Skip to main content

Advances in Predicting the Impacts of Global Warming on the Mussels Mytilus galloprovincialis in the Mediterranean Sea

  • Chapter
  • First Online:
The Mediterranean Sea

Abstract

Mussels Mytilus galloprovincialis have been used as model bivalves to study the impacts of global warming on their physiological performance in Themaikos Gulf, North Greece. The studies have been conducted under laboratory and field conditions for more than 6 years and focused on the biochemical, metabolic, physiological and energetic responses of M. galloprovincialis to increases in the ambient temperature. Here we summarize the findings concerning the responses of mussels to environmental temperature, present an integrated model of their physiological performance during thermal stress and discuss these findings in the light of the predicted temperature changes in the Thermaikos Gulf from the regional climate trends and the mean global temperature projections for the period 1990–2100 based on IS92 emission scenarios of the Intergovernmental Panel for Climate Change (IPCC). Our findings indicate that mussels in Themaikos Gulf currently face the temperatures close to their upper thermal limits, especially during the summer, and thus are likely vulnerably to any further increase in the temperature such as expected during the global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol – Part A 138:405–415

    Google Scholar 

  • Abele D, Heise K, Pörtner HO, Puntarulo S (2002) Temperature dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J Exp Biol 205:1831–1841

    CAS  Google Scholar 

  • Anestis A, Lazou A, Pörtner HO, Michaelidis B (2007) Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature. Am J Physiol Regul Integr Comp Physiol 293:R911–R921

    CAS  Google Scholar 

  • Anestis A, Pörtner HO, Lazou A, Michaelidis B (2008) Metabolic and molecular stress responses of sublittoral bearded horse mussel Modiolus barbatus to warming sea water: implications for vertical zonation. J Exp Biol 211:2889–2898

    CAS  Google Scholar 

  • Anestis A, Pörtner HO, Michaelidis B (2010a) Anaerobic metabolic patterns related to stress responses in hypoxia exposed mussels Mytilus galloprovincialis. J Exp Mar Biol Ecol 394:123–133

    CAS  Google Scholar 

  • Anestis A, Karayiannis D, Angelidis P, Staikou A, Michaelidis B (2010b) Response of Mytilus galloprovincialis (L.) to increasing seawater temperature and to marteiliosis: metabolic and physiological parameters. Comp Biochem Physiol A 156:57–66

    Google Scholar 

  • Angelidis P, Virvilis C, Photis G, Chollet B, Berthe F (2001) First report of Marteilia disease of the flat oyster Ostrea edulis, in the gulf of Thessaloniki, Greece. In: 10th international conference on ‘Diseases of Fish and Shellfish’ EAFP, 10–14 September, Dublin

    Google Scholar 

  • Angiletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford

    Google Scholar 

  • Astraldi M, Bianchi CN, Gasparini GP, Morri C (1995) Climatic fluctuations, current variability and marine species distribution: a case study in the Ligurian Sea (north-west Mediterranean). Oceanol Acta 18:139–149

    Google Scholar 

  • Barua D, Heckathorn AS (2004) Acclimation of the temperature set-points of the heat-shock response. J Therm Biol 29:185–193

    Google Scholar 

  • Bayne LB, Bayne JC, Carefoot CT, Thompson JR (1976) The physiological ecology of Mytilus californianus Conrad 1. Metabolism and energy balance. Oecologia (Berl) 22:211–228

    Google Scholar 

  • Beniash E, Ivanina A, Lieb NS, Kurochkin I, Sokolova IM (2010) Elevated levels of carbon dioxide affect metabolism and shell formation in oysters Crassostrea virginica (Gmelin). Mar Ecol Prog Ser 419:95–108

    CAS  Google Scholar 

  • Béthoux JP, Gentili B, Raune J, Tailliez D (1990) Warming trend in the western Mediterranean deep water. Nature 347:660–662

    Google Scholar 

  • Bocchetti R, Regoli F (2006) Seasonal variability of oxidative biomarkers, lysosomal parameters, metallothioneins and peroxisomal enzymes in the Mediterranean mussel Mytilus galloprovincialis from Adriatic Sea. Chemosphere 65:913–921

    CAS  Google Scholar 

  • Bocchetti R, Lamberti CV, Pisanelli B, Razzetti EM, Maggi C, Catalano B, Sesta G, Martuccio G, Gabellini M, Regoli F (2008) Seasonal variations of exposure biomarkers, oxidative stress responses and cell damage in the clams, Tapes philippinarum, and mussels, Mytilus galloprovincialis, from Adriatic Sea. Mar Environ Res 66:24–26

    CAS  Google Scholar 

  • Box A, Sureda A, Galgani F, Pons A, Deudero S (2007) Assessment of environmental pollution at Balearic Islands applying oxidative stress biomarkers in the mussel Mytilus galloprovincialis. Comp Biochem Physiol C 146:531–539

    CAS  Google Scholar 

  • Brooks SPJ, Storey KB (1997) Glycolytic controls in estivation and anoxia: a comparison of metabolic arrest in land and marine molluscs. Comp Biochem Physiol A 118:1103–1114

    CAS  Google Scholar 

  • Buckley AB, Owen ME, Hofmann GE (2001) Adjusting the thermostat: the threshold induction temperature for the heatshock response in intertidal mussels (genus Mytilus) changes as a function of thermal history. J Exp Biol 204:3571–3579

    CAS  Google Scholar 

  • Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110(C9):C09S04

    Google Scholar 

  • Calvo E, Simó R, Coma R et al (2011) Effects of climate change on Mediterranean marine ecosystems: the case of the Catalan Sea. Clim Res 50:1–29

    Google Scholar 

  • Carballal MJ, Villalba A, Lopez C (1998) Seasonal variation and effects of age, food availability, size, gonadal development, and parasitism on the hemogram of Mytilus galloprovincialis. J Invertebr Path 72:304–312

    Google Scholar 

  • Chapple JP, Smerdon GR, Berry RJ, Hawkins AJS (1998) Seasonal changes in stress-70 protein levels reflect thermal tolerance in the marine bivalve Mytilus edulis L. J Exp Mar Biol Ecol 229:53–68

    CAS  Google Scholar 

  • Cherkasov AS, Biswas PK, Ridings DM, Ringwood AH, Sokolova IM (2006) Effects of acclimation temperature and cadmium exposure on cellular energy budgets in a marine mollusk Crassostrea virginica: linking cellular and mitochondrial responses. J Exp Biol 209:1274–1284

    CAS  Google Scholar 

  • Coma R, Ribes M (2003) Seasonal energetic constraints in Mediterranean benthic suspension feeders: effects at different levels of ecological organization. Oikos 101:205–215

    Google Scholar 

  • Coma R, Ribes M, Serrano E, Jiménez E, Salat J, Pascualc J (2009) Global warming-enhanced stratification and mass mortality events in the Mediterranean. PNAS 106:6176–6181

    CAS  Google Scholar 

  • Dahlhoff EP (2004) Biochemical indicators of stress and metabolism: applications for marine ecological studies. Annu Rev Physiol 66:183–207

    CAS  Google Scholar 

  • Dahlhoff EP, Menge BA (1996) Influence of phytoplankton concentration and wave exposure on the ecophysiology of Mytilus californianus. Mar Ecol Prog Ser 144:97–107

    Google Scholar 

  • Dietz TJ, Somero GN (1992) Species- and tissue-specific synthesis patterns for heat-shock proteins HSP70 and HSP90 in several marine teleost fishes. Physiol Zool 66:863–880

    Google Scholar 

  • Durrieu de Madron X, Guieu C, Sempéré R, Conan P, Cossa D, D’Ortenzio F et al (2011) Marine ecosystems’ responses to climatic and anthropogenic forcings in the Mediterranean. Prog Oceanogr 91:97–166

    Google Scholar 

  • Fearman J, Moltschaniwskyja NA (2010) Warmer temperatures reduce rates of gametogenesis in temperate mussels, Mytilus galloprovincialis. Aquaculture 305:120–125

    Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    CAS  Google Scholar 

  • Figueras AJ, Montes J (1988) Aber disease of edible oysters caused by Marteilia refringens. In: Fisher WS (ed) Disease processes in marine bivalve molluscs. American Fisheries Society, Special Publication, Bethesda, pp 38–46

    Google Scholar 

  • Figueras AJ, Jardon CF, Caldas JR (1991) Diseases and parasites of rafted mussels (Mytilus galloprovincialis Lmk): preliminary results. Aquaculture 99:17–33

    Google Scholar 

  • Francour P, Boudouresque CF, Harmelin JG, Harmelin-Vivien ML, Quignard JP (1994) Are the Mediterranean waters becoming warmer?Information from biological indicators. Mar Pollut Bull 28(9):523–526

    Google Scholar 

  • Galimany E, Ramón M, Ibarrola I (2011) Feeding behavior of the mussel Mytilus galloprovincialis (L.) in a Mediterranean estuary: a field study. Aquaculture 314:236–243

    Google Scholar 

  • Gambaiani DD, Mayol P, Isaac SJ, Simmonds MP (2009) Potential impacts of climate change and greenhouse gas emissions on Mediterranean marine ecosystems and cetaceans. J Mar Biol Assoc UK 89(1):179–201

    CAS  Google Scholar 

  • Gardner JPA (2000) Where are the mussels on Cook Strait (New Zealand) shores? Low seston quality as a possible factor limiting multi-species distributions. Mar Ecol Prog Ser 194:123–132

    Google Scholar 

  • Gattuso JP, Hansson L (2011) Ocean acidification: background and history. In: Gattuso JP, Hansson L (eds) Ocean acidification. Oxford University Press, Oxford, pp 1–20

    Google Scholar 

  • Gonzalez JG, Yevich P (1976) Responses of an estuarine population of the blue mussel Mytilus edulis to heated water from a steam generating plant. Mar Biol 34:177–189

    Google Scholar 

  • Gracey AY, Cossins AR (2003) Application of microarray technology in environmental and comparative physiology. Annu Rev Physiol 65:231–259

    CAS  Google Scholar 

  • Gracey AY, Chaney ML, Boomhower PJ, Tyburczy RW, Connor K, Somero GN (2008) Rhythms of gene expression in a fluctuating intertidal environment. Curr Biol 18:1501–1507

    CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, Oxford/New York

    Google Scholar 

  • Halpin PM, Sorte CJ, Hofmann GE, Menge BA (2002) Patterns of variation in levels of Hsp70 in natural rocky shore populations from microscales to mesoscales. Integr Comp Biol 42:815–824

    CAS  Google Scholar 

  • Harley CDG, Hughes AR, Hultgren KM et al (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241

    Google Scholar 

  • Harvell CD, Kim K, Burkholder JM et al (1999) Emerging marine diseases – climate links and anthropogenic factors. Science 285:1505–1510

    CAS  Google Scholar 

  • Heise K, Puntarulo S, Pörtner HO, Abele D (2003) Production of reactive oxygen species by isolated mitochondria of the Antarctic bivalve Laternula elliptica (King and Broderip) under heat stress. Comp Biochem Physiol C 134:79–90

    CAS  Google Scholar 

  • Heise K, Puntarulo S, Nikinmaa M, Abele D, Pörtner HO (2006) Oxidative stress during stressful heat exposure and recovery in the North Sea eelpout (Zoarces viviparus). J Exp Biol 209:353–363

    CAS  Google Scholar 

  • Helmuth B (1999) Thermal biology of rocky intertidal mussels: quantifying body temperatures using climatological data. Ecology 80:15–34

    Google Scholar 

  • Helmuth B (2009) From cells to coastlines: how can we use physiology to forecast the impacts of climate change? J Exp Biol 212:753–760

    Google Scholar 

  • Helmuth B, Hofmann GE (2001) Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone. Biol Bull 201:374–384

    CAS  Google Scholar 

  • Helmuth B, Harley CDG, Halpin PM, O’Donnell M, Hofmann GE, Blanchette CA (2002) Climate change and latitudinal patterns of intertidal thermal stress. Science 298:1015–1017

    CAS  Google Scholar 

  • Helmuth B, Mieszkowska N, Moore P, Hawkins SJ (2006) Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change. Ann Rev Ecol Evol Syst 37:373–404

    Google Scholar 

  • Helmuth B, Broitman RB, Yamane L, Gilman ES, Mach K, Mislan KAS, Denny WM (2010) Organismal climatology: analyzing environmental variability at scales relevant to physiological stress. J Exp Biol 213:995–1003

    Google Scholar 

  • Helson JG, Pledger S, Gardner APJ (2007) Does differential particulate food supply explain the presence of mussels in Wellington Harbour (New Zealand) and their absence on neighbouring Cook Strait shores? Estuarine Coastal Shelf Sci 72:223–234

    Google Scholar 

  • Hofmann GE (2005) Patterns of Hsp gene expression in ectothermic marine organisms on small to large biogeographic scales. Integr Comp Biol 45:247–255

    CAS  Google Scholar 

  • Hofmann GE, Gaines SD (2008) New tools to meet new challenges: emerging technologies for managing marine ecosystems for resilience. Bioscience 58(1):43–52

    Google Scholar 

  • Hofmann GE, Place SP (2007) Genomics-enabled research in marine ecology: challenges, risks and pay-offs. Mar Ecol Prog Ser 332:249–255

    CAS  Google Scholar 

  • Hofmann GE, Somero GN (1995) Evidence for protein damage at environmental temperatures: seasonal changes in levels of ubiquitin conjugates and hsp70 in the intertidal mussel Mytilus trossulus. J Exp Biol 198(1509):1518

    Google Scholar 

  • Hofmann GE, Somero GN (1996a) Interspecific variation in thermal denaturation of proteins in the congeneric mussels Mytilus trossulus and M. galloprovincialis: evidence from the heat-shock response and protein ubiquitination. Mar Biol 126:65–75

    CAS  Google Scholar 

  • Hofmann GE, Somero GN (1996b) Protein ubiquitination and stress protein synthesis in Mytilus trossulus occurs during recovery from tidal emersion. Mol Mar Biol Biotechnol 5:175–184

    CAS  Google Scholar 

  • Ioannou S, Anestis A, Pörtner HO, Michaelidis B (2009) Seasonal patterns of metabolism and the heat shock response (HSR) in farmed mussels Mytilus galloprovincialis. J Exp Mar Biol Ecol 381:136–144

    CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate change [Solomon S, Qin D, Manning D, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds)]. Cambridge University Press, Cambridge/New York, pp 996

    Google Scholar 

  • Ivanina AI, Taylor C, Sokolova IM (2009) Effects of elevated temperature and cadmium exposure on stress protein response in eastern oysters Crassostrea virginica (Gmelin). Aquat Toxicol 91:245–254

    CAS  Google Scholar 

  • Jeftic L, Milliman JD, Sestini G (1992) Climate change and the Mediterranean. Edward Arnold, London

    Google Scholar 

  • Kabakov EA, Gabai V (1994) Heat-shock proteins maintain the viability of ATP-deprived cells: what is the mechanism? Trends Cell Biol 4:193–195

    CAS  Google Scholar 

  • Karagiannis D, Angelidis P (2007) Infection of cultured mussels Mytilus galloprovincialis by the protozoan Marteilia sp. in the Thermaikos Gulf (N Greece). Bull Eur Assoc Fish Pathol 27(4):131–141

    Google Scholar 

  • Katsikatsou M, Anestis A, Pörtner HO, Vratsistas A, Aligizaki K, Michaelidis B (2012) Field studies and projections of climate change effects on the bearded horse mussel Modiolus barbatus in the Gulf of Thermaikos, Greece. Mar Ecol Prog Ser 449:183–196

    CAS  Google Scholar 

  • Kawasaki T, Tanaka S, Toba Y, Taniguchi A (1991) Long–term variability of pelagic fish populations and their environment. Pergamon Press, Oxford/New York/Beijing/Frankfort/Seoul/Sydney/Tokyo, p 402

    Google Scholar 

  • Kültz D (2005) Molecular and evolutionary basis of the cellular stress response source. Annu Rev Physiol 67:225–257

    Google Scholar 

  • Lannig G, Flores JF, Sokolova IM (2006) Temperature dependent stress response in oysters, Crassostrea virginica: pollution reduces temperature tolerance in oysters. Aquat Toxicol 79:278–287

    CAS  Google Scholar 

  • Lannig G, Eilers S, Pörtner HO, Sokolova IM, Bock C (2010) Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas – changes in metabolic pathways and thermal response. Mar Drugs 8(8):2318–2339

    CAS  Google Scholar 

  • Lesser PM, Kruse AV (2004) Seasonal temperature compensation in the horse mussel, Modiolus modiolus: metabolic enzymes, oxidative stress and heat shock proteins. Comp Biochem Physiol A 137:495–504

    Google Scholar 

  • Lesser PM, Bailey AM, Merselis GD, Morrison RJ (2010) Physiological response of the blue mussel Mytilus edulis to differences in food and temperature in the Gulf of Maine. Comp Biochem Physiol A 156:541–551

    Google Scholar 

  • Lockwood LB, Sanders GJ, Somero GN (2010) Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): molecular correlates of invasive success. J Exp Biol 213:3548–3558

    CAS  Google Scholar 

  • Lowe DM, Moore MN, Bayne BL (1982) Aspects of gametogenesis in the marine mussel Mytilus edulis L. J Mar Biol Assoc UK 62:133–145

    Google Scholar 

  • Lushchak VI (2010) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30

    Google Scholar 

  • MacLeod CD, Hauser N, Peckham H (2004) Diversity, relative density and structure of the cetacean community in summer months east of Great Abaco, Bahamas. J Mar Biol Assoc UK 84:469–474

    Google Scholar 

  • Mallouk Y, Vayssier-Taussat M, Bonventre JV, Polla BS (1999) Heat shock protein 70 and ATP as partners in cell homeostasis. Int J Mol Med 4:463–474

    CAS  Google Scholar 

  • Marasovič I, Nincevic L, Kusflpilic G, Marinovic S, Marinov S (2005) Long-term changes of basic biological and chemical parameters at two stations in the middle Adriatic. J Sea Res 54:3–14

    Google Scholar 

  • McCarty JP (2001) Ecological consequences of recent climate change. Conserv Biol 15:320–331

    Google Scholar 

  • McQuaid CD, Lindsay TL (2000) Effect of wave exposure on growth and mortality rates of the mussel Perna perna: bottom-up regulation of intertidal populations. Mar Ecol Prog Ser 206:147–154

    Google Scholar 

  • Melzner F, Mark FC, Pörtner HO (2007) Role of blood-oxygen transport in thermal tolerance of the cuttlefish, Sepia officinalis. Integr Comp Biol 47:645–655

    CAS  Google Scholar 

  • Menge BA (2000) Top-down and bottom-up community regulation in marine rocky intertidal habitats. J Exp Mar Biol Ecol 250:257–289

    Google Scholar 

  • Menge BA, Daley BA, Wheeler PA, Strub PT (1997) Rocky intertidal oceanography: an association between community structure and nearshore phytoplankton concentration. Limnol Oceanogr 42:57–66

    CAS  Google Scholar 

  • Menge BA, Daley BA, Lubchenco J, Sanford E, Dahlhoff E, Halpin PM, Hudson G, Burnaford JL (1999) Top-down and bottom-up regulation of New Zealand rocky intertidal communities. Ecol Monogr 69(3):297–330

    Google Scholar 

  • Menge BA, Olson AM, Dahlhoff EP (2002) Environmental stress, bottom-up effects, and community dynamics: integrating molecular-physiological and ecological approaches. Integr Comp Biol 42:892–908

    Google Scholar 

  • Menge BA, Chan F, Lubchenco J (2008) Response of a rocky intertidal ecosystem engineer and community dominant to climate change. Ecol Lett 11:151–162

    Google Scholar 

  • Mitchell DT, Hulme M (1999) Predicting regional climate change: living with uncertainty. Prog Phys Geogr 23:57–78

    Google Scholar 

  • Navarro E, Iglesias JIP, Perez Camacho A, Labarta U, Beiras R (1991) The physiological energetics of mussels (Mytilus galloprovincialis Lmk) from different cultivation rafts in the Ria de Arosa (Galicia, N.W. Spain). Aquaculture 94:197–212

    Google Scholar 

  • Newell RC (1979) Biology of intertidal animals, 3rd edn. Marine Ecological Surveys, Faversham

    Google Scholar 

  • Nicholls RJ, Hoozemans FMJ (1996) The Mediterranean: vulnerability to coastal implication of climate change. Ocean Coast Manag 31:105–132

    Google Scholar 

  • Palleros DR, Welch WJ, Fink AL (1991) Interaction of hsp70 with newly synthesized proteins: effects of temperature and nucleotides on the kinetics of binding. Proc Natl Acad Sci USA 88:5719–5723

    CAS  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    CAS  Google Scholar 

  • Peharda M, Župan I, Bavčević L, Frankić A, Tin Klanjšček T (2007) Growth and condition index of mussel Mytilus galloprovincialis in experimental integrated aquaculture. Aquac Res 38:1714–1720

    Google Scholar 

  • Petes EL, Menge AB, Murphy DG (2007) Environmental stress decreases survival, growth, and reproduction in New Zealand mussels. J Exp Mar Biol Ecol 351:83–91

    Google Scholar 

  • Petes EL, Menge AB, Harris IA (2008) Intertidal mussels exhibit energetic trade-offs between reproduction and stress resistance. Ecol Monogr 78:387–402

    Google Scholar 

  • Petrović S, Semenčić L, Ozretić B, Ozretić M (2004) Seasonal variations of physiological and cellular biomarkers and their use in the biomonitoring of north adriatic coastal waters (Croatia). Mar Pollut Bull 49:713–720

    Google Scholar 

  • Pisanelli B, Benedetti M, Fattorini D, Regoli F (2009) Seasonal and inter-annual variability of DNA integrity in mussels Mytilus galloprovincialis: a possible role for natural fluctuations of trace metal concentrations and oxidative biomarkers. Chemosphere 77:1551–1557

    CAS  Google Scholar 

  • Pörtner HO (2001) Climate change and temperature dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88:137–146

    Google Scholar 

  • Pörtner HO (2002a) Climate change and temperature dependent biogeography: systemic to molecular hierarchies of thermal tolerance in animals. Comp Biochem Physiol 132A:739–761

    Google Scholar 

  • Pörtner HO (2002b) Physiological basis of temperature dependent biogeography: tradeoffs in muscle design and performance in polar ectotherms. J Exp Biol 205:2217–2230

    Google Scholar 

  • Pörtner HO (2006) Climate dependent evolution of Antarctic ectotherms: an integrative analysis (EASIZ, SCAR). Deep Sea Res II 53:1071–1104

    Google Scholar 

  • Pörtner HO (2010) Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J Exp Biol 213:881–893

    Google Scholar 

  • Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692

    Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97

    Google Scholar 

  • Pörtner HO, Langenbuch M, Reipschläger A (2004) Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. J Oceanogr 60:705–718

    Google Scholar 

  • Pörtner HO, Lucassen M, Storch D (2005a) Metabolic biochemistry: its role in thermal tolerance and in the capacities and in the capacities of physiological and ecological function. Fish Physiol 22:79–118

    Google Scholar 

  • Pörtner ΗΟ, Langenbuch Μ, Michaelidis B (2005b) Synergetic effects of increased CO2, temperature and hypoxia on marine animals. From earth history to global change. J Geophys Res-Oceans 110(C9): art. no. C09S10 SEP 23

    Google Scholar 

  • Ramón M, Fernández M, Galimany E (2007) Development of mussel (Mytilus galloprovincialis) seed from two different origins in a semi-enclosed Mediterranean Bay (N.E. Spain). Aquaculture 264:148–159

    Google Scholar 

  • Rayyan A, Damianidis P, Antoniadou C, Chintiroglou CC (2006) Protozoan parasites in cultured mussels Mytilus galloprovincialis in the Thermaikos gulf (north Aegean Sea, Greece). Dis Aquat Organ 70:251–254

    Google Scholar 

  • Regoli F, Cerrano C, Chierici E, Chiantore MC, Bavestrello G (2004) Time-course variations of oxyradical metabolism, DNA integrity and lysosomal stability in mussels, Mytilus galloprovincialis, during a field translocation experiment. Aquat Toxicol 68:167–178

    CAS  Google Scholar 

  • Ren JS, Ross AH (2005) Environmental influence on mussel growth: a dynamic energy budget model and its application to the greenshell mussel Perna canaliculus. Ecol Model 189:347–362

    Google Scholar 

  • Resgalla C Jr, Brasil ES, Laitano KS, Reis Filho RW (2007) Physioecology of the mussel Perna perna (Mytilidae) in southern Brazil. Aquaculture 270:464–474

    Google Scholar 

  • Richardson AJ (2008) In hot water: zooplankton and climate change. ICES J Mar Sci 65:279–295

    Google Scholar 

  • Robert R, Borel M, Pichot Y, Trut G (1991) Growth and mortality of the European oyster Ostrea edulis in the Bay of Arcachon (France). Aquat Living Resour 4:265–274

    Google Scholar 

  • Roberts DA, Hofmann GE, Somero GN (1997) Heat shock protein expression in Mytilus californianus: acclimatization (seasonal and tidal-height comparisons) and acclimation effects. Biol Bull 192:309–320

    CAS  Google Scholar 

  • Roberts CM, McClean CJ, Veron JEN et al (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284

    CAS  Google Scholar 

  • Santovito G, Piccinni E, Cassini A, Irato P, Albergoni V (2005) Antioxidant responses of the Mediterranean mussel, Mytilus galloprovincialis, to environmental variability of dissolved oxygen. Comp Biochem Physiol C 140:321–329

    Google Scholar 

  • Sasikumar G, Krishnakumar KP (2011) Aquaculture planning for suspended bivalve farming systems: the integration of physiological response of green mussel with environmental variability in site selection. Ecol Indic 11:734–740

    CAS  Google Scholar 

  • Saxby SA (2002) A review of food availability, sea water characteristics and bivalve growth performance at coastal culture sites in temperate and warm temperate regions of the world. Fish Res Rep No 132, pp 42

    Google Scholar 

  • Schulte HE (1975) Influence of algal concentration and temperature on the filtration rate of Mytilus edulis. Mar Biol 30:331–341

    Google Scholar 

  • Seed R, Suchanek TH (1992) Population and community ecology of Mytilus. In: Gosling E (ed) The mussel Mytilus: ecology, physiology, genetics and culture. Elsevier, Amsterdam, pp 87–157

    Google Scholar 

  • Smaal AS, Widdows J (1994) The scope for growth of bivalves as an integrated response parameter in biological monitoring. In: Kramer KJM (ed) Biomonitoring of coastal waters and estuaries. CRC Press, Boca Raton, pp 247–262

    Google Scholar 

  • Smith RJ, Fong P, Ambrose FR (2006) Dramatic declines in mussels bed community: response to climate change? Ecol Lett 87:1153–1161

    Google Scholar 

  • Sobral P, Widdows J (1997) Effects of elevated temperatures on the scope for growth and resistance to air exposure of the clam Ruditapes decussatus (L.), from southern Portugal. Sci Mar 61:163–171

    Google Scholar 

  • Sokolova IM, Lannig G (2008) Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change. Clim Res 37:181–201

    Google Scholar 

  • Somero GN (2002) Thermal physiology and vertical zonation of intertidal animals: optima, limits, and costs of living. Integr Comp Biol 42:780–789

    Google Scholar 

  • Somero GN (2005) Linking biogeography to physiology: evolutionary and acclimatory adjustments of thermal limits. Front Zool 2. http://www.frontiersinzoology.com/content/2-1/1

  • Somero NG (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213:912–920

    CAS  Google Scholar 

  • Somero GN (2012) The physiology of global change: linking patterns to mechanisms. Annu Rev Mar Sci 4:2.1–2.23

    Google Scholar 

  • Sommer A, Klein B, Pörtner HO (1997) Temperature induced anaerobiosis in two populations of the polychaete worm Arenicola marina (L.). J Comp Physiol 167B:25–35

    Google Scholar 

  • Storey KB, Storey JM (1990) Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and aestivation. Q Rev Biol 65:145–174

    CAS  Google Scholar 

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148

    CAS  Google Scholar 

  • Tomanek L (2008) The importance of physiological limits in determining biogeographical range shifts due to global change: the heat-shock response. Physiol Biochem Zool 81:709–717

    CAS  Google Scholar 

  • Tomanek L (2010) Variation in the heat shock response and its implication for predicting the effect of global climate change on species’ biogeographical distribution ranges and metabolic costs. J Exp Biol 213:971–979

    CAS  Google Scholar 

  • Tomanek L (2011) Environmental proteomics: changes in the proteome of marine organisms in response to environmental stress, pollutants, infection, symbiosis, and development. Annu Rev Mar Sci 3:14.1–14.27

    Google Scholar 

  • Tomanek L, Sanford E (2003) Heat-shock protein 70 (Hsp70) as a biochemical stress indicator: an experimental field test in two congeneric intertidal gastropods (Genus: Tegula). Biol Bull 205:276–284

    CAS  Google Scholar 

  • Tomanek L, Somero GN (1999) Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (genus tegula) from different thermal habitats: implications for limits of thermotolerance and biogeography. J Exp Biol 202:2925–2936

    Google Scholar 

  • Tomanek L, Somero GN (2002) Interspecific- and acclimationinduced variation in levels of heat-shock proteins 70 (hsp70) and 90 (hsp90) and heat-shock transcription factor-1 (HSF1) in congeneric marine snails (genus Tegula): implications for regulation of hsp gene expression. J Exp Biol 205:677–685

    CAS  Google Scholar 

  • Tomanek L, Zuzow JM (2010) The proteomic response of the mussel congeners Mytilus galloprovincialis and M. trossulus to acute heat stress: implications for thermal tolerance limits and metabolic costs of thermal stress. J Exp Biol 213:3559–3574

    CAS  Google Scholar 

  • Tremblay R, Myrand B, Sevigny JM, Guderley H (1998a) Bioenergetic and genetic parameters in relation to susceptibility of blue mussels, Mytilus edulis (L) to summer mortality. J Exp Mar Biol Ecol 221:27–58

    Google Scholar 

  • Tremblay R, Myrand B, Guderley H (1998b) Temporal variation of lysosomal capacities in relation to susceptibility of mussels, Mytilus edulis, to summer mortality. Mar Biol 132:641–649

    Google Scholar 

  • Van der Veer WH, Cardoso JFMF, Peck AM, Kooijman LMS (2009) Physiological performance of plaice Pleuronectes platessa (L.): a comparison of static and dynamic energy budgets. J Sea Res 62:83–92

    Google Scholar 

  • Vargas-Yánẽz M, Garcia MJ, Salat J, Garcia-Martinez MC, Pascual J, Moya F (2008) Warming trends and decadal variability in the western Mediterranean shelf. Glob Planet Change 63:177–184

    Google Scholar 

  • Vargas-Yánẽz M, Zunino P, Benali A, Delpy M, Pastre F, Moya F, Carmen García-Martínez M-C, Tel E (2010) How much is the western Mediterranean really warming and salting?. J Geophys Res 115:C04001, 12 PP

    Google Scholar 

  • Verlecar XN, Jena KB, Chainy GBN (2007) Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature. Chem Biol Interact 167:219–226

    CAS  Google Scholar 

  • Vidal-Liñán L, Bellas J, Campillo JA, Beiras R (2010) Integrated use of antioxidant enzymes in mussels, Mytilus galloprovincialis, for monitoring pollution in highly productive coastal areas of Galicia (NW Spain). Chemosphere 78:265–272

    Google Scholar 

  • Villalba A, Mourelle SG, Carballal MJ, Lopez MC (1993a) Effects of infection by the protistan parasite Marteilia refringens on the reproduction of cultured mussels Mytilus galloprovincialis in Galicia (NW Spain). Dis Aquat Organ 17:205–213

    Google Scholar 

  • Villalba A, Mourelle SG, Carballal MJ, Lopez MC, Azevedo C (1993b) Marteiliasis affecting cultured mussels Mytilus galloprovincialis of Galicia NW Spain: I. Etiology, phases of the infection, and temporal and spatial variability in prevalence. Dis Aquat Organ 16:61–72

    Google Scholar 

  • Virvilis C, Angelidis P (2006) Presence of the parasite Marteilia sp. in the flat oyster (Ostrea edulis L) in Greece. Aquaculture 25:1–5

    Google Scholar 

  • Virvilis C, Angelidis P, Photis G (2003) Presence of the parasite Marteilia sp. in the shellfish of the Thermaikos Gulf in northern Greece. Bull Eur Assoc Fish Pathol 23:157–161

    Google Scholar 

  • Weitere M, Vohmann A, Schulz N et al (2009) Linking environmental warming to the fitness of the invasive clam Corbicula fluminea. Glob Chang Biol 15:2838–2851

    Google Scholar 

  • Widdows J (1973) The effects of temperature on the metabolism and activity of Mytilus edulis L. Neth J Sea Res 7:387–398

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basile Michaelidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Michaelidis, B., Pörtner, HO., Sokolova, I., Tomanek, L. (2014). Advances in Predicting the Impacts of Global Warming on the Mussels Mytilus galloprovincialis in the Mediterranean Sea. In: Goffredo, S., Dubinsky, Z. (eds) The Mediterranean Sea. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6704-1_18

Download citation

Publish with us

Policies and ethics