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3. Lack of intrinsic variability may explain the difficulty in simulating recent global trends5
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The temperature variability simulated by climate models is generally con-6

sistent with that observed in instrumental records at the scale of global av-7

erages, but further insight can also be obtained from regional analysis of the8

marine temperature record. A protocol is developed for comparing model sim-9

ulations to observations that accounts for observational noise and missing10

data. General consistency between CMIP5 model simulations and regional11

sea surface temperature variability is demonstrated at interannual timescales.12

At interdecadal timescales, however, the variability diagnosed from obser-13

vations is significantly greater. Discrepancies are greatest at low-latitudes,14

with none of the 41 models showing equal or greater interdecadal variabil-15

ity. The pattern of suppressed variability at longer timescales and smaller16

spatial scales appears consistent with models generally being too diffusive.17

Suppressed variability of low-latitude marine temperatures points to under-18

estimation of intrinsic variability and may help explain why few models re-19

produce the observed temperature trends during the last fifteen years.20
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1. Introduction

Accurate representation of the spread in predictions of future climate is, arguably, as21

important as correctly predicting a central value. Comparison against observed variability22

is one means of evaluating the skill of general circulation models (GCMs) in simulating the23

spread of plausible temperatures. At the global scale, the observed temperature variability24

is generally consistent with that produced by GCMs both in terms of overall magnitude25

and spectral distribution [Solomon et al., 2007; Jones et al., 2013]. Although regional26

model-data consistency has also generally been found at synoptic to interannual timescales27

[Collins et al., 2001; Min et al., 2005], discrepancies have been noted in regional variability28

at longer timescales. Stott and Tett [1998] found that simulations from a climate model29

underestimate surface temperature variability at scales less than 2000 km. Davey et al.30

[2002] and DelSole [2006] also suggested that collections of models underestimate regional31

low-frequency variability at decadal timescales relative to observations, and Santer et al.32

[2006] found a similar mismatch for Eastern Tropical Atlantic SST.33

There are two classes of explanation for model-data discrepancies in regional SST vari-34

ability. The first is for model simulations to inadequately simulate variability. The sec-35

ond class of explanation is for observational errors, data inhomogeneities, or interpolation36

artefacts to bias instrumental estimates of variability. These data issues were not system-37

atically treated in foregoing studies, raising the question of whether discrepancies arise38

from model or data short-comings.39

To address these possibilities we extend upon foregoing model-data comparison studies40

in three respects. First, analysis of the CMIP5 archive [Taylor et al., 2012] offers a more41
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recent set of 163 historical simulations to compare against observations. Second, recently42

developed corrections for data inhomogeneities along with more complete estimates of un-43

certainty [Kennedy et al., 2011a, b] permit for more accurate assessment of observational44

variability. Finally, we introduce and apply a new technique to correct for the effects of45

data gaps upon variance and spectral estimates. Such accounting for variance contribu-46

tions to the observed SST variability permits for less biased model-data comparison.47

2. Simulations and data

For simulations we rely on the CMIP5 collection of coupled atmosphere-ocean model48

runs. Analysis is of the SST fields of historical simulations covering 1861-2005 (CMIP5)49

that are forced by reconstructed natural and anthropogenic radiative forcing from solar50

variations, greenhouse gas concentrations, and volcanic and anthropogenic aerosols. In51

all, there are 163 simulations from 41 models. Simulations are placed onto the 5 × 5◦52

grid of the HadSST3 dataset by first interpolating to a uniform 0.25 × 0.25◦ grid and53

then averaging to 5× 5◦ boxes. This high-resolution interpolation followed by averaging54

avoids spatial aliasing that would otherwise lead to biases in estimated variability. SST55

anomalies are then computed by removing the monthly climatology calculated between56

1960-1990.57

Instrumental observations are from the HADSST3 compilation of sea surface tempera-58

tures (SST) [Kennedy et al., 2011a, b]. This dataset consists of binned SST observations59

from ships and buoys on a 5◦ by 5◦ grid, where averaging is conducted after excluding60

outliers. The time series are bias corrected for spurious trends caused by changes in mea-61

surement techniques but are not interpolated or variance adjusted, as is appropriate for62
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our purposes. Uncertainty estimates associated with observational noise, binning, and63

bias correction are all provided [Kennedy et al., 2011a, b].64

SST records are primarily from ship measurements that, outside of certain heavily65

trafficked routes, tend to contain observational gaps. Annual mean SST estimates are66

only computed when at least ten observations are present within the year. Analysed67

time-series are the longest possible at each grid box for which no more than 10% of years68

are missing and for which data is present during the first and last years. Missing years69

are linearly interpolated for. The last year is always fixed at 2005 in order to overlap70

with the time span covered by the historical CMIP5 simulations. Further, as our focus71

is on multidecadal variations in SSTs, time-series must cover at least 100 years after72

interpolation in order to be included.73

To provide for an equivalent basis for model-data comparison, missing months in the74

observations are censored in the simulation results. Interpolation will typically alter spec-75

tral estimates [Wilson et al., 2003; Rhines and Huybers , 2011], but because equivalent76

months and years are missing from both the simulations and observations, comparisons77

between the two are not biased, excepting for certain issues involving correcting for noise78

components in the observational dataset that are addressed shortly.79

3. Spectral estimation and noise correction

Timescale dependent variance is estimated in both the instrumental observations and80

model simulations by summing spectral energy estimates between frequencies of 1/2-1/581

years−1 for interannual variations and 1/20-1/50 years−1 for interdecadal variations. For82

the variance estimate, we sum across the relevant frequencies of a periodogram [e.g. Bloom-83
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field , 1976], whereas the multitaper method with three windows [Percival and Walden,84

1993] is used for visually presenting results. The periodogram is used for timescale depen-85

dent variance estimates because the multitaper methods is slightly biased at the lowest86

frequencies [McCoy et al., 1998]. All spectral analyses are performed after linearly de-87

trending the SST time series.88

Instrumental SST records contain substantial noise, with the average monthly observa-89

tion having a one-standard-deviation uncertainty of 0.48◦C [Kennedy et al., 2011a]. Noise90

estimates are available for each month and grid box and are calculated taking into account91

random measurement errors, errors stemming from incomplete spatial coverage of the 5◦92

by 5◦ grid-box, and incomplete temporal coverage of the observed month. For regional93

variance estimates, we treat these sources of noise as independent between months be-94

cause measurements from ships are unlikely to correlate in a single location over different95

months, and measurements from buoys have relatively small uncertainties (pers. comm.96

Kennedy 2012). For the global mean SST estimate, we use measurement and sampling97

error estimates that account for spatial and temporal correlations [Kennedy et al., 2011a].98

Independent realization of normally distributed noise is expected to have a uniform99

spectral distribution in the case of uniform sampling, but the presence of gaps in regional100

observational records leads to a variable noise influence with frequency. Essentially, inter-101

polation between noisy values introduces autocorrelated noise. To correct for these noise102

contributions, we generate annually resolved time-series from draws of a normal distri-103

bution having time-variable standard deviation consistent with the reported error. Years104

with missing observations are linearly interpolated for, and the spectral estimate of the105
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realized noise sequence is computed. This process is repeated 10,000 times, and the aver-106

age across noise spectra is calculated and removed from the corresponding instrumental107

SST spectral estimate. This technique shares some similarities with that introduced by108

Laepple and Huybers [2013] for correcting the spectral estimates associated with paleocli-109

mate records, and it is applied to the time-series associated with each grid-box included110

in the analysis. The correction for excess variance has the largest proportional effects at111

interannual timescales, rather than decadal ones, because spectral magnitudes are smaller112

at higher frequencies. The correction at the global level is more simple, having a uniform113

distribution across frequency, because there are no data gaps.114

Prior to correction, the variance ratio between the observed and simulated temperatures115

has a cross-correlation with the average number of observations per year across grid boxes116

of r=-0.38. This negative correlation is significant at the 95% confidence level, assuming117

at least 28 degrees of freedom, and is expected on the basis of fewer observations leading to118

greater noise in the annual temperature estimates. After correction, the magnitude of the119

correlation is reduced to a value that is statistically indistinguishable from zero, r=0.03,120

indicating that the correction is successful in removing excess noise. Also important is121

that, after correction, the variance ratio shows no dependence on what time interval is122

analyzed nor upon what data coverage criteria are applied for admitting annual temper-123

ature estimates (Table 1). Note that variance adjusted products were provided in earlier124

versions of the HadSST dataset, but are not used here because variance adjustment is125

accomplished through exclusively rescaling the amplitude of high-frequency variability in126

order to homogenize variance given differences in expected signal-to-noise ratios [Brohan127
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et al., 2006]. We have no expectation for noise to be band-limited and apply a correction128

across the entirety of spectrum, which partially reduces model-data differences at low129

frequencies.130

Uncertainties reported in Table 1 include those usually associated with finite data as131

well as the uncertainties associated with removal of the noise component. In addition,132

there also exist uncertainties in the instrumental SST dataset stemming from corrections133

applied for systematic changes in measurement techniques [Kennedy et al., 2011b]. To134

account for these systematic uncertainties, we analyse the 100 available realizations of135

the HadSST3 field that seek to cover the range of instrumental biases, and include the136

resulting spread in the estimated temperature spectra in our final uncertainty estimate.137

Uncertainties associated with the mean of the regional spectral estimates are computed138

assuming ten spatial degrees of freedom [Jones et al., 1997], except for those associated139

with measurement changes, which are treated as systematic across records.140

Available ensemble members associated with each model range from 1 to 23. In order to141

achieve uniform model weighting when calculating multimodel means, spectral analysis142

results associated with each ensemble member are inversely weighted according to the143

total number of ensemble members. This gives equal weighting across models, which is144

appropriate because ensemble members are generally tightly clustered relative to inter-145

model spread. Note that the spread of the ensemble provides a description of the CMIP5146

collection but is only a lower bound on total model uncertainty [Knutti et al., 2010]. The147

results that we present from our analysis are robust to using either nearest neighbor or148

linear interpolation techniques, various filters to isolate variance at a particular timescale,149
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and for the allowance of 2%, 10%, or 20% of missing data in choosing what records to150

include.151

4. Model-data comparison

Spectral estimates associated with regional SST variability are much greater in magni-152

tude than those associated with global average SST variability (Fig. 1). The difference153

in variability is about two orders of magnitudes at interannual timescales and decreases154

to less than an order of magnitude on multidecadal timescales. The global-regional dif-155

ferences reflect cancellation of variability in the global mean, and the weaker cancellation156

toward lower frequencies is consistent with findings that temperature anomalies have157

greater spatial autocorrelation toward longer timescales [Jones et al., 1997].158

For the global average, instrumental and model spectral estimates are generally consis-159

tent to within uncertainties across frequencies, as also reported elsewhere [Solomon et al.,160

2007; Crowley , 2000; Jones et al., 2013], excepting near the frequencies associated with161

the El Niño Southern Oscillation between 1/2-1/7years, which is more strongly expressed162

in the observations than in most simulations. The mean of the regional spectra agree at163

once per decade and higher frequencies, but at lower frequencies the observations show164

significantly greater spectral energy. Agreement for global-average spectral estimates but165

disagreement at the regional level demonstrates that model temperature variability has,166

on average, greater positive spatial covariance than the observations at decadal timescales.167

More insight into the mismatch between models and data can be gained from considering168

the ratio of spectral energies as a function of space (Fig. 2). At interannual timescales,169

between 1/2-1/5 year−1, the data-model ratio of spectral energy is near one when taking170
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the zonal mean at most latitudes. Regionally, it is around half in the Northern North171

Atlantic, Northwestern Pacific, and Northern Indian Ocean, and 1.5 in the remainder of172

the Atlantic and Eastern Pacific (Table 1).173

The data-model ratio at decadal timescales, between 1/20-1/50 years−1, is larger than174

at interannual timescales (Fig. 2 and Fig. 3). At middle and higher latitudes (≥30◦)175

the average data-model ratio is 1.3, with portions of the North Atlantic and Northwest-176

ern Pacific showing values less than one in a pattern similar to that seen at interannual177

timescales. At lower latitudes (≤30◦) the data-model ratio is 1.9, with only 4 out of 163178

ensemble members showing greater variability than the observations: 2 of 10 ensemble179

members from GFDL-CM2 and 2 of 10 members from HadCM3. It is also worth empha-180

sizing that the correction for instrumental noise sources reduces the data-model ratio by181

as much as 100% at interannual timescales but by less than 30% at decadal timescales182

(Table 1). Temperature variations are of larger amplitude toward lower frequencies and183

are associated with a greater signal-to-noise ratio and are, therefore, less sensitive to noise184

correction. The noise correction would have to be more than a factor of three too small185

at decadal timescales, while being unchanged at interannual timescales, for the data and186

simulations to be consistent.187

Our results thus confirm and update foregoing indications that regional model variability188

is weak relative to the observations at low latitudes and at decadal timescales [Stott and189

Tett , 1998; Davey et al., 2002; DelSole, 2006]. It is also relevant to address the fact190

that other studies found general consistency when comparing the variability in average191

Eastern Tropical Pacific SSTs against the CMIP3 [Santer et al., 2006] and CMIP5 [Fyfe192

D R A F T March 4, 2014, 6:17pm D R A F T



LAEPPLE AND HUYBERS: REGIONAL OCEAN VARIABILITY X - 11

and Gillett , 2014] model ensembles. These results can be understood in that averaging193

over the Eastern Equatorial Pacific reduces the apparent model-data inconsistency in the194

multidecadal band from a ratio of 2 to 1.6. This result follows from greater suppression195

of variability in the observations than in the models, consistent with our hypothesis of196

the models being too diffusive. Furthermore, analysis of average temperature produces197

a spread in variance ratios that is 24% larger than when the average is taken across the198

ratios computed for each grid box. Thus, analysis of average temperature reduces both199

discrepancies and detectability of discrepancies.200

5. Discussion and conclusion

These results raise the question of why model simulations do not generate greater low-201

frequency SST variability at regional scales. It could be that models are too weakly202

forced at multidecadal time-scales or contain insufficient positive feedback to amplify203

such forcing, but such a scenario seems unlikely to be a complete explanation because204

externally forced variability only accounts for a small fraction of regional model variance205

[Goosse et al., 2005]. Comparing unforced simulations to an ensemble of forced simulations206

of the ECHAM5/MPIOM AOGCM, [Jungclaus et al., 2010] show that externally forced207

variability accounts for only 20% of the multidecadal tropical variability at 5× 5◦ scales208

and even smaller fractions when including the extratropics. Assuming linearity, it can be209

inferred that doubling regional variability at 5 × 5◦ scales would require at least a five-210

fold increase in the externally forced contribution. Furthermore, interannual consistency211

at the regional level and across all timescales at the global level suggests that a marked212

increase in external variability would lead to other model-data mismatches.213
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More consistent with our findings is for the models to underestimate internal variabil-214

ity. This structure of the model-data mismatch suggests that model effective horizontal215

diffusivity may be too large, as this would lead to suppression of regional variability at216

low-frequencies. Diffusivity would become important for the grid scale size that we analyze217

at approximately 8 years, where the square of the 500 km domain is divided by an effec-218

tive horizontal diffusivity of 1000 m2/s. This timescale is consistent with the appearance219

of divergence between regional data and model spectra beginning in the vicinity of 1/8220

years−1 and increasing toward lower frequencies (Fig. 1). Also of note is that Stammer221

[2005] showed that an initial specification of a uniform 1000 m2/s horizontal diffusivity in222

the MIT-GCM was generally revised downward through a formal data-fitting procedure.223

Further insight can be gained by separating the multimodel ensemble according to res-224

olution. Models are grouped into quartiles according to horizontal ocean resolution at225

the equator, and results are consistent with the diffusion hypothesis in the sense that226

lower resolution quartiles show less variability and a larger discrepancy with the observa-227

tions. Specifically, the low resolution quartile of models has an average ratio of observed228

versus model variability of 2.8 in the tropics and 2.2 globally, whereas the quartile of229

highest-resolution models has analogous ratios of 1.7 and 1.4. Resolution is at best only a230

partial determinant of variability, however, as indicated by a 0.2 cross-correlation between231

resolution and multidecadal variability across models.232

Recent trends in global average temperature largely fall below those simulated by general233

circulation models [Fyfe et al., 2013], and observed trends in Eastern Equatorial Pacific234

SSTs are even more anomalously low relative to the models [Fyfe and Gillett , 2014]. These235
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trends in EEP and global temperature appear related [Rahmstorf et al., 2012; Kosaka and236

Xie, 2013; Fyfe et al., 2013; Fyfe and Gillett , 2014]. We speculate that some of the model-237

data trend difference comes from simulations having too small internal variability. Greater238

internal variability in the models would widen the spread in the ensemble of temperature239

trends and increase the likelihood of including the observed trends, especially if the greater240

variability is in regions having strong global teleconnections, such as in the EEP. Note241

that our results are largely independent of the interval in question because all records242

span at least 100 years and end by 2005.243

Although our results agree with earlier studies and are stable with respect to the time244

interval considered and various correction choices, there is some complication inherent to245

inferring variability during an interval containing substantial trends in global temperature.246

Spectral estimation and filtering assume quasi-stationarity over the interval of the record247

that cannot be entirely ensured through detrending. Distinguishing natural variability248

from forced variations that project onto natural modes of variability is also difficult.249

The use of paleodata to extend model-data comparisons and to include intervals prior to250

this last century seems a logical next step. Insomuch as the hypothesis that excessive251

horizontal diffusion damps regional model variability holds, we expect even greater data-252

model discrepancies in variability toward lower frequencies.253
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Figure 1. Regional vs. global SST variability. At top is the average of local spectral estimates

from instrumental observations and model simulations, and at bottom are the spectra estimated

of global mean SST. Also shown are the 66% and 90% quantiles of the models (light and dark

grey) and the 90% quantiles of the different realizations of the bias-corrected instrumental SSTs

(light blue). Correction for the excess variance in SST observations caused by sampling and

measurement error (dashed blue line vs. blue line) has the strongest relative effect at interannual

timescales.

Figure 2. Variance ratio between the observed and simulated SSTs for interannual (2-5yr, a.)

and multidecadal (20-50yr, b.) timescales. Simulated variance is the mean variance of all CMIP5

simulations. Observed variance is corrected for sampling and instrumental errors (see methods).

Also shown is the zonal mean variance ratio between observed and simulated SSTs.

Figure 3. Distribution of the ratio between average instrumental and model SST variance

for individual simulations. Shown are 2-5yr timescales (blue) and 20-50yr timescales (black) at

middle to high latitudes (>30N and >30S) and low-latitude region (>30S <30N).
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Table 1. Variance ratios of instrumental and simulated SSTs and their dependence on

correction choices and data restriction criteria.

time period data restriction mid-high latitudes >30S >30N tropics and sub-tropics 30S-30N

2-5yr 20-50yr 2-5yr 20-50yr

uncorrected 1861-2005 ≥1 obs/year 2.04 (1.85-2.23) 1.8 (1.33-2.34) 2.11 (1.92-2.31) 2.86 (2.11-3.72)

1861-2005 ≥10 obs/year 1.44 (1.3-1.57) 1.43 (1.06-1.87) 1.63 (1.48-1.78) 2.24 (1.65-2.92)

1900-2005 ≥10 obs/year 1.25 (1.12-1.39) 1.37 (0.97-1.83) 1.48 (1.32-1.65) 2.12 (1.51-2.84)

1900-1960 ≥10 obs/year 1.39 (1.18-1.61) 1.31 (0.87-1.84) 1.6 (1.36-1.85) 2.64 (1.76-3.7)

1961-2005 ≥10 obs/year 1.43 (1.21-1.68) 1.33 (0.81-1.98) 1.47 (1.24-1.73) 1.82 (1.11-2.7)

corrected 1861-2005 ≥1 obs/year 1.19 (1.08-1.3) 1.55 (1.14-2.02) 1.02 (0.93-1.12) 2.19 (1.62-2.86)

1861-2005 ≥10 obs/year 1.04 (0.94-1.14) 1.32 (0.98-1.72) 1.06 (0.97-1.16) 1.92 (1.42-2.51)

1900-2005 ≥10 obs/year 0.99 (0.89-1.1) 1.3 (0.93-1.74) 1.09 (0.97-1.21) 1.93 (1.37-2.58)

1900-1960 ≥10 obs/year 1.07 (0.91-1.24) 1.23 (0.82-1.72) 1.01 (0.86-1.17) 2.28 (1.52-3.2)

1961-2005 ≥10 obs/year 0.98 (0.82-1.15) 1.19 (0.72-1.76) 1.08 (0.91-1.27) 1.51 (0.92-2.24)

Note that variance ratios are independent of the data restriction criteria after correction for

noise sources, whereas the inclusion of sparsely sampled grid-boxes otherwise leads to greater

variance. 95% confidence intervals are calculated assuming ten spatial degrees of freedom and

one degree of freedom per model simulation.
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