,7% de las 564 procedencias visitadas durante la temporada de invierno 1993.

De las procedencias visitadas durante la temporada de invierno 1994 se tiene que 248 (69,1%) corresponden a procedencias visitadas en ambas temporadas, las 111 (30,9%) restantes fueron visitadas sólo en la temporada de invierno 1994.

En relación a las capturas, las procedencias no repetidas aportaron un total de 998.390 unidades (Tabla 46), las cuales representan un 10,8% del total capturado, las 8.206.096 (89,2%) unidades restantes provienen de las 248 procedencias visitadas en ambas temporadas.

TABLA 43. Número total de áreas procedencias del monitoreo de invierno de 1994 por región, desagregadas en repetidas y no repetidas respecto a la temporada de verano 1993.

DROTON	NUMERO 1	PROCEDENCIAS	TOTAL
REGION	REPETIDAS	NO REPETIDAS	TOTAL
I	10	1	11
II	4	3	7
III	17	11	28
īv	61	28	89
v	7	2	9
VI	1	0	1
VII	8	3	11
VIII	17	3	20
IX	1	1	2
x	81	17	98
XI	42	32	74
XII	О	8	9
TOTAL	249	110	359

TABLA 44. Capturas en número del monitoreo de invierno de 1994 por áreas de procedencias y región, desagregadas en repetidas y no repetidas respecto a la temporada de verano 1993.

	CAPTURAS POR	PROCEDENCIAS	
REGION	REPETIDAS	NO REPETIDAS	TOTAL
I	2.593	9	2.602
II	10.640	5.631	16.271
III	381.804	212.490	594.294
IV	959.432	166.486	1.125.918
v	66.160	17.314	83.474
VI	22.282	0	22.282
VII	13.989	4.650	18.639
VIII	697.599	67.969	765.568
IX	3.000	8.740	11.740
x	3.614.612	157.290	3.771.902
xı	1.828.460	825.070	2.653.530
XII	0	138.266	138.266
TOTAL	7.600.571	1.603.915	9.204.486

TABLA 45. Número total de áreas procedencias del monitoreo de invierno de 1994 por región, desagregada en repetidas y no repetidas respecto a la temporada de invierno 1993.

PECTON	NUMERO 1	PROCEDENCIAS	TOTAL
REGION	REPETIDAS	NO REPETIDAS	TOTAL
I	0	11	11
II	4	3	7
III	18	10	28
IV	67	22	89
v	9	0	9
VI	1	. 0	1
VII	11	0	11
VIII	15	5	20
IX	0	2	2
х	77	21	98
ХI	44	30	74
XII	2	7	9
TOTAL	248	111	359

TABLA 46. Capturas en número del monitoreo de invierno de 1994 por áreas de procedencias y región, desagregada en repetidas y no repetidas respecto a la temporada de invierno 1993.

nnarov	CAPTURAS POR	PROCEDENCIAS	moma r
REGION	REPETIDAS	NO REPETIDAS	TOTAL
I	0	2.602	2.602
II	8.277	7.994	16.271
III	425.467	168.827	594.294
IV	1.012.371	113.547	1.125.918
v	83.474	0	83.474
VI	22.282	0	22.282
VII	18.639	0	18.639
VIII	738.418	27.150	765.568
IX	0	11.740	11.740
x	3.661.742	110.160	3.771.902
XI	2.230.050	423.480	2.653.530
XII	5.376	132.890	138.266
TOTAL	8.206.096	998.390	9.204.486

A.2. MONITOREO TEMPORADA PRIMAVERA 1994

Desembarques

1.1 Desembarque por Región

En la Tabla 47 se entrega la distribución del desembarque por región y día de los 43 centros de muestreo que fueron monitoreados entre la I y XII región, durante el período comprendido entre el 21 de noviembre y 31 de diciembre de 1994.

La actividad extractiva se activó principalmente a partir de la segunda quincena de iniciada la actividad, es decir desde el 6 de diciembre hasta el 23 de diciembre. En este período de 18 días se desembarcó el 78,5%. Entre la tercera y quinta semana se registran el 80,6% de los desembarques, siendo la cuarta semana la de mayor actividad con el 30% del desembarque. Un total de cinco regiones IV, V, VIII, X y XI concentran el 94,7 % del total desembarcado en 43 centros de muestreo, destacando la X región con un 56,9% del desembarque nacional.

TABLA 47. Desembarque (en unidades) de C. concholepas por región y día. Monitoreo primavera 1994

REGION		NOVIEMBRE										
KEGION	21	22	23	24	25	26	27	28	29	30		
Į,	-	-	-	-	750	-	-	-	621	442		
	20400 1000	10730	24688	4701 1900	11114	600 4547	7126	19452 5100	1350 6823 6100	1070 26150		
VI IX	600	140 150	280 150	120	1250	450		1300	240 150	80 150		
XII		1530	4050 35300	21110 6260	26220	22310 1500	2730 4778	16370 1000	12370	20270 -		
TOTAL	22000	12550	64468	34091	39334	29407	14634	43222	27654	48162		

REGION		·			DICIE	MBRE				
KEGION	1	2	3	4	5	6	7	8	9	10
I	131	586	210	-	200	-	166	-	-	301
	200 6100	4600 5515 9550 900	8940 16860	170 170	1300 20320 3200	6790 72610	7954 58110	9240 36488 32450	7360 54970 28450 1600	32716 42290 50
viii viii	120	120 4400	100 200		4750	3700	150	-	1700	6200
IIX IX IX	23360 2800	47240 13800	59120 7500	13410	24740 17900	11850 36020	43600 53220	54080 41770 38700	86070 28400 24000	132950 6700 -
TOTAL	32711	86711	92930	13650	72410	130970	163200	212728	232550	221207

Cont-'

.

DEG! ON					DICIE	MBRE				
REGION	11	12	13	14	15	16	17	18	19	20
 11 11 17 V V V V V V V V V V	500 102850 - - - - 113160 5400	3400 44330 2700 2700 318150 76560 42000	7045 29527 28000 5250 393770 29800	301 - 7660 10060 33330 7550 222770 62900 5497	7960 6930 14800 53132 950 173790 24300	284 860 350 2750 7400 143260 26200	15750 32500 2710 6490 179010 25750	5300 535400 63390	1300 14100 26180 196760 10700 11000	1050 12750 12750 80 76300 154120 8600 5300
TOTAL	221910	489840	493392	350068	281862	181194	262210	104090	260040	258200

REGION -		DICIEMBRE										70741
KEUIUM	21	22	23	24	25	26	27	28	29	30	31	TOTAL
I II	-	-	500	299	-	90	80	210	60	115	-	5046 9120
iii iv v	1150 23410 11008	860 24500	1940	4800	- 1	- 1	1880	•	2570		:	177000
v VI	11008	24500	1940 14825 1000	6800 1380	4100 1000	15510 5300	1880 21350 5775	19800 7585	2570 450	600	-	237970
VII I	100 22540	120 88580	(2/5)	-1	-	90	160 8300	45.55		170		851596 237970 5700 2010 413690
VIII	-	•	69450		-	6100	- [15650	9000	40	150	41.5690
Χ, [157030 4000	172490 29430	71000	6500 24200	5000	109440 40900	90820	57100 23260	28200	30450 47300	4700 11900	3314290 703370
XII	7800	2680	6000	24800	•	40700	5300	23200	-	4/300	11900	153855
TOTAL	227038	318660	164715	39979	10100	177430	133665	123605	40280	79035	16750	5828652

1.2 Desembarque y Precios por Caleta

En las tablas 48 a 58 se presentan los principales indicadores del desembarque por región. En las figuras 12 a 19 se incluye el ranking del desembarque por centro de muestreo para cada una de las regiones.

Como se indicó anteriormente las regiones IV, V, VIII, X y XI concentraron el 94,7% del total desembarcado con 5.520.916 unidades.

Con respecto a los precios, éstos bajaron respecto a las temporadas anteriores. En el monitoreo de primavera de 1994 el menor precio por unidad fue de \$ 100 y el máximo \$ 700. El precio promedio nacional fue de \$ 336 y el precio promedio regional máximo por unidad a nivel nacional se obtuvo en la XI región y fue de \$ 463, seguido de la VI región con \$ 400 por unidad; en tanto, el valor más bajo se transó en la II Región con un promedio de \$ 229 la unidad.

Todos los indicadores de precio mencionados para la temporada de primavera fueron inferiores a los obtenidos durante la temporada de invierno, de hecho el precio mínimo observado en invierno de 1994 fue \$ 150 y el máximo de \$ 900 por unidad, respectivamente, siendo el precio promedio nacional de \$ 415 por unidad.

TABLA 48. Indicadores del desembarque de C. concholepas de la I región. Monitoreo primavera 1994

CALETAS		DESEMBARQU	JE	PRECIO (\$ UNIDAD)			
	VIAJES	UNIDADES	ક	MINIMO	OMIXAM	PROMEDIO	
CAMARONES ARICA	5 19	560 4486	11.1% 88.9%	300 300	300 350	300 305	
TOTAL	24	5046	100.0%	300	350	304	

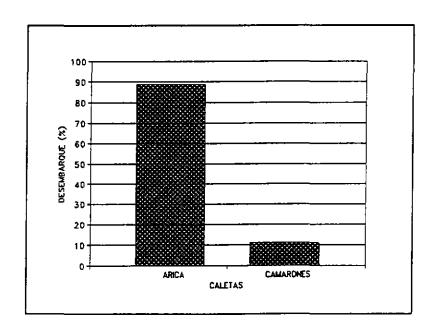


Fig. 12 Ranking del desembarque de C. concholepas de las caletas muestreadas de la I Región. Monitoreo primavera 1994

TABLA 49. Indicadores del desembarque de C. concholepas de la II región. Monitoreo primavera 1994

CALETAS		DESEMBARQU	PRECIO (\$ UNIDAD)			
CALETAS	VIAJES	UNIDADES	8	MINIMO	MAXIMO	PROMEDIO
PAPOSO TALTAL CIFUNCHO	4 11 8	700 5360 3060	7.7% 58.8% 33.6%	200 230 230	230 230 230	223 230 230
TOTAL	23	9120	100.0%	200	230	229

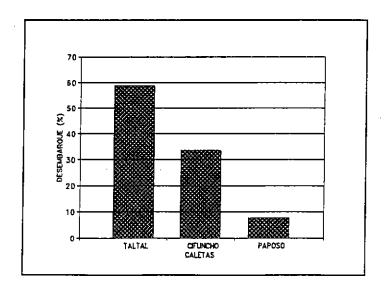


Fig. 13 Ranking del desembarque de C. concholepas de las caletas muestreadas de la II Región. Monitoreo primavera 1994

TABLA 50. Indicadores del desembarque de C. concholepas de la III región. Monitoreo primavera 1994

CATEMAC	I	DESEMBARQU	JE	PRECIO (\$ UNIDAD			
CALETAS	VIAJES	UNIDADES	8	MINIMO	MAXIMO	PROMEDIO	
PAN DE AZUCAR PTO. VIEJO HUASCO	26 76 156	8740 34380 88885	6.6% 26.0% 67.3%	250 300 320	300 350 400	283 315 356	
TOTAL	258	132005	100.0%	250	400	345	

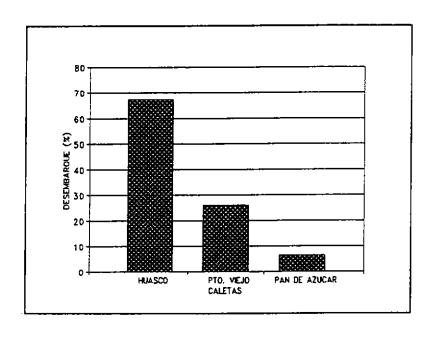


Fig. 14 Ranking del desembarque de C. concholepas de las caletas muestreadas de la III Región. Monitoreo primavera 1994

TABLA 51. Indicadores del desembarque de C. concholepas de la IV región. Monitoreo primavera 1994

CALETAS	1	DESEMBARQI	JE	PRECIO (\$ UNIDAD)			
CALETAS	VIAJES	UNIDADES	8	MINIMO	MAXIMO	PROMEDIO	
PTA. CHOROS CTA. HORNOS PTO. ALDEA PICHIDANGUI CHUNGUNGO CTA. SIERRA MAITENCILLO SAN PEDRO LAS CONCHAS	351 70 36 133 272 166 26 283 295	286360 57855 5239 64933 152093 33986 23800 159980 67350	33.6% 6.8% 0.6% 7.6% 17.9% 4.0% 2.8% 18.8% 7.9%	150 283 450 330 150 420 410 320 320	480 407 450 430 435 420 410 410	254 354 450 371 369 420 410 389 379	
TOTAL	1632	851596	100.0%	150	480	355	

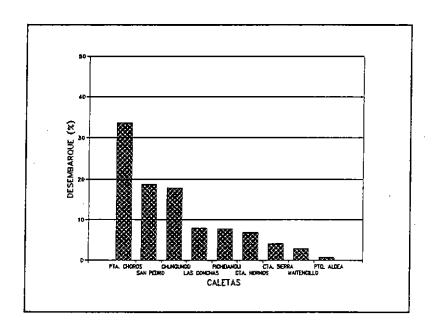


Fig. 15 Ranking del desembarque de C. concholepas de las caletas muestreadas de la IV Región. Monitoreo primavera 1994

TABLA 52. Indicadores del desembarque de C. concholepas de la V región. Monitoreo primavera 1994

G17 PM1 G	1	DESEMBARQU	JE	PRECIO (\$ UNIDAD)				
CALETAS	VIAJES	UNIDADES	8	MINIMO	MAXIMO	PROMEDIO		
HORCON	116	53248	22.4%	280	380	321		
QUINTAY	36	35877	15.1%	241	400	275		
VENTANA	42	23700	10.0%	300	380	346		
QUINTERO	9	5100	2.1%	350	350	350		
SAN ANTONIO	32	27595	11.6%	300	480	376		
PAPUDO	10	4950	2.1%	380	380	380		
PICHICUY	111	87500	36.8%	460	460	460		
TOTAL	356	237970	100.0%	241	480	371		

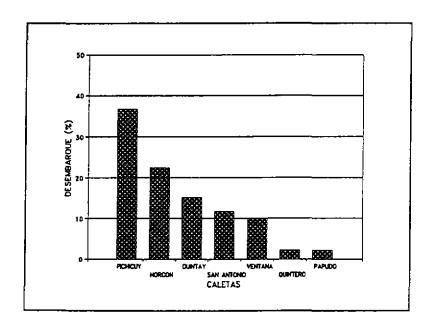


Fig. 16 Ranking del desembarque de C. concholepas de las caletas muestreadas de la V Región. Monitoreo primavera 1994

TABLA 53. Indicadores del desembarque de C. concholepas de la VI región. Monitoreo primavera 1994

CALETAS	I	DESEMBARQU	JE	PRECIO (\$ UNIDAD)				
CALETAS	VIAJES	UNIDADES	8	MINIMO	MAXIMO	PROMEDIO		
LA BOCA	17	5700	100.0%	400	400	400		
TOTAL	17	5700	100.0%	400	400	400		

TABLA 54. Indicadores del desembarque de C. concholepas de la VII región. Monitoreo primavera 1994

CALETAS	1	DESEMBARQU	JE	PRECIO (\$ UNIDAD)			
CALEIAS	VIAJES UNIDADES %		MINIMO	OMIXAM	PROMEDIO		
PELLUHUE	46	2010	100.0%	300	400	352	
TOTAL	46	2010	100.0%	300	400	352	

TABLA 55. Indicadores del desembarque de C. concholepas de la VIII región. Monitoreo primavera 1994

CALEGAC	1	DESEMBARQI	JE	PRECIO (\$ UNIDAD)				
CALETAS	VIAJES	UNIDADES	*	MINIMO	MAXIMO	PROMEDIO		
LOTA	18	159440	38.5%	240	240	240		
TUBUL	2	2000	0.5%					
TALCAHUANO	32	15730	3.8%	250	600	400		
SAN VICENTE	13	3650	.9%	250	400	293		
LEBU	53	216770	52.4%	220	400	244		
LLICO	33	16100	3.9%	200	350	258		
TOTAL	151	413690	100.0%	200	600	278		

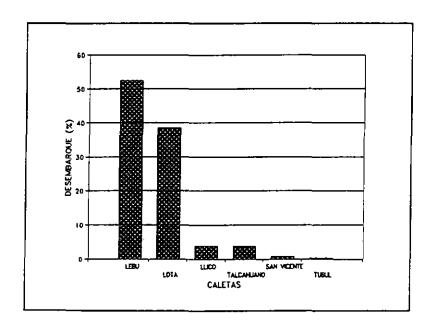


Fig. 17 Ranking del desembarque de C. concholepas de las caletas muestreadas de la VIII Región. Monitoreo primavera 1994

TABLA 56. Indicadores del desembarque de C. concholepas de la X región. Monitoreo primavera 1994

CALETAS	I	DESEMBARQI	JE	PRECIO (\$ UNIDAD)			
CALETAS	VIAJES	UNIDADES	%	MINIMO	MAXIMO	PROMEDIO	
NIEBLA	189	379230	11.4%	100	300	211	
BAHIA MANSA	56	98030	3.0%	140	300	230	
MAULLIN	227	195050	5.9%	180	550	307	
CARELMAPU	1746	1159370	35.0%	130	700	334	
ANCUD	166	204260	6.2%	150	400	240	
PUDETO	55	139170	4.2%	180	250	201	
QUELLON	368	1139180	34.4%	180	640	369	
TOTAL	2807	3314290	100.0%	100	700	316	

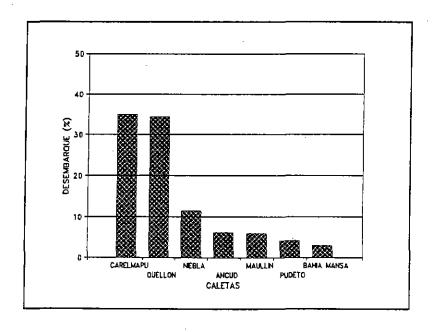


Fig. 18 Ranking del desembarque de C. concholepas de las caletas muestreadas de la X Región. Monitoreo primavera 1994

TABLA 57. Indicadores del desembarque de C. concholepas de la XI región. Monitoreo primavera 1994

CALETAS	1	DESEMBARQI	JE	PRECIO (\$ UNIDAD)				
CALEIAS	VIAJES UNIDADES		%	MINIMO	MAXIMO	PROMEDIO		
PTO. CHACABUCO MELINKA	21 246	288850 414520	41.1% 58.9%	466 270	600 630	539 450		
TOTAL	267	703370	100.0%	270	630	463		

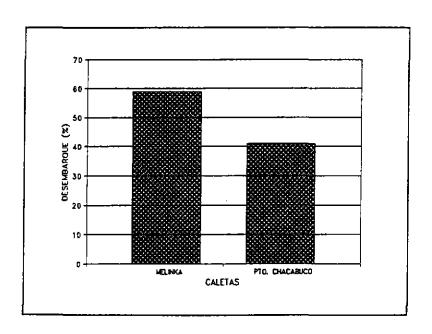


Fig. 19 Ranking del desembarque de C. concholepas de las caletas muestreadas de la XI Región. Monitoreo primavera 1994

TABLA 58. Indicadores del desembarque de C. concholepas de la XII región. Monitoreo primavera 1994

CALETAS		DESEMBA	ARQUE	PRECIO (\$ UNIDAD)				
CALETAS	VIAJES	UNIDADES	8	MINIMO	MAXIMO	PROMEDIO		
PTO. NATALES	16	153855	100.0%	180	350	280		
TOTAL	16	153855	100.0%	180	350	280		

2. Captura

La composición en número y peso de la captura por clase de longitud cada 3 mm de largo peristomal, se obtuvo a partir de la información del monitoreo de la pesquería de la temporada de primavera de 1994. La estimación se obtuvo mediante una expansión simple, con base en los datos de IFOP y SERNAP.

2.1 Composición en número

En las tablas 59 y 60 se entregan por unidad de pesquería y clase de longitud, el número estimado de ejemplares y el coeficiente de variación, respectivamente. Cabe destacar que se producen diferencias entre los registros de captura y desembarque de la XI Región, explicado básicamente por el transporte de loco extraído en áreas de la XI Región hacia centros de desembarque de la X Región. Los coeficientes de variación indican niveles aceptables de estimación del número por clase de longitud, entre 1 y 20% con excepción de los extremos de las distribuciones donde se registra una baja frecuencia de ejemplares.

TABLA 59. Composición en número de la captura por unidad de pesquería según clase de longitud. Monitoreo primavera 1994

													T
CLA	SE DE		,		,	,			т	,		γ	TOTAL
LON	GITUD	1	11	111	1A	V	VI	117	VIII	X	XI	XII	
80	83	0	0	0	0	0	0	0	197	0	0	0	197
83	86	Ō	l ò	0	0	0	0	0	946	0	0	. 0	946
86	89	0	0	18	0	0	0	0	1416	0	0	0	1434
89	92	0	0	338	131	0	0	0	7146	342	0	184	8142
92	95	52	0	2359	1783	29	3	0	9394	772	4355	2460	21206
95	98	1155	0	13831	5714	423	13	0	17554	10523	12448	8680	70341
98	101	5766	5036	56296	69422	11509	1175	192	43652	122006	39054	18593	372700
101	104	8478	17245	83871	145154	29216	3896	171	60429	304298	107528	24965	785252
104	107	8272	18207	82456	171318	36064	5091	213	62615	458963	172256	23788	1039243
107	110	10087	17737	70163	223450	41213	6093	240	66239	658969	225996	22958	1343145
110	113	5817	14447	46901	204992	36879	5367	157	56342	653890	218506	17851	1261150
113	116	4837	13037	39703	198008	31723	4571	220	49585	599002	181628	14480	1136793
116	119	3105	7363	30139	183586	24961	3593	180	46375	496558	141731	10100	947691
119	122	2197	6132	26758	102347	13319	2048	216	29041	418547	85548	8193	694346
122	125	1011	2283	13564	69135	7004	806	142	20629	336099	69433	5176	525282
125	128	598	179	4501	40268	3291	373	96	20789	238270	48662	3204	360231
128	131	382	291	2441	25129	1375	174	158	16329	175463	37637	2185	261563 199108
131	134	155	0_0	1361	16102	597	60	9 5	14032 10676	141194 86717	24036 20577	1561 916	125978
134	137	103	78	313	6329	238	26	9	8924	72486	14814	853	100166
137	140	10	0	158	2808	103	0	2	42	30339	9499	351	41103
140	143	0	0	112	742 439	10	0	2	-6	20672	5248	160	26542
143 146	146 149	10 0	0	61	439 57	"0	ŏ	1	0	11586	2883	110	14697
149	152	0	0	%	16	١ ٥	Ö	ا ا	lŏ	1644	1051	27	2737
152	155	ŏ	ŏ	0	0	ة ا	ŏ	Ö	ŏ	1907	420	27	2354
155	158	Ö	١ ٥	ŏ		l ő	ŏ	Ĭŏ	Ŏ	395	671	14	1080
158	161	Ö	6	Ö	Ď	l ŏ	ŏ	Ιŏ	Ŏ	556	179	1 0	735
161	164	Ö	ő	Ö	٥	ŏ	ŏ	ا ة	Ŏ	556	Ó	Ĭ	556
164	167	Õ	Ö	ŏ	ŏ	١٠٥	ŏ	ا ة	٥	21	43	l ŏ	64
167	170	0	l ő	ő	ŏ	lö	ŏ	ŏ	Ŏ	l ö	0	l ŏ	Ö
170	173	Õ	l ŏ	Ö	ŏ	ŏ	ŏ	ľŏ	٥	l ŏ	Ì	l ō	Ŏ
173	176	Ö	Ö	ŏ	ő	ŏ	Õ	ŏ	Ŏ	Ŏ	0	Ŏ	Ō
		52036	102036	475346	1466930	237970	33288	2010	542352	4841774	1424201	166838	9344781

TABLA 60. Coeficiente de variación de la captura en número por unidad de pesquería y clase de longitud. Monitoreo primavera 1994

C1.	SE DE					RE	GIONES		_			
	GITUD	1	11	111	ΙV	V	VΙ	VII	AIII	х	ΧI	XII
80	83	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,232	0,000	0,000	0,000
83	86	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,106	0,000	0,000	0,000
86	89	0,000	0,000	1,189	0,000	0,000	0,000	0,000	0,086	0,000	0,000	0,000
89	92	0,000	0,000	0,274	0,540	0,000	0,000	0,000	0,038	0,562	0,000	0,317
92	95	0.447	0,000	0,104	0,146	0,567	1,100	0,000	0,033	0,374	0,139	0,086
95	98	0,093	0,000	0,042	0,082	0,149	0,528	0,000	0,024	0,101	0,082	0,045
98	101	0,040	0,082	0,020	0.023	0,028	0,055	0,069	0,015	0,029	0,046	0,030
101	104	0.032	0,042	0,016	0,015	0,017	0,029	0,073	0,012	0,018	0,027	0,025
104	107	0,032	0,040	0,016	0,014	0,015	0,025	0,065	0,012	0,015	0,021	0,026
107	110	0,029	0.041	0,018	0,012	0,014	0,022	0,061	0,012	0,012	0,018	0,026
110	113	0,040	0,046	0,022	0,013	0,015	0,024	0,077	0,013	0,012	0,018	0,030
113	116	0,044	0,049	0,024	0,013	0,016	0,026	0,064	0,014	0,013	0,020	0,034
116	119	0,056	0,067	0,028	0,013	0,018	0,030	0,071	0,014	0,014	0,023	0,042
119	122	0,067	0,074	0,030	0,019	0,026	0,041	0,064	0,019	0,015	0,030	0,046
122 125	125	0,100	0,124	0,043	0,023	0,036	0,066	0,081	0,022	0,017	0,034	0,059
128	128	0,131	0,448	0,075	0,030	0,053	0,098	0,100	0,022	0,021	0,041	0,075
131	134	0,164 0,258	0,351	0,102	0,039	0,083	0,144	0,076	0,025	0,024	0,047	0,091
134	137		0,000 0,677	0,137 0,285	0,048	0,126	0,246	0,333	0,027	0,027	0,059	0,108
137	140	0,316 1,000	0,000		0,077	0,199	0,374	0,447	0,031 0,034	0,035	0,063	0,142
140	143	0.000	0,000	0,401 0,478	0,116 0,227	0,303 0,773	0,000	0,707	0,501	0,038	0,075	0,147
143	146	1,000	0,000	0,000	0,227	0,964	0,000	0,707	0,000	0,059 0,072	0,094 0,126	0,229
146	149	0.000	0,000	0,645	0,819	0,000	0,000	1,000	0,000	0,096	0,170	0,340 0,411
149	152	0,000	0,000	0,000	1,569	0,000	0,000	0,000	0,000	0,256	0,282	
152	155	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,238	0,447	0,827 0,827
155	158	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,523	0,353	1,146
158	161	0,000	0,000	0,000	0,000	0.000	0,000	0,000	0,000	0,440	0,685	0,000
161	164	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,440	0,000	0,000
164	167	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	2,264	1,396	0,000
167	170	0,000	0,000	0,000	0.000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
170	173	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
173	176	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0.000	0,000	0,000	0,000

2.2 Composición en peso

En las tablas 61 y 62 se entregan por unidad de pesquería y clase de longitud, el peso estimado de los ejemplares en kilógramos y el coeficiente de variación de la estimación, respectivamente.

TABLA 61. Composición en peso de la captura (kg) por unidad de pesquería según clase de longitud. Monitoreo primavera 1994

C) 41			· · · -			-	REGION	ES					TOTAL
	SE DE G1TUD	1	11	111	IV	ν	٧ı	VII	VIII	х	ΧI	XII	TOTAL
	83 86 89 92 95 98 101 107 1103 1116 1122 128 131 1347 1449 155 158 161 167 177 176	0 0 0 10 231 1249 2016 2127 2832 1781 1602 1082 847 406 267 75 56 7 0 0 0 0 0	00 00 1077 4066 4801 5027 4406 4246 2846 2846 2859 1059 152 00 00 00 00 00 00	0 0 3 644 507 3021 14209 21916 25058 22915 16448 15611 12948 6567 2704 1563 953 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 25 377 1228 17626 39976 51190 72152 71768 73351 43733 31906 19566 19566 19566 19566 1954 474 302 41 0 0 0 0	0 0 0 0 8 123 2904 7993 10534 13143 12469 13538 9550 5554 3087 1535 62 9 0 0 0 0	0 0 0 0 295 1099 1510 1991 1860 1707 1439 865 374 185 95 30 0 0 0 0	00000044065964479535111000000000077	25 142 195 1225 1864 3488 9376 14183 15785 16238 15391 15675 10829 8452 9393 7234 7134 4809 3869 0 0 0 0 0 0	0 0 0 134 2069 28427 75222 194067 200548 197671 177520 160345 135179 107103 86065 71825 47538 40679 19517 13247 7384 1130 1406 294 480 0 0	0 0 0 0 762 2716 8889 25291 43529 64350 57340 49025 28058 21401 18235 12092 112092 112092 112092 112092 112091 8001 5675 3429 2108 902 530 0 0 0	0 0 0 0 41 548 1920 4336 6256 6633 5819 5026 38557 2285 1497 1129 526 535 257 110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25 142 198 1355 4209 14796 88431 198050 283111 398578 395744 383577 24732 17217436 163784 128943 102160 67962 54907 25953 17089 9605 2032 1406 0 0 0 0
		14770	30410	156905	524682	79667	11455	121	133320	1689841	457362	ورزا ز	3100070

TABLA 62. Coeficiente de variación de la captura en peso por unidad de pesquería y clase de longitud. Monitoreo primavera 1994

C1 A4	SE DE					RE	GIONES					
	SITUD	I	II	111	ΙV	v	ΙV	VII	VIII	х	IX	XII
80	83	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,232	0,000	0,000	0,000
83	86	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,106	0,000	0,000	0,000
86	89	0,000	0,000	1,189	0,000	0,000	0,000	0,000	0,154	0,000	0,000	0,000
89	92	0,000	0,000	0,274	0,656	0,000	0,000	0,000	0,258	0,000	0,000	0,317
92	95	0,459	0,000	0,266	0,320	0,567	0,000	0,000	0,249	0,389	0,139	0,175
95	98	0,193	0,000	0,181	0,222	0,186	0,000	0,000	0,208	0,200	0,138	0,159
98	101	0,166	0,000	0,214	0,229	0,153	0,180	0,078	0,152	0,166	0,124	0,141
101	104	0,169	0,263	0,174	0,224	0,166	0,174	0,078	0,171	0,171	0,141	0,147
104	107	0,182	0,231	0,189	0,216	0,173	0,155	0,105	0,175	0,180	0,151	0,149
107	110	0,166	0,268	0,182	0,206	0,163	0,160	0,087	0,170	0,214	0,143	0,152
110	113	0,162	0,256	0,178	0,197	0,158	0,154	0,085	0,194	0,206	0,161	0,152
113	116	0,166	0,245	0,178	0,180	0,150	0,156	0,073	0,204	0,215	0,162	0,165
116	119	0,181	0,256	0,171	0,174	0,138	0,150	0,080	0,186	0,227	0,177	0,142
119	122	0 190	0,250	0,150	0,158	0,136	0,156	0,067	0,190	0,230	0,156	0,168
122	125	0 190	0,254	0,182	0,158	0,140	0,164	0,085	0,179	0,211	0,168	0,155
125	128	0,196	0.471	0,200	0,153	0,144	0,178	0,100	0,168	0,229	0,159	0,147
128	131	0.241	0,377	0,164	0,165	0,145	0,209	0,080	0,239	0,221	0,154	0,182
131	134	0,288	0,000	0,137	0,163	0,185	0,248	0,334	0,198	0,221	0,164	0,174
34	137	0,347	0,681	0,000	0,216	0,242	0,408	0,449	0,229	0,207	0,168	0,201
137	140	1,000	0,000	0,000	0,184	0,321	0,000	0,336	0,185	0,199	0,168	0,217
140	143	0,000	0,000	0,000	0,264	0,777	0,000	0,707	0,511	0,169	0,157	0,310
143	146	0,000	0,000	0,000	0,322	0,000	0,000	0,707	0,000	0,185	0,160	0,351
146	149	0,000	0,000	0,000	0,825	0,000	0,000	1,000	0,000	0,238	0,182	0,411
49	152	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,266	0,304	0,000
152	155	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,283	0,000	0,000
155	158	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,528	0,354	0,000
58	161	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,450	0,685	0,000
161	164	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
64 67	167	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	170	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
70 73	173	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
(3	176	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

2.3 Rendimiento y esfuerzo de pesca

En los informes anteriores se ha hecho mención a la debilidad de las estimaciones de rendimientos de pesca para ser utilizados como indicadores de la abundancia del recurso loco. En particular durante esta temporada de pesca persistió el problema del apozamiento del recurso, lo cual contribuye a magnificar la densidad poblacional del loco, y por otra parte está la actividad de transporte, que dificulta seriamente la obtención de los datos de esfuerzo de pesca básicamente de las regiones VIII, X, XI y XII.

En la tabla 63 se entrega el desembarque de loco por región de acuerdo a la estadística de SERNAP; además, la estimación del esfuerzo de pesca global y el rendimiento de pesca regional. En general se observa que el mayor esfuerzo de pesca lo concentró la flota de la X Región (45%) al igual que en las temporadas anteriores, le sigue en importancia la XI Región con un 21% y la IV Región con un 11,4% del esfuerzo.

TABLA 63. Desembarque (Nº unidades), esfuerzo de pesca (horas de buceo) y rendimiento de pesca promedio (unidades/h-buceo) por región. Monitoreo primavera 1994.

REGION	DESEMBARQUE	ESFUERZO	RENDIMIENTO
I	52036	1537	33,86
II	102036	743	137,33
III	475346	4248	111,89
IV	1466930	9048	162,12
V	337925	2927	115,46
VI	1500	19	77,90
VII	1940	180	10,81
VIII	542352	6837	79,33
X	5229008	36116	144,78
XI	1058220	16733	63,24
XII	166838	1305	127,86*
TOTAL	9434131	79693	118,38

Fuente: IFOP, SERNAP

* Estimación invierno 1994

En cuanto al rendimiento de pesca a nivel nacional, éste se estimó en 118 unidades/h-buceo, índice inferior en un 21% respecto a la temporada de invierno de 1994. Las cifras más altas correspondieron a las regiones IV y X. Comparativamente con la temporada anterior se aprecia que en general se mantiene la misma tendencia de los índices, pero con valores inferiores en la temporada de primavera (Fig. 20).

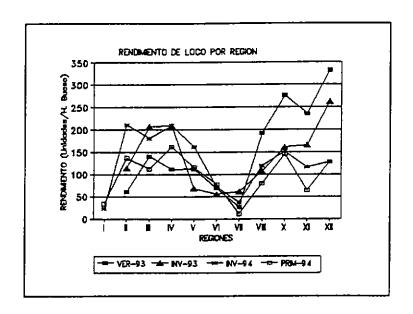


Fig. 20 Rendimiento de pesca (unidades/h. buceo) por región.

Monitoreo invierno y primavera, 1994

En la tabla 64 se entregan estimaciones de rendimiento y esfuerzo de pesca y sus respectivos coeficientes de variación, para las caletas muestreadas por IFOP. El coeficiente de variación en general fue bajo, fluctuando entre un 0,5 y un 20%. Los rendimientos más altos correspondieron a las caletas Punta Choros y Horcón con 290 y 522 unidades por hora de buceo, respectivamente.

TABLA 64. Desembarque (Nº unidades), esfuerzo de pesca (horas de buceo) y rendimiento de pesca promedio (unidades/h-buceo) por caleta y región. Monitoreo primavera 1994.

REGION	DESEMBARQUE	NUMERO	RENDIMIENTO	CV (%)	ESFUERZO	CV (%)
CALETA		VIAJES		RENDIMIENTO	(H-BUCEO)	ESFUERZO
1						•
CAMARONES	560	5	38.62	0.000	15	0.00
ARICA	4486	19	33.22	4.457	135	4.46
II PAPOSO	2500	14	41.18	7,289	61	7,29
TALTAL	8460	17	148.89	4.370	57	4.37
CIFUNCHO	7650	20		13.182	55	13.18
111	,050		,3,10,	.2.702	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.5.10
PAN DE AZUCAR	15450	46	115.00	3.693	134	3.69
PUERTO VIEJO	34380	76	113.84	0.000	302	0.00
HUASCO IV	128500	225	110.83	4-451	1159	4.45
PUNTA CHOROS	379500	471	290.45	1.326	1307	1.33
CALETA HORNOS	59100	71	87.00	0.573	679	0.57
PUERTO ALDEA	5239	36	30.91	0.000	170	0.00
PICHIDANGUI	89800	184	131.49	2.885	683	
CHUNGUNGO	152093	290	99.13	2.036	1534	2.04
CTA SIERRA	38000	185	59.83		635	1.41
MAITENCILLO	44350	48	177.61	4.541	250	4.54
S. PEDRO	163700	286	102.83	0.641	1592	0.64
LAS CONCHAS	84000	368	44.10	1.410	1905	1.41
V HORCON	76950	201	522.16	4.758	147	4.76
QUINTAY	62500	63	92.71	6.530	674	6.53
VENTANA	23700	42	75.00	0.000	316	0.00
QUINTERD	5100	9	104.08	0.000	49	0.00
S. ANTONIO	27595	32	125.43	0.000	220	0.00
PAPUDO	6050	12	134.39		45	5.91
PICHICUY	101150	128	164.53	1.114	615	1.11

Cont.

Tabla 64 (Cont.')

REGION	DESEMBARQUE	NUMERO	RENDIMIENTO	CV (%)	ESFUERZO	CV (%)
CALETA		VIAJES		RENDIMIENTO	(H-BUCEO)	ESFUERZO
VI	5.700	17	77.90	0.000	73	0.00
LA BOCA	5700	17	17.90	0.000	,,,	0.00
VII	i					
PELLUHUE	2010	46	10.81	0.000	186	0.00
VIII						1
LOTA	176195	62	159.19	19.987	1107	19.99
TUBUL	4150	4	117.65	6.350	35	6.35
TALCAHUANO	27984	57	59.81	13.055	468	13.06
SAN VICENTE	3650	13	20.28	0.000	180	0.00
LEBU	216770	160	61.63	7.504	3517	7.50
LLICO	75452	155	77.61	2.936	972	2.94
x						[
NIEBLA	405967	204	189.18	0.876	2146	0.88
BAHIA MANSA	187440	107	184.27	5.975	1017	5.98
MAULLIN	345335	402	102.70	2.443	3362	2.44
CARELMAPU	1337097	2203	153.84	0.982	8691	0.98
ANCUD	516709	420	144.12	3.187	3585	3.19
PUDETO	174630	69	150.54	3.334	1160	3.33
QUELLON	1710160	1020	63.15	3.268	27083	3.27
ΧI			!			
MELINKA	414520	315	63.24	3.286	6555	3.29

Fuente: SERNAP-IFOP

2.4 Esfuerzo de Muestreo

En la tabla 65 se presenta el esfuerzo de muestreo regional y nacional del monitoreo de primavera, expresado éste en número de embarcaciones encuestadas y muestreadas, y en número de ejemplares medidos en los muestreos de longitud y biológico de peso. Se muestreó el 17,8% de las embarcaciones encuestadas y un total de 285.427 ejemplares que representan el 4,9% del total desembarcado en los 43 centros. En las tablas 66 a 76 se entrega información detallada de los desembarques y muestreos realizados por región y centro de desembarque.

TABLA 65. Esfuerzo de muestreo en número de embarcaciones y ejemplares medidos por región y tipo de muestreo.

Monitoreo primavera 1994

REGION	NUMERO DE E	MBARCACIONES	NUMERO DE	EJEMPLARES
REGION	ENCUESTADAS	MUESTREADAS	LONGITUD	BIOLOGICO
I	24	24	5045	5043
II	23	16	2837	2067
III	258	80	18662	3340
IV	1632	198	38430	8584
V	356	134	30561	11013
VI	17	13	3761	1393
VII	46	46	2010	1946
VIII	151	140	51379	14207
IX	<u> </u>	-	-	-
Х	2807	266	48819	9233
XI	267	61	13047	3132
XII	16	16	9005	1890
TOTAL	5597	994	223556	61850

TABLA 66. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la I región.

Monitoreo primavera 1994

CALETA	LONGITUD	BIOLOGICO
CAMARONES ARICA	560 4485	560 4483
TOTAL	5045	5043

TABLA 67. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la II región. Monitoreo primavera 1994

CALETA	LONGITUD	BIOLOGICO
PAPOSO TALTAL CIFUNCHO	- 1692 1145	695 1174 198
TOTAL	2837	2067

TABLA 68. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la III región. Monitoreo primavera 1994

CALETA	LONGITUD	BIOLOGICO
PAN DE AZUCAR PTO. VIEJO HUASCO	4689 6147 7826	997 1048 1295
TOTAL	18662	3340

TABLA 69. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la IV región. Monitoreo primavera 1994

CALETA	LONGITUD	BIOLOGICO
PTA. CHOROS CTA. HORNOS PTO. ALDEA PICHIDANGUI CHUNGUNGO CTA. SIERRA	6088 6723 - 7059 4034 7270	1046 1155 321 1010 2956 1015
SAN PEDRO LAS CONCHAS TOTAL	6849 407 38430	1081 - 8584

TABLA 70. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la V región. Monitoreo primavera 1994

CALETA	LONGITUD	BIOLOGICO
HORCON QUINTAY VENTANA QUINTERO SAN ANTONIO PICHICUY	6909 3373 5884 440 5406 8549	2343 1000 1182 100 4098 2290
TOTAL	30561	11013

TABLA 71. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la VI región. Monitoreo primavera 1994

CALETA	LONGITUD	BIOLOGICO
LA BOCA	3761	1393
TOTAL	3761	1393

TABLA 72. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la VII región. Monitoreo primavera 1994

CALETA	LONGITUD	BIOLOGICO
PELLUHUE	2010	1946
TOTAL	2010	1946

TABLA 73. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la VIII región. Monitoreo primavera 1994

CALETA	LONGITUD	BIOLOGICO
LOTA TUBUL TALCAHUANO SAN VICENTE LEBU	6777 151 5145 1206 31683	971 252 3172 1382 5232
LLICO TOTAL	6417 51379	3198 14207

TABLA 74. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la X región. Monitoreo primavera 1994

CALETA	LONGITUD	BIOLOGICO
NIEBLA	6887	1602
BAHIA MANSA	7399	1848
MAULLIN	6018	998
CARELMAPU	5996	1000
ANCUD	7591	1661
PUDETO	6728	1107
QUELLON	8200	1017
TOTAL	48819	9233

TABLA 75. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la XI región. Monitoreo primavera 1994

CALETA	LONGITUD	BIOLOGICO	
PTO. CHACABUCO MELINKA	5974 7073	1740 1392	
TOTAL	13047	3132	

TABLA 76. Ejemplares muestreados de C. concholepas por caleta y tipo de muestreo en la XII región. Monitoreo primavera 1994

CALETA	LONGITUD	BIOLOGICO	
PTO. NATALES	9005	1890	
TOTAL	9005	1890	

2.5 Indicadores Estadísticos Descriptivos

En las tablas 77, 78 y figuras 21 y 22 se entregan algunos indicadores estadísticos descripivos de longitud y biológico del desembarque, tales como: longitud, peso mínimo y máximo, promedio y desviación estándar.

En general, se tiene que los ejemplares más pequeños se extrajeron en la VIII región, al igual que la temporada de invierno, donde el 0% de los ejemplares quedaron bajo la talla. Por otra parte, en las regiones X y XI se extrajeron los ejemplares de mayor tamaño donde el porcentaje bajo la talla mínima llegó al 0,6 y 1,0%, respectivamente. Estas tendencias son frecuentes en las últimas temporadas. Cabe señalar que en XII Región se desembarcó el mayor porcentaje de ejemplares bajo la talla, del orden del 11%.

TABLA 77. Indicadores estadísticos del muestreo de longitud, del desembarque de C. concholepas. Monitoreo primavera 1994

REGION	NUMERO EJEMPLARES	LONGITUD			
		AMINIMA	MAXIMA	MEDIA	DESV. EST.
I	5045	94	145	109	7.04
II	2837	100	136	110	6.14
III	18662	88	147	108	6.71
IV	38430	90	150	114	8.39
V	30561	95	145	111	6.49
VI	3761	95	136	114	6.07
VII	2010	100	148	114	9.44
VIII	51379	80	142	112	11.10
X	48819	91	166	115	9.13
XI	13047	93	167	114	9.11
XII	9005	91	157	110	9.73
TOTAL	223556	80	167	113	9.21

TABLA 78. Indicadores estadísticos del muestreo de peso del desembarquede C. concholepas. Monitoreo primavera 1994

REGION	NUMERO EJEMPLARES	PESO			
		MINIMA	MAXIMA	MEDIA	DESV. EST.
I	5043	108	700	284	73.97
II	2067	102	710	307	102.56
III	3340	175	720	330	97.07
IV	8584	118	950	365	105.11
v	11013	125	750	337	75.93
VI	1393	200	650	362	80.35
VII	1946	200	600	362	92.62
VIII	14207	100	850	302	85.88
X	9233	130	925	351	113.06
XI	3132	175	950	332	104.10
XII	1890	138	1000	317	97.69
TOTAL	61850	100	1000	330	96.94

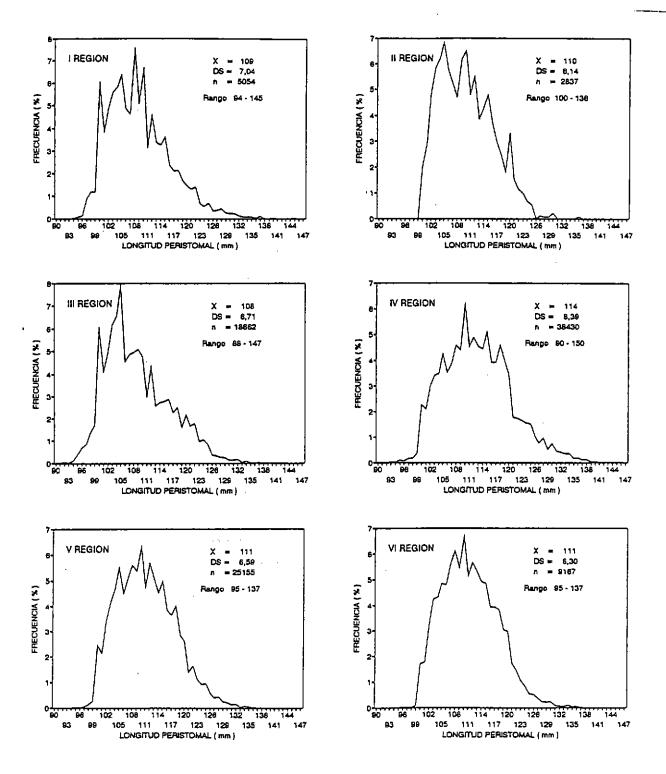


Fig. 21 Distribución e indicadores descriptivos del muestreo de longitud del desembarque por región (I a VI). Monitoreo primavera 1994

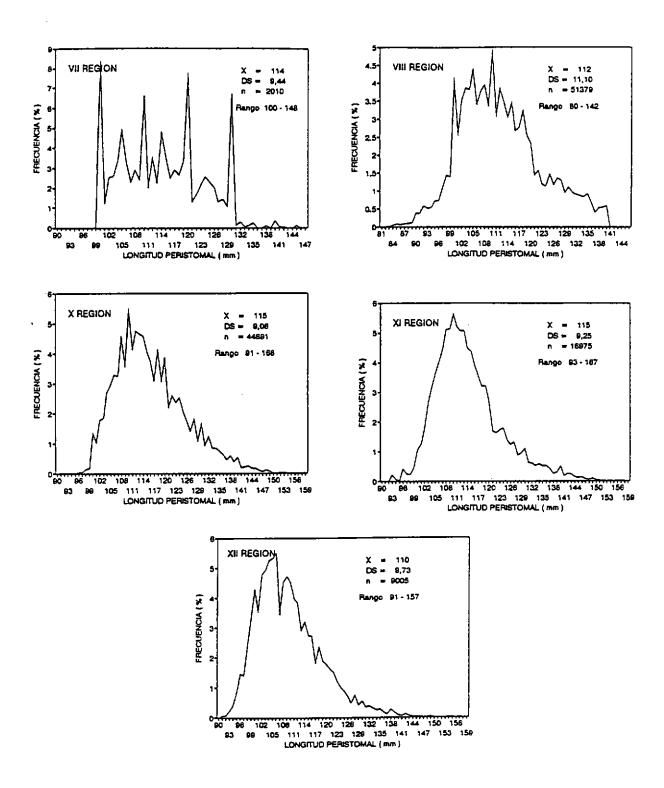


Fig. 22 Distribución e indicadores descriptivos del muestreo de longitud del desembarque por región (VII a XII).

Monitoreo primavera 1994

2.6 Cobertura de procedencias

Los análisis a continuación provienen de los centros de muestreo para las temporadas 1993 y 1994, siendo tanto los centros como su cantidad variables, según año y temporada.

Temporada primavera 1994 v/s verano 1993

Las procedencias registradas durante la temporada primavera-1994 (371) representan un 72,6% de las 511 procedencias visitadas durante la temporada verano-1993 (Tabla 79).

De las procedencias visitadas durante la temporada de primavera 1994 se tiene que 222 (59,8%) corresponden a procedencias visitadas en ambas temporadas, las 149 (40,2%) restantes fueron visitadas sólo en la temporada de primavera 1994.

Las procedencias no repetidas aportaron un total de 1.0003.295 unidades (Tabla 81), las cuales representan un 17,2% del total capturado, las 4.825.352 (82,8%) unidades restantes provienen de las 222 procedencias visitadas en ambas temporada.

Temporada primavera-1994 vs. invierno 1993

Las 371 procedencias (Tabla 82) registradas durante la temporada primavera 1994 representan un 65,8% de las 564 procedencias visitadas durante la temporada de invierno 1993.

De las procedencias visitadas durante la temporada de primavera 1994 se tiene que 238 (64,2%) corresponden a procedencias visitadas en ambas temporadas las 133 (35,8%) restantes fueron visitadas sólo en la temporada de primavera 1994.

En relación a las capturas, las procedencias no repetidas aportaron un total de 703.664 unidades (Tabla 83), las cuales representan un 12,1% del total capturado, las 5124.988 (87,9%) unidades restantes provienen de las 238 procedencias visitadas en ambas temporadas.

Temporada primavera 1994 v/s invierno 1994

El total de 371 procedencia (Tabla 83) registradas durante la primavera-1994 representan un 1,01% más que las 368 procedencias visitadas durante la temporada de invierno del mismo año.

De las procedencias visitadas durante la temporada de primavera-1994, se tiene que 240 (64,7%) corresponden a procedencias visitadas en ambas temporadas, en tanto las 131 (35,3%) restantes fueron visitadas sólo en la temporada de primavera-1994.

Durante esta temporada, las procedencias no repetidas aportaron un total de 793.398 unidades (Tabla 84), las cuales representan un 13,6% del total capturado, las 5.035.254 (86,4%) unidades restantes provienen de las 240 procedencias visitadas en ambas temporadas.

Las capturas provenientes de las regiones IV, X y XI fueron 827.796, 2.759.970 y 1.257.690 representando el 14,2%, 47,4% y 21,6% respectivamente de la extracción obtenida durante la temporada.

Temporada año 1994 v/s temporada año 1993

En las temporadas de pesca de 1994 fueron visitadas 489 procedencias (Tabla 85) que representan un 65,5% de las 746 procedencias que fueron visitadas en las dos temporadas de pesca de 1993.

Durante el año 1994 se visitó a 353 (72,2%) que ya habían sido visitadas durante las temporadas de 1993, las 136 restantes correspondieron a nuevas procedencias.

Las regiones IV, X y XI aparecen con el mayor número de procedencias visitadas, éstas fueron 121 (24,7%), 121 (24,7%) y 117 (23,9%) procedencias, respectivamente.

En cuanto a las capturas, durante las temporadas de 1994 fueron extraídas 13.709.473 unidades desde las procedencias que ya habían sido visitadas durante las dos temporadas de pesca de 1993 y representan un 91,6% de las 14.973.358 unidades extraídas durante el año 1994.

Las regiones IV, X y XI, como en las temporadas de pesca del año anterior, muestran los mayores volúmenes de pesca (Tabla 87), los cuales fueron 1.953.714 (13%); 6.540.352 (43,7%) y 3.852.600 (25,7%) respectivamente acorde con la mayor cuota asignada y la mayor abundancia de sus stock.

TABLA 79. Número total de áreas de procedencias de monitoreo de primavera de 1994 por región, desagregada en repetidas y no repetidas respecto a la temporada de verano-93.

REGION	NUMERO 1	PROCEDENCIAS	moma r
REGION	REPETIDAS	NO REPETIDAS	TOTAL
I	7	0	7
II	4	2	6
III	19	13	32
IV	66	27	93
V	6	3	9
vi	1	0	1
VII	13	2	15
VIII	17	4	21
IX	-	· ••	-
x	59	29	88
хī	28	61	89
XII	2	8	10
TOTAL	222	149	371

TABLA 80. Capturas en número del monitoreo de primavera de 1994 por áreas de procedencia y región, desagregada en repetidas y no repetidas respecto a la temporada de verano-93.

REGION	NUMERO :	PROCEDENCIAS	TOTAL
REGION	REPETIDAS	NO REPETIDAS	TOTAL
I	5.046	0	5.046
II	8.460	660	9.120
III	93.195	38.810	132.005
IV	703.388	124.408	827.796
v	169.548	64.627	234.175
vi	33.295	0	33.295
VII	1.910	100	2.010
VIII	389.830	23.860	13.690
IX		-	-
х	2.624.400	135.570	2.759.970
XI	742.580	515.110	1.257.690
XII	53.700	100.155	153.855
TOTAL	4.825.352	1.003.300	5.828.652

TABLA 81. Número total de áreas de procedencias del monitoreo de primavera de 1994 por región desagregadas en repetidas y no repetidas respecto a la temporada de invierno-93.

PECTON	NUMERO 1	TOTAL	
REGION	REPETIDAS	NO REPETIDAS	
I	0	7	7
II.	5	1	6
III	22	10	32
IV	63	30	93
v	9	0	9
VI	1	0	1
VII	12	3	15
VIII	16	5	21
IX	-	-	-
X	65	23	88
XI	42	47	89
XII	3	7	10
TOTAL	238	133	371

TABLA 82. Capturas en número del monitoreo de primavera de 1994 por áreas de procedencias y región, desagregadas en repetidas y nos repetidas respecto a la temporada de invierno-93.

			,
REGION	NUMERO P	TOTAL	
REGION	REPETIDAS	NO REPETIDAS	TOTAL
I	0	5.046	5.046
II	4.320	4.800	9.120
III	113.119	18.886	132.005
IV	737.902	89.894	827.796
v	234.175	o	234.175
VI	33.295	0	33.295
VII	1.820	190	2.010
VIII	408.210	5.480	413.690
ıx	_	_	_
x	2.650.940	109.030	2.759.970
xı	898.930	358.760	1.257.690
XII	42.277	111.578	153.855
TOTAL	5.124.988	703.664	5.828.652

TABLA 83. Número total de áreas de procedencias del monitoreo de primavera de 1994 por región desagregada de repetidas y no repetidas respecto a la temporada invierno-94.

	NUMERO PI	ROCEDENCIAS		
REGION	REPETIDAS	NO REPETIDA	TOTAL	
I	6	1	7	
II	5	1	6	
III	22	10	32	
IV	61	32	93	
v	5	4	9	
VI	1	0	1	
VII	10	5	15	
VIII	17	4	21	
IX	-	· -	-	
х	65	23	88	
XI	45	44	89	
XII	3	7	10	
TOTAL	240	131	371	

TABLA 84. Capturas en número del monitoreo de Primavera de 1994 por áreas de procedencia y región desagregadas en repetidas y no repetidas respecto a la temporada de invierno-94

REGION	NUMERO P	ROCEDENCIAS	TOTAL
REGION	REPETIDAS	NO REPETIDAS	TOTAL
I	4.664	382	5.046
II	8.720	400	9.120
III	120.105	11.900	132.005
IV	691.930	135.866	827.796
v	98.350	135.825	234.175
VI	33.295	o	33.295
VII	1.660	350	2.010
VIII	393.160	20.530	413.690
IX	_	-	-
x	2.668.230	91.740	2.759.970
XI	999.340	258.350	1.257.690
XII	15.800	138.055	153.855
TOTAL	5.035.254	793.398	5.828.652

TABLA 85. Número total de áreas de procedencias del monitoreo del año 1994 por región desagregadas en repetidas y no repetidas respecto a la temporada del año 1993.

REGION	NUMERO PI	ROCEDENCIAS	TOTAL
REGION	REPETIDAS	NO REPETIDAS	TOTAL
I	11	1	12
II	6	2	8
III	29	9	38
IV	100	21	121
v	13	0	13
VI	1	0	1
VII	15	0	15
VIII	23	2	1
IX	1	0	1
х	87	34	121
XI	61	56	117
XII	6	11	17
TOTAL	353	136	489

TABLA 86. Capturas en número del monitoreo del año 1994 por áreas de procedencia y región. desagregadas en repetidas y no repetidas respecto a las temporadas del año 1993.

PEGTON	NUMERO PR	OCEDENCIAS	moma r
REGION	REPETIDAS	NO REPETIDAS	TOTAL
I	7.639	9	7.648
ıı	20.507	4.884	25.391
III	630.589	95.710	726.229
IV	1.826.360	127.354	1.953.714
v	317.649	0	317.649
VI	55.577	0	55.577
VII	19.749	o	19.749
VIII	1.178.578	680	1.179.258
IX	3.000	0	3.000
x - 55	6.377.902	162.450	6.540.352
XI	3.185.570	667.030	3.852.600
xII	86.353	205.768	292.121
TOTAL	13.709.473	1.263.885	14.973.358

B. RESULTADOS EVALUACION

1. Composiciones de tallas

Las composiciones de tallas regionales para los años 1993 y 1994 se entregan en la Tabla 87a y 87b a intervalos de 1 mm. Estas se obtuvieron, adicionando las capturas de las composiciones de tallas proporcionadas por el monitoreo de las temporadas de pesca de cada año.

Las cifras de capturas del año 1994, contienen datos de decomisos efectuados en ese año, ésto principalmente con fines de evaluación.

Para 1993 se usaron directamente las composiciones reportadas por los monitoreos de la pesquería (IFOP, 1993), en cambio las de 1994 se recalcularon, expandiendo las proporciones de cada intervalo de talla estimadas por el IFOP (1994 y 1995) a los desembarques totales de cada región, según los registros más actualizados de SERNAP disponibles a la fecha de este estudio.

Antes de proceder al análisis de los datos fue necesario someterlos a un tratamiento para eliminar variaciones sistemáticas en las frecuencias observadas. Para tal efecto, se probaron suavizamientos con promedios móviles de 3 a 13 observaciones, dependiendo de la periodicidad observada (ver tablas 88 a la 98).

2. Reestructuración de las composiciones de tallas

Las composiciones de tallas a intervalos de 1 mm fueron reorganizadas en intervalos desiguales, como lo requiere el método para hacer el seguimiento de las cohortes en períodos anuales. Las frecuencia originales al mm fueron interpoladas a la décima de mm y luego acumuladas dentro de los límites de los nuevos intervalos calculados

TABLA 87a. Composiciones de tallas en la captura de macrozona 1 durante las temporadas de pesca 1993 y 1994.

	R	egión I	F	legión II	Reg	jón III	Reg	Non IV	Reg	ion V	Reg	rión VI
$\overline{}$	J 973	B B	-	3 P4	93	94	93	94	93	<u> </u>	R3	94
84		1	1	0 0	1	0	0		0	0	0	
81				9 0	1		0	:	D D	0	0	0
82			ľ	D 0	1	0	ه ا	, ,	, ,		0	
B				0 0		a	0		0	o	0	
85			1	5 0	1	0	0	0	0	٥	٥	0
86	1			. 0	1		0	0		0		0
87 88	4	12		0 0 5 0	0	16	. 6			0	0	0
69	1			i	1			٥	اة	_ _	ه ا	0
90	1 138	24	1 14	4 0	ee	59	201	64	26	٥	3	7
P4	1	36			. 0	37	471	0	68	0	12	7
92 93		121			18	200	742 805	422 347	192 151	0	0 12	11
94		110 323			155 534	300 545	1 751	707	379		135	11
95		631		1	908	2 468	3 833	4 253	1 394	333	31	30
98		827			2 122	7 287	4 573	3740	2352	71	209	53
97	4	1 317	1		3 255	12 300	8 465	8 370	4777	207	267	68
98 90		2 184 2 297			4 758 8 769	18 958 28 750	14 577 28 534	10 251 21 131	9 700 11 888	592 1 408	713 900	124 157
100		5 400			27 717	88 018	87 085	104 712	43 326	8 345	1 200	811
101	3 892	3 701			32 355	66 194	60 579	73 097	38 783	7 678	2 172	1 023
102		4 164	L	1	52 884	102 735	105 530	105 R23	85 DO4	11 762	2 560	1 607
103	T .	3 724			47 138	111 558	119 367	114 440	57 970 68 439	19 844	1 384	2 268
104		3 527 3 390	1		56 293 57 431	119 996 128 364	142 940 149 711	136 881 151 576	58 436 68 385	15 725 17 481	2 194 1 891	2 448 2 869
106	1 613	2 786			43 108	P1 552	131 901	150 674	80 553	14 441	2 849	2 688
107	1 695	2 293	14 206	25 981	49 830	101 294	138 619	145 195	58 194	16 225	2 512	3 237
108	1 576	3 408			47 959	94 370	139 738	167 575	64 355	16 200	2 532	3 496
109	1 458	2 422 2 578	15 418 17 077		42 314 \$5 840	80 054 91 679	161 668 198 369 i	161 672 222 632	55 187 64 573	17 417 20 571	1 994 1 687	3 083 3 615
771	1 181	1 187	9 769	4	36 658	56 448	136 726	155 208	49 242	15 884	2 258	2 868
112	1 042	1 835	12 421		45 971	78 200	162 385	189 538	61 873	19 082	2 413	3 174
113	902	1532	7 208		36 008	52 D99	136 390	152 959	35 516	17911	794	3 330
114	761	1 304	P 460	1	37 436	48 008	139 049	164 879	42 456	15 807	1 278	2 784
115 116	521 551	1 370	7 230 7 174		44.091 32.792	51 439 39 075	148 547 125 847	174 675 137 412	39 055 35 823	17 263 13 521	1 233 1 102	2 507 2 099
117	480	800	4 619	ı	30 050	39 220	107 885	128 939	29 576	12 570	845	2 185
118	410	734	5 586	l l	36 555	30 185	101 353	147 391	30 37a	14 074	784	2 200
719	331	677	4 504	16 278	28 441	23 995	97 834	121 013	21 742	10 137	733	1 558
120 121	251 172	636 428	5 859 3 879	16 672	39 067	30 063	112 381	129 597 73 320	21 971 18 196	9 462	605 353	1 373
122	140	498	4 578	9 570 7 401	24 781 26 515	19 573 23 179	71 854	75 394	20 013	5 650 6 356	388	907 842
123	100	257	3 065	8 590	.22 098	14 058	57 509	58 650	10 522	4 534	183	637
124	78	212	2721	5 638	21 636	12 410	50 141	56 894	9 863	3 904	as	454
125 126	55 33	219 115	3 870	5 003	23 620	12 357	51 000	53 804	10 411	3 700	148	303
127	11	127	1 547 1 428	2 841 3 418	16 906 ; 14 834	7 414 (40 248 30 842	39 156 31 233	8 025 6 628	2 548	86 113	249 186
128	17	144,	1 503	1 677	14 748	5 590	28 752	31 985	4 310	1 911	55	110
129	22	71B	1 593	2341	12 891	4 850	Z3 424	20 110	3 103	1 189	155	63
130	26	77	1 858	1 907	13 802	4 962	24 834	27 709	4 073	1250	36	90
132	18	65 51	1 364	1 ecs 712	6 754 9 766	3 136 3 376	13 270 15 083	14 091 13 754	2 594 2 418	781 759	29 24	44 28
133	0	21	376	58	7511	2 538	9 658	12 206	1 364	315	13	18
134	٥	34	248	1 528	6 22B	1 674	8 978	11 233	847	339	63	41
135 136	0	21 6	461	291	5 903	1 427	7 638	7 067	846	338	17	21
137		27	670 152	675 470	4 544 2 958	809 821	8 540 4 355	5 588 3 268	852 502	205 170	0	13
138	[ه	0	270	486	2 374	80	3 042	3 574	289	156	ő	ő
130	۰ſ	١٥	90	291	2 473	577	1 780	1 181	154	62	١٥	0
140	0	5	71	220	2891	272	2 670	1 958	272	89	•	٥
141	٥	0	82 0	œ	979	241	815	505 620	169	49	0	0
143	0	ام	e⊒ 0.	96	1 022	264 50	780	305	96 91	86 24	ا	0
144	0	اة	270	اه	485	130	617	398	150	8	0	٥
145	0	5]	270	113	589	0	504	339	14	31	0	0
148	0	0 1	27	56	212	130	174	106	14	20	٥	0
147	0		0	D	324 178	280	293	65	13 D	16 20	0	0
140	اة	اة	اه	١٥	178	0	119	∞ 7	٥	20	اه	ů l
150	١٥	o	اه	اه	50	ő	0	15	ō	اه	ŏ	0
151	٥	•]	0	٥	0	٥	185	٥	0	0	٥	[מ
152	•	٥	٥	0	0	0	٥	•	0	٥	٥	٥
153 154		0	0	٥		0 f 130	D D	D D	0	0	0	0
155	اة		ů,	اه	8	130	٥	6	0	0	, a	٥
158	0	0	ا ه	ō	Ď	0	0	0	١٥	0	0	١
	63 942	58 980	434 340	567 497	1 148 373	1733 477	3 295 032	3 529 969	1 149 538	345 519	39 040	55 584

TABLA 87b. Composiciones de tallas en la captura de la macrozona 2 durante las temporadas de pesca de 1993 y 1994.

	Resid	m VII	Regió	n VIII	Regi			ón XI	Regné	
	93	94_	93	94	93	94	973	94 D		
80 80 81 82 84 85 86 87 88 89 991 92 92 92 94 95 96 97 98 99 90 100 101 102 103 104 105 106 107 108 109 109 109 109 109 109 109 109 109 109		1 VII 94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							Regider Part Part	1 NO

con la ecuación (1) de la sección 2.1.1. Las composiciones de talla resultantes de la reestructuración se presentan en la primera columna de las tablas que contienen los resultados de la evaluación de stock para cada una de las regiones (tablas 88c a la 98c y 88d a la 98d).

Debido a que todos los cálculos se realizaron en MATLAB para Windows los procedimientos de suavizado, interpolación y redistribución de las frecuencias fueron incorporados en la subrutina FILASC.M, una modificación de la subrutina ACTASC.M de la primera versión del programa del modelo ACTII¹.

Por otra parte, y como una manera de probar que el modelo ACTII esta al alcance de cualquier evaluador, las regiones III y VI, se calcularon en planilla de cálculo Excel v.5 utilizando la función Solver, que utiliza el algoritmo de Newton para el ajuste de los SSQ. Los resultdos fueron comparados con aquellos obtenidos en MATLAB, sin que se detectaran diferencias en los resultados.

3. RESULTADOS

Las tablas que se presentan a continuación resumen los resultados por regiones de la evaluación de stock, los puntos biológicos de referencia y las CTP calculadas. En cada una de las regiones se probaron distintos parámetros iniciales, seleccionándose como resultado final aquel que entregó la suma de cuadrados residuales (SSQ) menor.

Un listado del programa con las subrutina mencionada se entrega en el Anexo 5 del infrome final del proyecto "Monitoreo de la Pesquería y Evaluación Indirecta del Stock de loco (I a XII Regiones), 1994.

3.1 | Región

3.1.1 Evaluación de stock

TABLA 88a. Parámetros fijos.

L _∞	155.208
K	0.1520
М	0.1660
Prom.móvil	9.000

TABLA 88b. Parámetros estimados.

R	56263
F ₀	2.528
F ₁	121.560
F ₂	11.066
8	14.765
b	2.896
С	0.337
SSQ	1,2798e+05

TABLA 88c. Mortalidades y abundancias a la talla de 1993.

Ngg [indiv.]	Z ₉₃ δ ₁	F ₉₃ δ ₁	Z ₀ ∆t	F ₀ ∆t	Cg3 [indiv.]	Tallas [mm]
56263	0.4478	0.4455	0.8424	0.6764	20240	98
22152	0.5660	0.4637	1.0219	0.859	9605	106
7348	0.6736	0.6714	1.1853	1.0193	3416	113
2091	0.7676	0.7653	1.3279	1.1619	900	119
522	0.8475	0.8452	1.4492	1.2832	172	124
. 116	0.9144	0.9121	1.5508	1.3848	60	128
29	1.1141	1.1118	1.8539	1.6879	7	132
88251					34401	98+

TABLA 88d. Mortalidades y abundancias a la talla de 1994.

Tallas [mm]	C ₉₄ [indiv.]	F ₉₄ δ ₂	Ζ94 δ2	Ng4 [indiv.]
98	24901	0.5841	0.6169	56263
106	15928	0.7391	0.7718	30582
113	6278	0.8802	0.9130	10652
116	2246	1.0034	1.0361	3337
124	704	1.1081	1.1409	1011
128	288	1.1959	1.2286	297
132	52	1,4576	1.4904	67
98+	50397			102210

3.1.2 Puntos biológicos de referencia

TABLA 88e. Parámetros de entrada.

Talla de reciutamiento	100
K .	0.152
-8	155.208
M	0.166
A	14.765
þ	2.896
С	0.337
Factor de condición	0,000792
Coef. de alometría	2.696489

TABLA 88f. Análisis de rendimiento y biomasa por recluta.

F	Y/R	B/R	Talla med
[año]	gr	[gr]	[mm]
0.000	0.000	2281.073	126.4
0.100	83,218	1638,595	122.5
0.200	123,456	1289,812	119.9
0.300	146,287	1069,267	117.9
0.400	160.586	916,451	116.4
0.500	170,164	803.891	115.2
0,600	176.898	717,278	114.1
0.700	181.809	648.410	113.3
0.800	185,493	592,235	112.6
0.900	188.320	545.472	111.9
1.000	190:530	505.889	111.3
1.100	192,282	471.916	110,8
1.200	193.690	442.414	110.4
1,300	194.833	416,537	110.0
1.400	195,769	393,642	109.6
1,500	196.542	373,231	109,2

TABLA 88g. Estrategias de explotación.

F _{0,1}	0.380
Fimax	1.9999

3.1.3 CTP de 1995

TABLA 88h. Proyección del stock al 1¹⁰ de enero de 1995.

Talia	N95
[mm]	[individ]
98	56263
106	27450
113	12827
119	3828
124	955
128	269
132	20

TABLA 88	i. CTP.
CTP(F _{0.1})	10529
CTP(F _{max})	43707

3.2 Il Región

3.2.1 Evaluación de stock

TABLA 89a. Parámetros fijos.

[لم	157,802
K	0.149
M	0.1601
Prom.móvil	9

TABLA 89b. Parámetros estimados.

Parametros	Estimados
R	535909
F ₀	0.7375
F ₁	19,166
F ₂	10.775
8	93.3290
b	27.6603
С	0.5540
SSQ	1.05e+09

TABLA 89c. Mortalidades y abundancias a la talia de 1993.

Ng ₃ [indiv.]	Z ₉₃ δ ₁	F93 δ1	Z ₀ ∆t	F ₀ ∆t	Cg3 [indiv.]	Tellas [mm]
535909	0.824	0.6823	0.8976	0.7375	173559	98
254325	0.824	0.6823	0.5932	0.4341	100628	106
127218	0.824	0.6823	0.7923	0,6322	39721	113
55631	0.824	0.6823	0.8621	0.7020	21045	120
23236	0.824	0.6823	0.8840	0.7239	8638	125
9563	0.824	0.6823	0.8916	0.7315	4118	129
3915	0.824	0.6823	0.8946	0.7345	1409	133
1599	0.824	0.6823	0.8959	0.7358	571	137
653	0.824	0.6823	0.8966	0.7365	189	140
266	0.824	0.6823	0.8969	0,7368	272	142
109	0.824	0.6823	0.8971	0.7370	204	144
77	0.824	0.6823	0.8972	0.7371	57	146
1012501			·- ·- ·		350451	98+

TABLA 89d. Mortalidades y abundancias a la talla de 1994.

Tallas [mm]	C ₉₄ [indiv.]	F ₉₄ δ ₂	$Z_{94} \delta_2$	Ng4 [indiv.]
98	170077	0.4197	0.5798	535909
106	205090	1,2484	1.4085	310474
113	122814	1.8223	1.9824	131707
120	45286	2.0236	2.1837	74979
125	13313	2.0868	2.2469	29638
129	4497	2.1087	2,2688	12510
133	2103	2.1173	2.2774	4666
137	1062	2.1211	2.2812	2147
140	330	2.1230	2.2831	881
142	133	2.1240	2.2841	397
144	['] 74	2.1246	2.2847	0
146	35	2,1249	2.2850	0
98+	565354			1103308

3.2.2 Puntos biológicos de referencia

TABLA 89e. Parámetros de entrada.

Talla de reclutamiento	100
K	0.149
L00	157,802
М	0.1601
8	93.33
Ь	27.658
С	0.2596
Factor de condición	0.001208
Coef. de alometría	2.599123

TABLA 89f. Análisis de rendimiento y biomasa por recluta.

F	Y	В	Talla med
[eño]	[gr]	[gr]	[mm]
0.000	0.000	2329.527	127.9
0.100	114.607	1376.066	121.5
0.200	153,684	988.779	117,7
0.300	171,227	783.029	115.2
0.400	180.504	656.139	113.5
0.500	185,924	570.062	112.2
0.600	189,323	507.692	111.2
0.700	191.567	460.272	110,4
0.800	193.107	422,876	109.7
0.900	194.195	392.531	109.2
1.000	194.982	367,338	108.7
1.100	195.559	346.026	108.3
1.200	195.988	327.718	107.9
1.300	196,309	311.781	107.6
1.400	196.551	297.756	107.3
1.500	198.732	285.293	107.1
1.600	196,867	274.127	106.9
1.700	196,967	264.050	106.7
1.800	197.038	254.898	106.5
1.900	197.088	246.537	106.3
2.000	197.120	238.862	106.1
2.100	197.138	231.783	106.0
2,200	197.144	225.228	105,8
2.300	197.142	219.134	105,7
2,400	197.132	213,452	105,6
2.500	197.116	208.135	105.5

TABLA 89g. Estrategias de explotación.

F _{0.1}	0.2223
Fmax	2.2196

3.2.3 CTP de 1995

TABLA 89h. Proyección del stock al 1[™] de enero de 1995.

Talla	N95
[mm]	[individ]
98	535909
106	321714
113	92675
120	7821
125	25637
129	14356
133	7046
137	2254
140	955
142	485
144	232
146	0

TABLA 89i. CTP.

CTP(F_{0,1}) 83556 CTP(F_{max}) 521052

III Región 3.3

3.3.1 Evaluación de stock

L _∞	168.2
K	0.160
М	0.230
Prom.móvil	9

TABLA 90a. Parámetros fijos. TABLA 90b. Parámetros estimados.

R	1236435
F ₀	0,8658
F ₁	42.3135
F ₂	16.9642
а	15.5947
b	1.2606
С	0.5395
SSQ	7.64e+07

TABLA 90c. Mortalidades y abundancias a la talla de 1993.

Tallas [mm]	Cg3 [indīv.]	F ₀ ∆t	Z ₀ ∆t	F93 δ ₁	Z93 δ1	Ng3 [Indiv.]
98	407838	0.3870	0,6170	0.6733	0,9033	1236435
108	361101	0.5479	1.3949	0.9533	1.1833	615567
117	211273	0,6602	2.2851	1.1486	1.3786	267339
125	94230	0.7299	3.2450	1,2700	1.5000	106003
131	34949	0.7722	4.2472	1.3435	1.5735	39742
137	11158	0.7982	5,2753	1.3887	1.6187	14400
141	3082	0.8147	6.3200	1.4175	1.6475	5108
145	889	0.8256	7,3756	1,4364	1.6664	1787
149	211	0.8330	8.4387	1.4493	1.6793	620
152	1	0.8383	9,5069	1.4584	1.5884	341
98+	1124732				· · · · · · · · · · · · · · · · · · ·	2287341

TABLA 90d. Mortalidades y abundancias a la talla de 1994.

Tallas [mm]	C ₉₄ [indiv.]	F94 δ2	Z94 δ2	Ng4 [indiv.]
98	881463	1.4961	1.7261	1236435
108	540170	2.1181	2.3481	663761
117	175326	2.5521	2.7821	203844
125	42826	2.8218	3.0518	44912
131	10397	2.9851	3,2151	9431
137	1850	3.0856	3,3156	3839
141	562	3.1495	3.3795	2597
145	288	3.1916	3.4216	1623
149	37	3,2203	3.4503	720
152	2	3,2406	3.4708	600
98+	1652921			2167761

3.3.2 Puntos biológicos de referencia

TABLA 90e. Parámetros de entrada.

Talla de reclutamiento	98
К	0.160
L∞	168.2
М	0.2300
a	15.5947
Ь	1.2606
C	0,5395
Factor de condición	4.30e-4
Coef. de alometria	2.885943

TABLA 90f. Análisis de rendimiento y biomasa por recluta.

	:		
F	Y	В	Talla med
[año]	[gr]	[gr]	[mm]
0.000	0.000	2268,545	127.0
0.100	120.774	1551,357	121.9
0,200	174.342	1179,320	118,5
0.300	202,181	953,855	116.1
0.400	218,218	803,226	114.3
0.500	228,151	695.597	112.9
0,600	234.640	614,825	111.7
0.700	239.051	551.904	110.8
0.800	242.141	501.442	110.0
0.900	244.355	460.016	109.3
1.000	245,967	425.355	108.7
1.100	247.155	395,894	108.2
1,200	248.036	370.517	107.7
1.300	248.691	348.411	107.3
1.400	249.178	328.965	107.0
1.500	249,535	311.714	106,6
1.600	249.795	296.296	106,3
1.700	249,978	282.425	106,0
1.800	250,101	269.874	105,8
1.900	250,177	258.457	105.5
2.000	250.217	248.023	105.3
2.100	250,226	238.447	105,1
2.200	250,212	229.623	104.9

TABLA 90g. Estrategias de explotación.

0.311
2.0874

3.3.3 CTP de 1995

TABLA 90h. Proyección del stock al 1^{ro} de enero de 1995.

Talla	N95
[mm]	[individ]
98	1236435
108	295130
117	102756
125	23710
131	1735
137	0
141	1654
145	1692
149	1110
152	1064

TABLA 90i. CTP.

CTP(F _{0,1})	217 039
CTP(F _{max})	979 096

3.4 IV Región

3.4.1 Evaluación de stock

TABLA 91a. Parámetros fijos.

L∞	168.00
K	0,144
М	0.146
Prom.móvil	3.00

TABLA 91b. Parámetros estimados.

R	5048566
F ₀	0.7587
F ₁	32,7927
F ₂	5.9882
а	56,523
Ь	5,264
C	0.508
SSQ	4.4e+10

TABLA 91c. Mortalidades y abundancias a la talla de 1993.

Tallas [mm]	C ₉₃ [indiv.]	F ₀ ∆t	Z ₀ ∆t	F93 δ1	Z ₉₃ δ ₁	Ng3 [indiv.]
89	91971	0.0199	0,1659	0,3007	0.1767	5048566
100	1115438	0,2245	0.3705	0.3455	0.4915	3860794
109	1175106	0.6097	0.7557	0.9382	1.0842	2198467
117	601429	0,7320	0.8780	1.1264	1.2724	971336
124	215905	0.7531	0.8991	1.1589	1.3049	399457
130	67252	0.7572	0.9032	1.1652	1.3112	162214
135	20476	0.7582	0.9042	1.1667	1.3127	65706
139	5111	0.7585	0.9045	1,1672	1.3132	26598
143	1574	0.7586	0.9046	1.1673	1.3133	10765
146	521	0.7586	0.9046	1.1674	1.3134	4356
149	121	0.7587	0.9047	1.1674	1,3134	3053
89+	3294904					127511323

TABLA 91d. Mortalidades y abundancias a la talla de 1994.

Talles [mm]	Cg4 [indiv.]	F94 δ2	Z94 δ2	Ng4 [Indiv.]
89	88337	0.0310	0.1770	5048566
100	1173608	0.3497	0.4957	4305601
109	1341830	0.9495	1.0955	2384784
117	707960	1.1399	1,2859	888954
124	223649	1.1729	1.3189	321324
130	71488	1.1792	1.3252	159444
135	18604	1.1808	1.3268	82490
139	3493	1.1812	1.3272	39289
143	876	1.1814	1.3274	18665
146	99	1,1814	1.3274	7984
149	10	1.1814	1.3274	5888
89+	3629954			13262988

3.4.2 Puntos biológicos de referencia

TABLA 91e. Parámetros de entrada.

Talla de reclutamiento	89
K	0.144
L∞	168.00
M	0.146
a	56,523
b	5.264
C	0.508
Factor de condición	4.03e-04
Coef. de alometría	2.889128

TABLA 91f. Análisis de rendimiento y biomasa por recluta.

F	Y/R	B/R	Talla med
[año]	[gr]	[gr]	[mm]
0.000	0,000	3674,700	128.2
0.100	166.673	1977.022	118.8
0.200	210.695	1359,309	113.5
0.300	225.813	1054.371	110,1
0.400	231,481	876.438	107.8
0.500	233.460	760.950	106.1
0,600	233.841	680,259	104.8
0.700	233,492	620.758	103.8
0.800	232.806	575.042	102.3
0.900	231.973	538,767	101.8
1,000	231.088	509.228	101.3

TABLA 91g. Estrategias de explotación.

	- 1000
PD.1	0.1686
. 0,1	
_	0.5895
rmax '	0.3633

3.4.3 CTP de 1995

TABLA 91h. Proyección del stock al 1^{ro} de enero de 1995.

Talla	N ₉₅
[mm]	[individ]
89	5048566
100	4411960
109	2785633
117	927616
124	160978
130	86873
135	78229
139	56821
143	31838
149	12240

TABLA 91i. CTP.

CTP(F _{0,1})	519243
CTP(Fmax)	2265053

V Región 3.5

3.5.1 Evaluación de stock

	1
الم	168.2
K	0.161
М	0.230
Prom.móvil	5,00

TABLA 92a. Parámetros fijos. TABLA 92b. Parámetros estimados.

R	1917341
F ₀	0.718
F ₁	21,359
F ₂	0.745
a	41,525
b	0.127
C	1.255
SSQ	3.454e+09

TABLA 92c. Mortalidades y abundancias a la talla de 1993.

Tallas [mm]	C ₉₃ [indiv.]	F ₀ ∆t	Z ₀ ∆t	F93 δ1	Ζ93 δ1	Ng3 [indiv.]
93	285438	0.1404	0.3704	0.1604	0.1692	1917341
104	551834	0.7052	0.9352	0,8054	0.8143	998144
113	230354	0.7180	0.9480	0.8200	0.8289	389285
121	64358	0.7181	0.9481	0.8202	0.8290	150848
128	13680	0.7181	0.9481	0.8202	0.8290	58450
134	2393	0.7181	0.9481	0.8202	0.8290	22648
139	591	0.7181	0.9481	0.8202	0.8290	8776
144	130	0.7181	0.9481	0.8202	0.8290	3400
147	5	0.7181	0.9481	0.8202	0.8290	2232
93+	1148965	- Carrier Star Laboratory	and the same of the same of the same		4 111-1-	3551123

TABLA 92d. Mortalidades y abundancias a la talla de 1994.

Tallas [mm]	C ₉₄ [indiv.]	F94 δ2	Z ₉₄ δ ₂	Ng4 [indiv.]
93	56844	0.0287	0.0741	1917341
104	164119	0.1443	0.1897	1308104
113	95646	0.1469	0.1923	357754
121	23239	0.1469	0.1923	127396
128	4492	0.1469	0.1923	69184
134	875	0.1469	0.1923	35887
139	210	0.1469	0.1923	16236
144	71	0.1469	0.1923	6560
147	12	0.1469	0.1923	4407
93+	345508			3842869

3.5.2 Puntos biológicos de referencia

TABLA 92e. Parámetros de entrada.

Talla de reclutamiento	93
К	0.161
L∞	168.2
М	0.23
a	41.525
b	0.127
C	1,255
Factor de condición	0.001073
Coef. de alometría	2.688134

TABLA 92f. Análisis de rendimiento y biomasa por recluta.

F	Y	В	Talla med
[año]	[gr]	[gr]	[mm]
0.000	0.000	2090.498	124.0
0.100	119.228	1342.318	117.8
0.200	167.454	986.219	113.9
0.300	190.841	784.032	111.1
0.400	203.560	655.767	109.0
0.500	211.041	567.947	107.4
ô. ?ô ô	218.710	456,385	105.2
0.800	220,726	418.923	104.4
0.900	222.103	388.894	103.7
1.000	223.057	364.289	103.1

TABLA 92g. Estrategias de explotación.

F0.1	0.2759
Fmax	1.0000

3.5.3 CTP de 1995

TABLA 92h. Proyección de stock al 1^{ro} de enero de 1995.

Talia	N ₉₅
[mm]	[Individ]
93	1917341
104	1546853
113	951131
121	217922
128	86599
134	53786
139	29109
144	13324
147	9049

TABLA 92i. CTP.

CTP(F _{0.1})	714360
CTP(Fmax)	1968645

3.6 VI Región

3.6.1 Evaluación de stock

TABLA 93a. Parámetros fijos.

L	154.841
K	0.1420
M	0.1450
Prom.móvil	7

TABLA 93b. Parámetros estimados

R	228281
F ₀	0,599
F ₁	4.834
F ₂	0.882
а	37.994
b	0.141
С	1.210
SSQ	2.566e+07

TABLA 93c.Mortalidades y abundancia a la talla de 1993.

Tallas [mm]	C ₉₃ [indiv.]	F ₀ ∆t	$z_0 \Delta t$	F ₉₃ δ ₁	Z ₉₃ δ ₁	Ng3 [indiv.]
87	592	0.0046	0.1496	0.0013	0.0065	228281
96	10046	0.1483	0.2933	0.0426	0.0478	182941
103	15193	0.5392	0.6842	0.1549	0.1601	112216
110	8330	0.5954	0.7404	0.1711	0.1762	55044
116	3380	0.5987	0.7437	0.1720	0.1772	26209
121	948	0,5989	0.7439	0.1721	0,1773	12457
126	331	0.5990	0.7440	0,1721	0.1773	5920
130	151	0.5990	0.7440	0.1721	0.1773	2813
133	53	0.5990	0.7440	0.1721	0.1773	1337
136	15	0,5990	0.7440	0.1721	0.1773	1239
87+	39039		-		-	628457

TABLA 93d.Mortalidades y abundancias a la talla de 1994.

Tallas [mm]	Cg4 [indiv.]	F ₉₄ δ ₂	Z ₉₄ δ ₂	Ng4 [indiv.]
87	144	0.0013	0.0299	228281
96	7447	0.0431	0.0717	197975
103	20264	0.1566	0.1852	150332
110	16424	0.1729	0.2015	84361
116	7990	0.1739	0.2025	40618
121	2435	0.1740	0.2026	19850
126	622	0.1740	0.2026	10007
130	172	0.1740	0.2026	4859
133	61	0.1740	0.2026	2315
136	18	0.1740	0.2026	2181
87+	55577			740779

3.6.2 Puntos biológicos de referencia

TABLA 93e. Parámetros de entrada.

Talla de reclutamiento	100
K	0.142
L∞	154.841
М	0.145
a	37.994
b	0.141
C	1,210
Factor de condición	0.000757
Coef. de alometría	2.755613

TABLA 93f. Análisis de rendimiento y biomasa por recluta.

F	Υ	В	Talla med
[año]	[gr]	[gr]	[mm]
0.000	0,000	3381,700	127.1
0.100	168.219	1774.330	120.2
0.200	217.352	1176.808	116.1
0.300	236.760	877.273	- 113.5
0.400	245.772	700.627	111.6
0.500	250,375	585,169	110.2
0.600	252.861	504,161	109.1
0.700	254.238	444,309	108.3
0.800	254.993	398.316	107.6
0.900	255,388	361.870	107,0
1.000	255.565	332.264	106.6
1.100	255,607	307.722	106.1
1.200	255.565	287.030	105.8
1.300	255.470	269.334	105.5

TABLA 93g. Estrategias de explotación.

F _{0.1}	0.1857
Fmex	1.0924

3.6.3 CTP de 1995

TABLA 93h. Proyección de stock al 1^{ro} de enero de 1995.

Talla	N95
[mm]	[individ]
87	228281
96	203071
103	169594
110	115777
116	60473
121	29043
126	15502
130	8355
133	.4172
136	3932

TABLA 93i. CTP.

CTP(F _{0,1})	61763
CTP(Fmax)	248409

3.7 VII Región

3.7.1 Evaluación de stock

L _∞	171,800
K	0.100
М	0.159
Prom.movil	9.000

TABLA 94a. Parámetros fijos. TABLA 94b. Parámetros estimados.

R	173135
F ₀	0,618
F ₁	9.754
F ₂	1.873
a	18.327
b	0.115
C	1.084
SSQ	1.813e+007

TABLA 94c. Mortalidades y abundancias a la talla de 1993.

5 3			- 4:	- 4.	A [1 1]	~ n f 1
Ng3 [indiv.]	Z93 δ1	F93 δ1	Z ₀ ∆t	F ₀ ∆t	Cg3 [Indiv.]	Tallas [mm]
173135	0.0740	0.0679	0.2710	0.1120	12318	96
121800	0,1718	0.1657	0.4323	0.2733	19935	103
72620	0.2747	0.2685	0.6019	0.4429	15953	109
37834	0.3354	0.3293	0.7021	0.5431	9431	115
18342	0.3619	0.3558	0.7459	0.5869	4456	121
8624	0.3726	0.3665	0.7634	0.6044	1683	126
4005	0.3769	0.3708	0.7707	0.6117	547	130
1850	0.3788	0.3727	0.7738	0.6148	97	134
853	0.3797	0.3736	0.7752	0.6162	40	138
393	0.3801	0.3740	0.7759	0.6169	17	141
181	0.3804	0.3742	0.7763	0.6173	2	144
83	0.3805	0.3744	0.7765	0.6175	1	146
73	0.3806	0.3745	0.7768	0.6178	1	149
439792	<u>.</u>				64481	96+

TABLA 94d. Mortalidades y abundancias a la talia de 1994.

Tallas [mm]	Cg4 [indiv.]	F94 δ2	Z94 δ2	Ng4 [indiv.]
96	9631	0.0670	0.0984	173135
103	20761	0.1635	0.1949	138017
109	20046	0.2649	0.2963	87422
115	14357	0.3249	0.3562	48633
121 :	8121	0.3510	0.3824	24376
128	4968	0.3615	0.3929	11917
130	3212	0.3658	0.3972	5957
134	1785	0.3677	0.3991	2967
138	1264	0.3686	0.3999	1505
141	939	0.3690	0.4004	697
144	362	0.3692	0.4006	323
146	157	0.3693	0.4007	154
149	11	0.3695	0.4009	132
96+	85614			495235

3.7.2 Puntos biológicos de referencia

TABLA 94e. Parámetros de entrada.

Talla de reclutamiento	96
К	0.1
Loo	171.8
М	0.159
a	18.327
b	0.115
С	1.084
Factor de condición	9.15656e-5
Coef. de alometría	3.20055

TABLA 94f. Análisis de rendimiento y biomasa por recluta.

F	Y/R	B/R	Talla med
[año]	[gr]	[gr]	[mm]
0.0000	000.0000	3206.9532	125.4
0.1000	145,1334	1832.0323	117.9
0.2000	187.9832	1302.0765	113.9
0.3000	205.0211	1029,4876	111.4
0.4000	213.0133	864.4656	109,6
0.5000	217.1449	753.6169	108.4
0.6000	219,3989	673,6559	107.4
0.7000	220.6526	612,9321	106.6
0.8000	221.3370	565,0047	106.0
0.9000	221.6811	526.0329	105.5
1.0000	221.8144	493.5864	105,1
1.1000	221.8138	466.0521	104.7
1.2000	221,7265	442.3167	104.3
1.3000	221.5828	421.5863	104.0
1.4000	221,4023	403.2789	103.8
1.5000	221.1983	386.9573	103.5

TABLA 94g. Estrategias de explotación.

F _{0.1}	0.1884
Fmax	1.0476

3.7.3 CTP de 1995

TABLA 94h. Proyección del stock al 1^{ro} de enero de 1995.

Talla	N ₉₅
[mm]	[Individ]
96	173135
103	143913
109	103206
115	59304
121	30169
126	14308
130	6117
134	2416
138	1041
141	212
144	0
146	0
149	103
96+	533924
103+	360788

TABLA 94	i. CTP.
CTP(F _{0.1})	39.495
CTP(F _{max})	166.344

3.8 VIII Región

3.8.1 Evaluación de stock

TABLA 95a. Parámetros fijos.

L _∞	171.800
K	0,100
M	0.159
Prom.móvil	9.000

TABLA 95b. Parámetros estimados.

R	3971929
Fo	0.632
F ₁	38.921
F ₂	6.142
a	19.806
b	0.068
С	1,211
SSQ	3.074e+010

TABLA 95c. Mortalidades y abundancias a la talla de 1993.

Ng ₃ [indiv.]	$z_{93} \delta_1$	F93 δ ₁	Z ₀ ∆t	F ₀ ∆t	C ₉₃ [Indiv.]	Tallas [mm]
397192	0.0119	0.0040	0.1603	0.0013	180	76
337203	0.0325	0.0247	0.1671	0.0081	13986	85
280599	0.1334	0.1256	0,2004	0.0414	270481	93
2168123	0.4825	0.4746	0.3154	0.1564	877173	100
1425574	1.1129	1.1050	0.5232	0.3642	941247	107
778974	1.6056	1.5978	0.6855	0.5265	602307	113
379098	1.8158	1.8080	0.7548	0.5958	288345	119
17611	1.8877	1.8798	0.7785	0.6195	124858	124
8053°	1.9120	1.9041	0.7865	0.6275	45461	129
36625	1,9207	1.9128	0.7894	0.6304	15811	133
16623	1.9240	1.9162	0.7905	0.6315	6046	136
7539	1.9254	1.9176	0.7909	0.6319	2619	140
3418	1.9260	1,9182	0.7911	0.6321	1311	143
1549	1.9263	1.9185	0.7912	0.6322	537	146
1318	1.9266	1,9188	0.7913	0.6323	71	148
15225454	 		·-···		3190432	76+

TABLA 95d. Mortalidades y abundancias a la talla de 1994.

Ng4 [indiv.]	Z ₉₄ δ ₂	F ₉₄ δ ₂	C ₉₄ [indiv.]	Tallas [mm]
3971929	0.0339	0.0026	7093	76
3414548	0.0470	0.0156	59787	85
2886948	0.1107	0.0793	291678	93
2179807	0.3311	0.2998	561773	100
1109842	0.7293	0.6979	485725	107
416380	1.0405	1.0091	315212	113
151882	1.1732	1.1419	154823	119
78022	1.2186	1.1872	74569	124
44067	1.2339	1.2026	38491	129
30150	1.2394	1.2081	20884	133
17893	1,2416	1.2102	11816	136
9094	1.2424	1.2111	5504	140
4230	1.2428	1.2115	1975	143
1812	1.2430	1.2116	280	146
1943	1.2432	1.2118	29	148
14318545			2029638	76+

3.8.2 Puntos biológicos de referencia

TABLA 95e. Parámetros de entrada.

Talla de reclutamiento	80
K	0.1
L ₆₈	171.8
М	0.159
8	19,806
b	0.068
C	1.211
Factor de condición	7.11e-4
Coef. de alometría	2.737235

TABLA 95f. Análisis de rendimiento y biomasa por recluta.

F	Y/R	B/R	Talla med
_[año]	[gr]	[gr]	[mm]
0.0000		2174,9223	115.4
0.1000	87,5546	1379,2538	107.8
0.2000	115.3702	1070.2020	103.9
0.3000	127.4475	908.8605	101.5
0.4000	133,6894	809,7996	99.9
0.5000	137.2939	742.4212	98.7
0.6000	139.5395	693,2650	97.9
0.7000	141.0164	655.5397	97.2
0.8000	142.0267	625.4639	96.6
0.9000	142.7380	600.7693	96,1
1.0000	143,2491	580.0132	95.7
1.1000	143.6214	562,2344	95.4
1.2000	143.8946	546.7670	95.1
1.3000	144.0953	533,1348	94.8
1.4000	144.2419	520.9875	94.6
1.5000	144.3472	510.0616	94,3
1.6000	144.4208	500.1547	94,1
1.7000	144.4696	491,1086	94.0
1.8000	144.4988	482.7976	93.8
1.9000	144.5123	475.1205	93.6
2.0000	144.5132	467.9947	93.5

TABLA 95g. Estrategias de explotación.

F _{0,1}	0.2044
Fmax	1.9571

3.8.3 CTP de 1995

TABLA 95h. Proyección del stock ai 1^{to} de enero de 1995.

Talla	N ₉₅
[mm]	[individ]
76	3971929
85	3489768
93	2952792
100	2284304
107	1424161
113	549335
119	89045
124	0
129	3039
133	4908
136	8156
140	5349
143	3159
146	1984
148	3033
76+	14790962
100+	4376474

TABLA 95i. CTP.

CTP(F _{0.1})	349.839
CTP(F _{max})	2230.665

3.9 X Región

3.9.1 Evaluación de stock

TABLA 96a. Parámetros fijos.

Loo	176,000
K	0.123
М	0.143
Prom.móvil	5,000

TABLA 96b. Parámetros estimados.

R	14093312
Fa	0,566
F ₁	38.527
F ₂	7.472
a	36.120
b	2.019
Ç	0.609
SSQ	4.449e+011

TABLA 96c. Mortalidades y abundancias a la talla de 1993.

Taffas [mm]	Cg3 [Indiv.]	F ₀ ∆t	Z ₀ ∆t	F ₉₃ δ ₁	Z ₉₃ δ ₁	Ng3 [indiv.]
88	31912	0.0080	0,1506	0.0209	0.0264	14093312
98	1443400	0.0536	0.1962	0.1400	0.1455	11849766
107	3845447	0.2055	0,3481	0.5372	0.5426	9026300
115	3756158	0.4019	0.5445	1.0504	1.0559	5776491
122	2405277	0.5073	0.6499	1.3256	1.3311	3179098
128	1150317	0.5449	0.6875	1.4239	1.4294	1628946
134	463753	0.5577	0.7003	1.4574	1.4629	813874
139	180362	0.5624	0.7050	1,4697	1.4752	403090
143	74338	0.5643	0.7069	1,4747	1.4802	198981
147	29359	0.5651	0.7077	1.4769	1.4824	98090
150	13304	0.5656	0.7082	1.4780	1.4835	48324
153	5382	0.5658	0.7084	1.4785	1.4840	23800
156	1875	0.5659	0.7085	1.4789	1.4843	11719
158	917	0.5660	0.7086	1.4790	1.4845	5770
160	396	0.5660	0,7086	1.4792	1.4846	2841
162	266	0.5660	0.7086	1.4792	1.4847	1399
164	267	0.5660	0.7086	1.4793	1.4847	689
165	195	0.5661	0.7087	1.4793	1.4848	339
166	227	0.5661	0.7087	1.4793	1.4848	167
167	27	0.5661	0,7087	1,4794	1.4849	165
86+	13403181					47163163

TABLA 96d. Mortalidades y abundancias a la talla de 1994.

Talias [mm]	Cg4 [indiv.]	F ₉₄ δ ₂	Z ₉₄ δ ₂	Ng4 [indiv.]
88	39817	0.0208	0.0490	14093312
98	1826050	0.1395	0.1677	12259600
107	3776100	0.5352	0.5634	9072915
115	2643817	1.0466	1.0748	4516989
122	1497576	1,3209	1.3490	1761451
128	704085	1.4188	1.4470	674665
134	315006	1.4522	1.4803	417299
139	150712	1.4645	1.4926	305257
143	79542	1.4694	1.4976	194188
147	37740	1.4716	1.4998	108672
150	15951	1.4727	1.5008	59924
153	10038	1.4732	1.5014	30533
156	6033	1.4735	1.5017	16057
158	3862	1.4737	1.5019	8583
160	1946	1.4738	1.5020	4231
162	551	1.4739	1.5020	2132
164	115	1.4740	1.5021	987
165	57	1.4740	1,5021	367
166	33	1.4740	1.5022	126
167	0	1.4741	1.5022	68
88+	11109032			43527357

3.9.2 Puntos biológicos de referencia

TABLA 96e. Parámetros de entrada.

Talla de reclutamiento	90
K	0.123
L∞	176
М	0.1426
а	36.120
Ь	2.019
C	0.609
Factor de condición	4.91e-4
Coef, de alometría	2.825341

TABLA 96f. Análisis de rendimiento y biomasa por recluta.

F	Υ	В	Talla med
[año]	[gr]	[gr]	[mm]
0,0000	0.0000	3491,5707	129,8
0,1000	147.1803	2005.9326	120,5
0.2000	188.2980	1460.8059	115.6
0.3000	203,9897	1186,1951	112.6
0.4000	210.9882	1021.9807	110.5
0.5000	214.3554	912.6147	109.0
0.6000	215.9984	834,2205	107.9
0.7000	216.7483	774.9651	107.0
0.8000	217.0069	728.3544	106,3
0.9000	216.9837	690,5400	105.7
1.0000	216.7947	659.1002	105,2
1.1000	216,5071	632,4360	104,7
1.2000	216.1613	609,4490	104.3
1.3000	215.7821	589,3592	104.0
1.4000	215.3854	571. 5 974	103.7
1.5000	214,9812	555,7377	103.4

TABLA 96g. Estrategias de explotación.

F _{0.1}	0.1773
Fmax	0.8372

3.9.3 CTP de 1995

TABLA 96h. Proyección del stock al 1^{ro} de enero de 1995.

Talla	N ₉₅
[mm]	[Individ]
88	14093312
98	12533513
107	9305089
115	4723928
122	1670575
128	235336
134	0
139	91230
143	137830
147	102247
150	63260
153	39217
156	18278
158	8940
160	4211
162	2038
164	1409
165	778
166	277
167	144
88+	43031610
98+	28938298

TABLA 96i. CTP.

CTP(F _{0.1})	1.591.769
CTP(F _{max})	6.360.491

3.10 XI Región

3.10.1 Evaluación de stock

TABLA 97a. Parámetros fijos.

Loo	175.082
K	0.130
М	0.147
Prom.móvil	3,000

TABLA 97b. Parámetros estimados.

R	2416278
Fo	0,338
F ₁	20.837
F ₂	16.152
a	52.912
ь	4.511
С	0.524
SSQ	1.586e+010

TABLA 97c. Mortalidades y abundancias a la talla de 1993.

Tellas [mm]	Cg3 [indiv.]	F ₀ ∆t	Z ₀ ∆t	F ₉₃ δ ₁	Z ₉₃ δ ₁	Ng3 [indiv.]
89	9010	0.0051	0.1521	0.0120	0.0176	2416278
99	280368	0.0589	0.2059	0.1395	0.1452	2020342
108,	587641	0.2226	0.3696	0.5274	0.5331	1515200
116	542017	0.3129	0.4599	0.7415	0.7472	1000810
124	383292	0.3324	0.4794	0.7876	0.7933	625740
130	210140	0.3363	0.4833	0.7969	0.8026	386688
135	99577	0.3372	0.4842	0.7992	0.8048	238380
140	43621	0.3375	0.4845	0.7998	0.8054	146865
. 144	18238	0.3376	0.4846	0.8000	0.8056	90467
148	8801	0.3376	0.4846	0.8001	0.8057	55723
151	4328	0.3376	0.4846	0.8001	0.8058	34322
154	1130	0.3376	0.4846	0.8001	0.8058	21140
157	654	0.3376	0.4846	0.8001	0.8058	13020
159	965	0.3376	0.4846	0.8001	0.8058	8020
161	812	0.3376	0.4846	0.8001	0.8058	4939
163	247	0.3376	0.4846	0.8001	0.8058	3042
164	31	0.3376	0.4846	0.8001	0.8058	4927
89+	2190869				**************************************	8585902

TABLA 97d. Mortalidades y abundancias a la talla de 1994.

Tallas [mm]	C ₉₄ [indiv.]	F ₉₄ δ ₂	Ζ94 δ2	Ng4 [Indiv.]
89	50774	0.0477	0.0767	2416278
99	912091	0.5557	0.5847	2089944
108	1316146	2.1007	2.1297	1510612
116	749206	2.9534	2.9824	805289
124	392163	3.1369	3.1659	398315
130	229882	3.1740	3.2030	210488
135	169216	3.1828	3.2118	153276
140	106058	3.1853	3.2143	120506
144	69394	3.1862	3.2152	89634
148	39743	3.1865	3.2155	62708
151	13620	3,1866	3.2156	40737
154	12576	3.1867	3.2157	26040
157	9416	3,1867	3.2157	17372
159	4730	3.1867	3.2157	10737
161	1348	3.1867	3.2157	6125
163	443	3.1867	3.2157	3584
164	13	3.1867	3.2158	6678
89+	4076820		·	7968324

3.10.2 Puntos biológicos de referencia

TABLA 97e. Parámetros de entrada.

Talla de reclutamiento	90
K	0.1299
L _{oo}	175.082
М	0.1470
a	52.912
b	4.511
С	0.524
Factor de condición	2.13e-4
Coef. de alometría	2.998038

TABLA 97f. Análisis de rendimiento y biomasa por recluta.

F	Y/R	B/R	Talia med
[año]	[gr]	[gr]	[mm]
0.0000	0	3413.7107	129.9
0.1000	151.3528	1898.6636	. 120.4
0.2000	192.0755	1338,4614	115.2
0.3000	206.3597	1059.4766	111.9
0.4000	211.9495	895,5049	109.7
0,5000	214.1106	788.2974	108.2
0.6000	214.7575	712.8208	106.9
0.7000	214.6884	656.7306	106,0
0.8000	214,2697	613,3002	105.2
0.9000	213.6817	578,5752	104.6
1.0000	213,0173	550.0881	104.1

TABLA 97g. Estrategias de explotación.

F _{0.1}	0.1717
F _{max}	0.6336

3.10.3 CTP de 1995

TABLA 97h. Proyección del stock al 1^{to} de enero de 1995.

Talle	N95
[mm]	[individ]
89	2416278
99	2102221
108	1046757
116	172821
124	49841
130	5468
135	0
140	0
144	12840
148	17988
151	20409
154	24099
157	11965
159	7071
161	5338
163	4245
164	8714
89+	5906054
99+	3489776

TABLA 97i.	CTP.
CTP(F _{0,1})	210279
CTP(Fmay)	684324

3.11 XII Región

3.11.1 Evaluación de stock

TABLA 98a. Parámetros fijos.

L _∞	176.000
K	0.123
M	0.142
Prom.movii	9.000

TABLA 98b. Parámetros estimados.

R	344437
Fo	0.519
F ₁	10.332
F ₂	5.116
а	31.459
b	0.473
C	0.906
SSQ	1.564e+008

TABLA 98c. Mortalidades y abundancias a la talla de 1993.

Ng3 [indiv.]	Z93 δ1	F ₉₃ δ ₁	Z ₀ ∆t	F ₀ ∆t	C ₉₃ [indiv.]	Talles [mm]
344437	0.0423	0.0325	0.1659	0.0239	7964	87
264382	0.3111	0.3013	0.3631	0.2211	66303	97
162965	0.6400	0.6303	0.6046	0.4626	76266	106
86869	0.7070	0.6973	0.6537	0.5117	49569	114
45036	0.7158	0,7061	0.6602	0.5182	25294	121
23261	0.7171	0.7074	0,6611	0.5191	10810	128
12008	0.7174	0.7077	0.6613	0.5193	4050	133
6198	0.7174	0.7077	0.6614	0.5194	1838	138
3199	0.7175	0.7077	0.6614	0.5194	963	143
1651	0.7175	0.7077	0.6614	0.5194	519	146
852	0.7175	0.7077	0.6614	0.5194	423	150
440	0.7175	0.7077	0.6614	0.5194	254	153
478	0.7175	0.7077	0.6614	0.5194	158	156
951775					244413	87+

TABLA 98d. Mortalidades y abundancias a la talla de 1994.

Tallas [mm]	Cg4 [Indiv.]	F94 δ2	Ζ94 δ2	Ng4 [indiv.]
87	14616	0.0464	0.0744	344437
97	106780	0.4298	0.4578	294784
106	97977	0.8990	0.9270	173537
114	50556	0.9945	1.0226	75957
121	22514	1.0071	1.0351	32678
128	7473	1.0090	1.0370	17296
133	3230	1.0093	1.0374	10909
138	1277	1.0094	1.0374	6972
143	438	1.0094	1.0375	3820
145	153	1.0094	1.0375	1959
150	55	1.0094	1.0375	992
153	18	1.0094	1.0375	376
156	9	1.0094	1.0375	443
87+	305098			964158

3.11.2 Puntos biológicos de referencia

TABLA 98e. Parámetros de entrada.

Talla de reclutamiento	90
K	0.1232
L∞	176
М	0.1426
а	31.459
b	0.473
C	0.906
Factor de condición	2.78e-4
Coef. de alometria	2.95755

TABLA 98f. Análisis de rendimiento y biomasa por recluta.

F	Υ	8	Talla med
[аñо]	[gr]	[gr]	[mm]
0.0000	0.0000	3786.0773	129,9
0.1000	168,0914	1936.1767	119.5
0.2000	207.8347	1289.4819	113.8
0.3000	219,7449	978.1745	110,2
0.4000	223.2524	799.5019	107,8
0.5000	223,7511	684.8156	106.0
0.6000	223.0822	605,2946	104.7
0.7000	221.9612	546,9671	103,7
0.8000	220,6896	502,3209	102,8
0.9000	219.3998	466,9885	102.1
1.0000	218,1499	438.2705	101.6
1.1000	216.9640	414.4143	101.1
1.2000	215.8499	394,2353	100.6
1.3000	214.8079	376.9050	100,3
1.4000	213,8346	361.8274	99.9
1.5000	212.9252	348.5631	99.6

TABLA 98g. Estrategias de explotación.

F0.1	0.1537
F _{max}	0.4783

3.11.3 CTP de 1995

TABLA 98h. Proyección de stock al 1¹⁰ de enero de 1995.

N95
[individ]
344437
294290
167750
67421
22665
9069
8765
6852
5081
3017
1611
836
706
932498
588062

TABLA 98i. CTP.

CTP(F_{0,1}) 54070 CTP(F_{max}) 149808

V. DISCUSION Y CONCLUSIONES

A. MONITOREO

1. Las operaciones de terreno se coordinaron regionalmente a través las Direcciones Zonales de IFOP. Las actividades programadas en general fueron desarrolladas sin contratiempos, esto durante los dos períodos extractivos cuya duración total fue de dos meses y medio aproximadamente.

La cobertura del muestreo basado en 44 centros de muestreos de un total de 120 centros oficiales permitieron obtener el 65% y 68% de los desembarques registrados por SERNAP en la primera y segunda temporada, respectivamente. Del total de la cuota asignada por Subsecretaría de Pesca 27.844.848 unidades para las dos temporadas, el 84,4% (23.492.760 unidades) llegó a ser extraída.

- 2. La muestra total de ejemplares medidos fue de 308.683 unidades, durante la primera temporada y de 285.427 en la segunda temporada representando el 3,35% y 4,49% de los desembarcos para un total de 44 puntos de muestreo, de este modo las metas para los tamaños de muestra longitud y biológicos (longitud-peso) por centro de desembarque y unidad de pesquería fueron cumplidas.
- 3. Los dos períodos extractivos no estuvieron exentos de apozamientos, lo que indudablemente afecta la calidad de los datos, esto particularmente, en relación a la obtención de indicadores de rendimiento y esfuerzo de pesca. Los apozamientos constituyen un evento difícil de prevenir, y por lo general estos ocurren cuando los pescadores se han hecho expectativas de mejores precios, por lo que deciden mantener el recurso en el agua.

- 4. Los precios promedio nacional por unidad durante la primera temporada de invierno llegó a \$ 415 cayendo en un 61,1 % respecto a la temporada del año 1993. Durante la segunda temporada en la primavera de 1994, los precios promedio nacional por unidad llegó a \$ 396 bajando en un 19% respecto a la primera temporada en invierno. Es decir, los precios cayeron fuertemente respecto de los observados en dos los períodos de pesca anteriores cuya tendencia estaba en aumento sostenido, llegando a pagarse por sobre los \$ 700 la unidad.
- 5. Un total de 136 nuevas procedencias fueron detectadas respectos a la temporada de pesca del año 1993, manteniéndose el esfuerzo de pesca concentrado principalmente en 5 regiones, III, IV y VIII, X y XI. Estas cinco regiones aportan aproximadamente con el 95% de los desembarques, indicador que en general no ha variado en las distintas temporadas extractivas desde el año 1992.

B. EVALUACION

1. Un reenfoque del modelo ACTII para dar cuenta de períodos anuales de captura y no estacionales como se planteó originalmente permite una solución al problema del seguimiento de las cohortes. El establecimiento de un período anual constante para proyectar la dinámica de las cohortes elimina el problema de reestructurar la composición de tallas cada vez que cambia el tamaño del intervalo de proyección.

El enfoque original estuvo dirigido a modelar temporadas de pesca cortas dentro del año, previendo que estas se repetirían en las mismas fechas en los años siguientes, situación que no ocurrió. Los cambios en las fechas de apertura de las vedas y la tendencia a prolongar la duración de las temporadas de pesca

complica el seguimiento fino de la dinámica de las cohortes a escala estacional y sugiere la conveniencia de fijar convencionalmente el comienzo de cada año calendario como el momento adecuado para medir el tamaño del stock. Así las tasas de mortalidad por pesca y natural se constituyen en procesos que se distribuyen al interior del año, cuya ocurrencia u orden temporal dentro del mismo no es relevante. En cambio si importa, y se recoge en el modelo, la duración o proporción del año en la que ambos procesos operan.

El nuevo plantemiento tiene además la ventaja de facilitar la proyección del stock a partir del año más reciente estimado y también hacer posibles el desarrollo de algoritmos sencillos para calcular la CTP como el que se describe en este informe.

Por otra parte, el seguimiento de las cohortes en tallas a intervalos anuales es más consistente con la descripción del crecimiento que también se hace a escala anual. De esta manera, se evita tener que recurrir al supuesto inverosímil de postular un crecimiento sin variaciones estacionales dentro del año. La necesidad de recurrir a este supuesto obedece no a una incapacidad teórica de modelar el crecimiento estacional, sino a la carencia de información a este respecto que obligaría a aumentar el número de parámetros más allá de lo conveniente.

2. En la mayoría de las evaluaciones se advierte que los tamaños totales del stock aumentan en 1994 respecto 1993. Este resultado, contradice la declinación esperada en los stock regionales a causa de la explotación existente. Este comportamiento se debe al supuesto de reclutamiento constante. En efecto, si se pone atención a cada cohorte, los sobrevivientes de un año al siguiente disminuyen a causa de la pesca y la mortalidad natural, sin embargo esta declinación es compensada por los indivi-

duos que ingresan al primer intervalo de tallas. Esto pone de manifiesto que la limitación más importante para estimar adecuadamente el stock es la dificultad para estimar adecuadamente el reclutamiento.

Este problema irá disminuyendo a medida que la serie vaya creciendo y sea factible disponer de cohortes completas en las composiciones de tallas, sin embargo, persistirá la incertidumbre en la estimación de los reclutamientos de los años más recientes, de la misma forma que acontece con los modelos tales como el Análisis de la Población Virtual. Análogamente, la manera más directa y satisfactoria de resolver este problema consiste en generar índices auxiliares de reclutamiento a partir por ejemplo de una estimación relativa de la magnitud del asentamiento de individuos al intermareal a escala regional. Experiencias realizadas en distintas localidades de la X Región demuestran la factibilidad de introducir este tipo de índices (Moreno, et al. 1993).

3. En algunas regiones, como por ejemplo la XI, se observaron cambios notables en el patrón de explotación que dificultaron el ajuste del modelo. Uno de los supuestos básicos de ACTII es la constancia del patrón de explotación, de allí que alejamientos significativos de los datos de este supuesto no permitirán buenas estimaciones. Por el momento este problema no tiene una solución fácil, porque hacer variable el patrón año a año agregaría un número excesivo de parámetros al modelo y haría imposible su estimación.

La acumulación de años en la serie puede hacer menos sensible las estimaciones a este tipo de variaciones si ellas ocurren de manera aleatoria, pero no eliminan del todo ya que pueden darse tendencias en la intencionalidad de los pescadores que causen corrimientos sistemáticos en los parámetros de posición del patrón de explotación (en su media y varianza).

Aunque el problema no tiene una solución por el momento, se vislumbran algunas vías de análisis que merecen considerarse a futuro. Una de ellas sería investigar de que manera los factores
económicos y la abundancia relativa de las clases de tallas
influyen en la forma que el pescador selecciona los tamaños y
modifica su patrón de explotación. En una segunda fase del
estudio, se podría analizar la manera como introducir esta
información en el modelo sin agregar un excesivo número de
parámetros.

4. Finalmente, las regiones VIII, X y XI, al proyectar sus stock a comienzos de 1995 muestran la desaparición de algunas cohortes intermedias de su estructura. Este fenómeno puede tener tres explicaciones: una subestimación parcial de las cohortes presentes en la población debido al método, una subrepresentación de la composición de la captura en esas tallas debido al muestreo a un debilitamiento de la estructura de la población debido a fallas en el reclutamiento de las cohortes en el pasado (cf. con Moreno y Reyes 1988).

La primera explicación no parece verosímil porque una subestimación por esa causa debería aparecer en cualquier intervalo o en todos ellos y no de la manera tan caraterística y persistente como aparece. Por otra parte, la segunda explicación tampoco parece correcta por cuanto las tallas intermedias son las más frecuentes y fáciles de muestrear.

La tercera explicación es en principio la más factible. Si hubieran ocurrido fallas del asentamiento en el pasado, el crecimiento diferencial de las cohortes contiguas podrían con el transcurso del tiempo enmascarar la debilidad subyacente de la estructura de tallas, de la misma forma que los suavizamientos de la estructura también pueden haber contribuido a ello. Sin embargo, existen evidencias obtenidas durante el proyecto Sectorial Loco que fallas de asentamiento han sido registradas simultáneamente entre Concepción y Chiloé, abarcando más o menos la zona que comprenden las regiones afectadas. Coincidentemente, la proyección de esas cohortes a 1994 corresponde aproximadamente a los grupos de tallas ausentes.

Es destacable que con el empleo del ACTII para los dos años ha sido posible detectar la ocurrencia de este tipo de fenómenos y se ha percibido su efecto sobre la dinámica del recurso, lo cual no es posible para otros métodos de evaluación indirecta como los que se basan en el análisis de seudocohortes como el Análisis de Cohortes de Jones (1984) y el ACTI (Zuleta y Moreno, 1993) por sus características estructurales. En este sentido, la acumulación de series temporales de información pesquera y del recurso aumentarán las posibilidades de profundizar en el estudio y análisis del fenómeno, lo que implicará desarrollo y adecuación de la metodología de evaluación con el objetivo de poder internalizar el efecto de la variable reclutamiento en el análisis.

5. Consecuentemente con lo anterior, la detección de fenómenos en esta pesquería como los señalados precedentemente constituyen un hecho muy reciente y significativo, que amerita la inmediata adopción de un enfoque precautorio por parte de la administración pesquera, específicamente en la definición de estrategias de explotación del recurso en el corto plazo.

Al respecto, sin menoscabo de haber estimado los valores de referencia y las respectivas CTP bajo los criterios $F_{0.1}$ y $F_{M\acute{a}x}$,

desde una perspectiva técnico-biológica se concluye que el criterio de explotación de $F_{M\acute{e}x}$ no es aconsejable para la situación actual en que se encuentran los stocks del recurso.

En efecto, la curva de rendimiento tiende a presentar un máximo asintótico, con lo cual $F_{M\acute{a}x}$ alcanza valores altos de mortalidad, lo cual se estima inapropiado para la situación de conservación que se reporta.

Como puede verse en el Tabla Resumen Final (Tabla 99), emplear F_{Mix} implicaría aplicar altos niveles de explotación sobre stocks con grupos de talla comercial disminuidos a causa del débil reclutamiento ocurrido 6 a 8 años atrás. Frente a ésto, el criterio $F_{0.1}$ se adecúa mejor al enfoque precautorio considerado más apropiado para las actuales circunstancias que atraviesa este recurso, en el corto plazo.

No obstante, ampliando el horizonte de análisis, también es necesario señalar que, así como las oscilaciones ambientales han efectuado negativamente la producción de excedentes del recurso en esta oportunidad, parece conveniente evitar un mayor deterioro de los stocks, de forma de permitir su rápida recuperación en condiciones ambientales más favorables.

Asimismo, sobre la base de los exitosos asentamientos detectados en 1991 (Moreno et al., 1993), al menos para la zona de la X Región, es posible esperar que en el mediano plazo se revierta en alguna medida la actual situación en que se encuentra la abundancia del recurso, con el ingreso de grupos de talla fuertes en el mediano plazo.

TABLA 99. Resumen de CTP's estimada por Región para 1995, utilizando las estrategias de explotación $F_{0.1}$ y $F_{mix.}$

REGION	F _{0.1}	CTP (Nº de ind.)	F _{méx}	CTP (Nº de ind.)
I II IV V VI VII VIII IX X	0.379 0.222 0.311 0.169 0.276 0.186 0.188 0.204 no eval. 0.377	10.529 83.556 217.039 722.571 619.999 61.763 39.495 349.839 0	2.000 2.220 2.087 0,590 1.183 1.092 1.048 1.957 no eval. 0.837	43.707 521.052 979.096 2.203.474 2.728.926 248.409 166.344 2.230.655 0
XI XII TOTAL	0.172 0.154	210.279 54.070 3.960.909	0.634	684.324 149.808 16.316.286

VI. REFERENCIAS

JONES, R.- 1984. Assessing the effects of changes in explotation pattern using length composition data. FAO Fisheries Technical Paper. N° 256.

LEPEZ, M. I. 1988. Ecología y repoblación. Invest. Pesq. (Chile). 35:29-40.

MORENO, C. A., ASCENCIO, G. Y S. IBAÑES. 1993. Patrones de asentamiento de Concholepas concholepas (Bruguière) (Mollusca: Muricidae) en la zona intermareal rocosa de Valdivia, Chile. Revista de Historia Natural. 66:93-101 p.

MORENO, C. A. Y A. REYES. 1988. Densidad de Concholepas concholepas (Brugière) (Mollusca: Muricidae) en la Reserva Marina de Mehuín: evidencias de fallas en el reclutamiento. Biología Pesquera. 17:31-38 p.

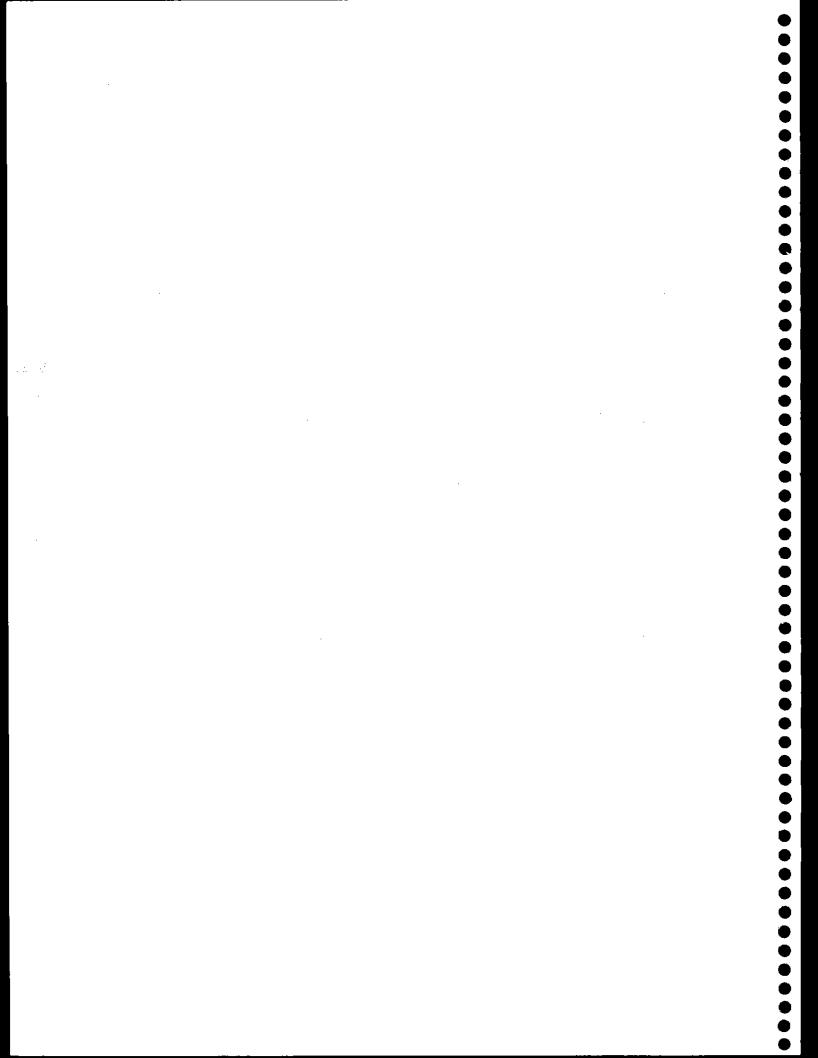
TOBELLA G. M. 1975. crecimiento de Concholepas concholepas (Bruguière, 1789) (Moll. Gast. Muricidae). Bol.. Soc. Biol. de Concepción, Tomo XLV, pp. 185-189.

Zuleta, A. & C. A. Moreno (1992) Catch-at-age analysis applied to new fisheries: the case of **Dissostichus eleginoides**. SC-CAMLR-Selected Scientific Papers (Hobart, Australia) 9: 3-10.

VII. COMPOSICION Y ORGANIZACION DEL EQUIPO PROFESIONAL Y TECNICO

INSTITUTO DE FOMENTO PESQUERO

Nombre	Título	Función	Región
Hugo Robotham	Profesor de Física	Jefe de Proyecto	V
	M.Sc.Estadístico Matemátic	a	
Hernán Miranda	Estadístico	Análisis Datos	V
Zaida Young	Ingeniero Pesquero	Análisis Datos	V
Carlos Vera	Estadístico	Análisis Datos	V
Luz Reyes	Técnico	Asistente	V
Marcela Alfaro	Secretaria Ejecutiva	Asistente	v
Alberto Reyes	Biólogo Marino	Coordinador	X
Luis Ariz	Ingeniero Pesquero	Coordinador	v
José M.Donoso	Biólogo Marino	Coordinador	VI
Ulises Parker	Biólogo Pesquero	Coordinador	II
Nancy Barahona	Ingeniero Pesquero	Coordinador	X
Iván Céspedes	Biólogo Marino	Coordinador	VII
Nancy Karl	Lab. Química	Coordinador	I
Enrique Arias	Biólogo Marino	Coordinador	XI
Alvaro Zabala	Técnico Marino	Coordinador	VIII
Vivian Pezo	Técnico Marino	Coordinador	X
Armando Muñoz	Técnico Marino	Coordinador	X
Oscar Mendoza	Antropólogo	Coordinador	IV
Jorge Garrido	Biólogo Marino	Coordinador	III
Auxiliares	-	Muestreadores	I a XII


UNIVERSIDAD AUSTRAL DE CHILE

Nombre	Título	Función	Región
Alejandro Zuleta	Biólogo Marino	Evaluación Stock	X
Carlos Moreno	Profesor Biología	Análisis Datos	X
Pedro Rubilar	Biólogo Marino	Procesamiento	Х
Luis Vergara	Prof. Matemáticas	Modelamiento	Х

			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•

ANEXO 1

DOCUMENTO COMPLEMENTARIO

1. INTRODUCCION

El objetivo del presente documento es responder a los comentarios y observaciones hechas por el FIP respecto de la sensibilidad $F_{0,1}$ o F_{max} determinados mediante el modelo de Y/R de Thompson & Bell, a variaciones de la mortalidad natural M.

Reclutamiento constante constituye un claro problema de evaluación

Una breve reflexión sobre el efecto del reclutamiento en los resultados de la evaluación indican que su importancia depende de las escalas de tiempo que se están tomando en consideración y del indicador con el cual se va a registrar la respuesta.

En la evaluación actual, se utiliza una serie de dos años de composiciones de tallas en la captura. La suposición de un reclutamiento constante en este caso puede tener un efecto importante en el tamaño en número del stock en el último año, pero tendrá un impacto menor en la biomasa y mucho menor casi despreciable, en la magnitud de la CTP. Esta aminoración del efecto de la variación del reclutamiento del último año se debe a la menor contribución en peso de esa clase de edad y a su baja vulnerabilidad.

Por otra parte, debe tomarse en cuenta que el reclutamiento que se está estimando es el reclutamiento a la pesquería y en el loco éste se realiza a edades avanzadas. Como se ha comentado en informes anteriores, a propósito de este supuesto, el reclutamiento a esta fracción explotable del stock se realiza en función de la talla y debido a variaciones de las tasas de crecimiento contribuyen a este proceso más de una clase de edad. En especies que tienen esta modalidad de reclutamiento, es razonable suponer que éste será más constante que en poblaciones que no se comportan así.

El efecto significativo de las variaciones de reclutamiento estimamos que se deben producir en el mediano y largo plazo, entendiendo como tal lapsos de tiempo similares a la edad promedio de reclutamiento y longevidad. En esas escalas de tiempo es altamente probable que fallas en el reclutamiento a la población alcancen la población explotada y se integren a la población más adulta perturbando la estructura etaria y de tallas.

Para esta situación no parece haber alternativa, cualquier suposición sobre la conducta del reclutamiento será muy cuestionable y seguramente abocada al fracaso. Una sensibilización reclutamiento es prácticamente una adivinanza y no da mayores luces sobre el problema. Estimamos que el camino más apropiado en este caso es modificar el modelo para que estime el reclutamiento suponiendo alguna función stock-reclutas. Ricker, Beverton y Holt u otra semejante. También es una opción a considerar el algoritmo de solución hacia atrás propuesto en el informe final del proyecto anterior donde se sugiere la posibilidad de usar este tipo de implementar un modelo parecido al análisis solución para cohortes. Este modelo permitiría reconstituir las cohortes hacia atrás y por ende estimar el reclutamiento.

Cualquiera de estas alternativas, proyección hacia adelante del stock con una ecuación de reclutamiento o hacia atrás requieren de información auxiliar sobre indicadores de abundancia. No debe perderse de vista que este tipo de modelos estructurados en tallas o edades pretenden estimar una gran cantidad de parámetros con escasa información, si se quiere estimar más parámetros es indispensable incorporar más información de otro modo el modelo quedará sobre parametrizado y perderá su capacidad de estimación.

Creemos que una investigación de esta naturaleza, aunque muy interesante y atingente al problema de la evaluación del loco excede el marco de referencia del actual proyecto y sugerimos se considere como tema de investigación en el futuro próximo.

2. METODOLOGIA

2.1 Notación

- F(bi) Función del Rendimiento por recluta
- b_i Parámetros de la función
- b₁ Mortalidad natural

2.2 Modelos de Sensibilización:

2.2.1 Sensibilidad absoluta (S_A)

En su forma más simple los coeficientes de sensibilidad se calculan mediante la primera derivada parcial. En otras palabras, si en un modelo la respuesta está dada por $F(b_i) = F(b_1, b_2, \ldots, b_n)$, donde b_i son los parámetros, entoces la sensibilidad absoluta de F respecto de b_i se calcula como:

$$S_{A} = \frac{\partial F}{\partial b_{1}} = \frac{F_{(b_{1}+\delta)} - F_{(b_{2})}}{\delta}$$

donde $\delta = (b_1 + \delta) - b_1$, representa una pequeña perturbación del parámetro.

2.2.2 Sensibilidad relativa (SR)

Es otra medida de sensibilidad, la cual está menos influenciada por la magnitud de la variable F como por la del parámetro $b_{i..}$ Si ρb_1 representa una pequeña perturbación del parámetro, entonces:

$$b_i = b_1 + \rho \cdot b_1$$
 $y \quad \rho = \frac{\Delta b_1}{b_1} = \frac{\delta}{b_1}$

donde ρ es realmente una medida del cambio relativo del parámetro b_1 . También el cambio de respuesta de F puede en términos relativos.

$$\frac{\Delta F}{F} = \frac{F_{(b_1+\rho,b_1)} - F_{(b_1)}}{F_{(b_1)}}$$

entonces la sensibilidad relativa (SR) se define como:

$$S_R = \frac{\Delta F/F}{\Delta b_1/b_1} = \frac{\Delta F/F}{\rho}$$

2.3 Parámetros de entrada en el Análisis de sensibilidad

Corresponden a los parámetros utilizados en la evaluación del stock de "Loco" y en el análisis del rendimiento por recluta de Thompson & Bell de la X Región para el año 1995, los cuales se muestran en la Tabla 1.

TABLA 1. Parámetros de entrada

Talla de reclutamiento	90
ĸ	0,123
Lm	176
М	variable
a	36,120
b	2,019
С	0,609
Factor de condición	4,91e-4
Coef. de alometría	2,825341

3. RESULTADOS

Las variaciones de $F_{0,1}$ o F_{max} , respecto de la mortalidad natural se muestran en la Fig. 1, y en ambos casos tienen un crecimiento exponencial, sin embargo $F_{0,1}$ es evidentemente menos sensible a estos cambios.

Los resultados obtenidos en ambos Análisis de sensibilidad (Sensibilidad absoluta y relativa), indican una respuesta lineal del $F_{0,1}$ respecto a pequeñas variaciones de M, tal como se aprecia en la Figura 2, y cuyos valores se muestran en la Tabla 2.

TABLA 2. Valores calculados para $F_{0,1},\ F_{max},$ sensibilidad absoluta y relativa, al variar M entre 0.1 y 0.22

M (b ₁)	$F_{0,1}$ $F(b_{i1})$	F _{max}	ΔM (Δb_1)	$\Delta F_{0,1} \\ \Delta F (b_1)$	S _A	S _R
0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21	0.1218 0.1342 0.1470 0.1600 0.1737 0.1878 0.2023 0.2172 0.2326 0.2484 0.2647 0.2815 0.2988	0.3902 0.4642 0.5534 0.6622 0.7969 0.9668 1.1855 1.4737 1.8629 2.4023 3.1691 4.2849	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.0124 0.0128 0.0130 0.0137 0.0141 0.0145 0.0149 0.0154 0.0158 0.0163 0.0163	1.24 1.28 1.30 1.37 1.41 1.45 1.49 1.54 1.58 1.63 1.63	1.018 1.049 1.061 1.113 1.136 1.158 1.178 1.205 1.223 1.247 1.269 1.291

4. CONCLUSIONES

Independientemente de los reparos que tiene F_{max} como estrategia de manejo, discutidas por Anthony (1982) y Deriso (1987), la respuesta extremadamente sensible de F_{max} a las variaciones de M se puede considerar también como otra razón para no recomendarla cuando existe incertidumbre en la mortalidad natural.

De la respuesta absoluta y relativa de $F_{0,1}$ a variaciones de la mortalidad natural se puede concluir que un error en este parámetro en el extremo superior del intervalo provoca errores mayores en la estimación de $F_{0,1}$ que si ocurre lo contrario. Por lo tanto, aquellos stock que presenten valores de M más bajos entregaran estimaciones más confiables.

Una consecuencia de lo anterior es que en recursos como el loco donde presumiblemente M presenta una gradiente latitudinal, con valores menores hacia latitudes altas, el comportamiento del modelo de rendimiento m será más confiable en las regiones más australes que en la zona norte. Asimismo, a nivel de especie las estimaciones de $F_{0,1}$ serán también más confiables en aquellas que presenten M más bajas.

Finalmente, considerando que la respuesta de $F_{0,1}$ a variaciones de M es ligeramente superior a 1, se puede calificar que el Modelo de Análisis de rendimiento por Recluta se comporta moderadamente sensible a las variaciones del parámetro M. Esta afirmación podría variar si se elige otro indicador de la respuesta del modelo, sin embargo como $F_{0,1}$ tiene una evidente importancia en el cálculo de la CTP, se ha considera innecesario probar otro.

5. BIBLIOGRAFIA

Anthony, V. C. 1982. The calculation of $F_{0,1}$: a plea for standardization. NAFO SCR Doc. 82/VI/64 Ser. No. N557:15p. Deriso, R. B. 1987. Optimal $F_{0,1}$ criteria and their relationship to maximum sustainable yield. Can. J. Fish. Aquat. Sci. 44 (suppl.2): 339-348.

ANEXO 2

LISTADO DE ARCHIVOS DEL PROGRAMA QUE CALCULA LOS PUNTOS BIOLOGICOS DE REFERENCIA (escrito en MATLAB para Windows, versión 4b)

	• • • • • • • • • • • • • • • • • • •
	•
,	

```
ANEXO:
```

LISTADO DE ARCHIVOS DEL PROGRAMA QUE CALCULA LOS PUNTOS BIOLOGICOS DE REFERENCIA. (escrito en MATLAB® para Windows, versión 4b).

```
1. ypr.m
 %
      ANALISIS DE Y/R POR TALLAS
 %
 %
 %
% Menu Principal
     clc
     while 1
         clc
         help ypr men
         opciones=['ypr_inp'
               'ypr res'];
         opcion=input('Elija opcion:');
         if ((opcion<=0)|(opcion>2))
              bгеак
         end
         opciones=opciones(opcion,:);
         eval(opciones)
     end
2.ypr_men.m
% ANALISIS DE PUNTOS BIOLOGICOS DE REFERENCIA
%
% 1) Ingreso de datos para análisis
% 2) Cálculo Y/R y F ref (F.1 y Fmáx)
%
% 0) Salir
```

%

```
3. ypr_inp.m
echo off
clc
%
      INGRESO DE DATOS AL ANALISIS DE
%
      Y/R POR TALLAS
    k1=menu('INGRESO DE DATOS', 'Desde la consola', 'Desde archivo matlab');
    if k1 == 1
         corrida = input(' Graba archivo con Y/R(*pbr.mat)?:','s');
         nreg = input(' Qué Región analiza?..: ','s');
         coment = input(' Comentarios......','s');
         lr = input(' Talla de reclutamiento ...: ');
         nint = input(' Número de intervalos ....: ');
         ancho = input(' Ancho del intervalo .....: ');
         R = input(' N^{\circ} Reclutas (=1 para Y/R).: ');
         Fcr = input(' Rango de F (Fmin:dF:Fmax).: ');
         K = input('K \dots ');
         Linf = input(' Linf .....');
         M = input('M \dots ');
         l = [lr + ancho*[0:nint-1]'; Linf];
         k2 = menu('SELECTIVIDAD', 'Arrastre', 'Enmalle', 'Vector');
         if k2 = 1
              a = input(' a .....');
              b = input(' b ....');
              c = input(' c .....');
              r=arrastre(l,a,b,c);
         elseif k2 = 2
              a = input('a'?....');
              b = input(' b ?.....');
              r=enmalle(l,a,b);
         else
             for i=1:nint
                  r(i,1) = input(\lceil Selectividad(',num2str(l(i)),'-',num2str(l(i+1)),')? \quad \rceil);
              end
         end
        k3 = menu('PESOS MEDIOS', 'Relación L/W (mm/g)', 'Wi observados');
        if k3 = 1
             a1 = input(' Factor de condición (q)...: ');
             b1 = input(' Coef. de alometría (b)....: ');
             lmid=l(1:nint)+ancho/2;
             w=a1*lmid.^b1;
        else
             for i=1:nint
                  w(i, 1) = input(['Peso(',num2str(l(i)),'-',num2str(l(i+1)),')?']);
             end
```

```
%
               w=w/1000;
         end
     eval(['save', corrida])
     else
         clear all
         archivo = input(' Archivo Y/R (*pbr.mat)...','s');
         eval(['load ', archivo]);
     end
4. Arrastre.m
function r=arrastre(l,a,b,c)
      [n,m]=size(1);
    lmid=I(1:n-1)+diff(1)/2;
      r=ones(size(lmid))./(1+exp(a-b*lmid.^c));
5. Enmalle.m
function r=enmalle(l,a,b)
      [n,m]=size(1);
    lmid=l(1:n-1)+diff(1)/2;
    r=lmid.^a.*exp(-b*lmid)/max(lmid.^a.*exp(-b*lmid));
6.ypr res.m
echo off
clc
%
     RESULTADOS DEL ANALISIS DE Y/R POR TALLAS
    global I R Fcr M K Linf r w nreg
    [BPR, YPR, lmed] = ypr bpr(l, R, Fcr, M, K, Linf, r, w);
    Fmax=fmin('yield',Fcr(1),Fcr(length(Fcr)),[],1,R,M,K,Linf,r,w);
    F01=fzero('funf01',0);
    Frec=[F01 Fmax];
    save Frec
    disp(' ')
    disp(' -----')
    disp(' ANALISIS DEL RENDIMIENTO DEL STOCK EN TALLAS')
             ',nreg,' REGION'])
      disp(['
    disp(' -----
    disp(' F Y(g) B(g) LMED')
    disp(' -----')
    for i=1:length(Fcr)
        fprintf(' %4.2f',Fcr(i))
        fprintf(' %4.3f',YPR(i))
        fprintf(' %4.3f,BPR(i))
```

```
fprintf(' %3.1f\n',lmed(i))
     end
     disp('-----
       disp(' F 0.1 F máx ')
       fprintf(' %3.4f,F01)
     fprintf(' %3.4f\n',Fmax)
     disp('-----
     disp('')
       echo on, pause %ENTER para desplegar gráficos
     echo off; clg
     subplot(211), plot(Fcr, YPR),
     title(['Análisis Y/R ',nreg,' Región'])
     ylabel('Y (kg)')
     subplot(212), plot(Fcr,BPR)
       title(['Análisis B/R ',nreg,' Región'])
     xlabel('F [1/años]')
     ylabel('B (kg)')
7. funfol.m
function f=funf01(F)
       global l R M K Linf r w
       f=derivf(0,0.000001,1,R,M,K,Linf,r,w)*.1-derivf(F,0.000001,1,R,M,K,Linf,r,w);
8. ypr bpr.m
function [bpr,ypr,lmed]=ypr_bpr(l,R,Fcr,M,K,Linf,r,w)
       [n,m]=size(1);
    11=1(1:n-1);
    12=1(2:n);
       F=r*Fcr;
    u=ones(size(Fcr));
    npr=[R*u;R.*cumprod((((Linf-l2)*u)./((Linf-l1)*u)).^((F+M)/K))];
    nmpr=diff(-npr)./(F+M);
       W=w*u;
    bio=nmpr.*W;
    ren=F *bio;
      bpr=sum(bio);
    ypr=sum(ren);
      lmid=l(1:n-1)+diff(1)/2;
      L=lmid*u;
      lmed=sum(nmpr.*L)./sum(nmpr);
```

9. yield.m

,		