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Abstract Cephalopods have been utilised in neurosci-

ence research for more than 100 years particularly because

of their phenotypic plasticity, complex and centralised

nervous system, tractability for studies of learning and

cellular mechanisms of memory (e.g. long-term potentia-

tion) and anatomical features facilitating physiological

studies (e.g. squid giant axon and synapse). On 1 January

2013, research using any of the about 700 extant species of

‘‘live cephalopods’’ became regulated within the European

Union by Directive 2010/63/EU on the ‘‘Protection of

Animals used for Scientific Purposes’’, giving cephalopods

the same EU legal protection as previously afforded only to

vertebrates. The Directive has a number of implications,

particularly for neuroscience research. These include: (1)

projects will need justification, authorisation from local

competent authorities, and be subject to review including a

harm-benefit assessment and adherence to the 3Rs princi-

ples (Replacement, Refinement and Reduction). (2) To

support project evaluation and compliance with the new

EU law, guidelines specific to cephalopods will need to be

developed, covering capture, transport, handling, housing,

care, maintenance, health monitoring, humane anaesthesia,

analgesia and euthanasia. (3) Objective criteria need to be

developed to identify signs of pain, suffering, distress and

lasting harm particularly in the context of their induction

by an experimental procedure. Despite diversity of views

existing on some of these topics, this paper reviews the

above topics and describes the approaches being taken by

the cephalopod research community (represented by the

authorship) to produce ‘‘guidelines’’ and the potential

contribution of neuroscience research to cephalopod

welfare.
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Introduction

Cephalopods are a numerically small but significant taxon

of invertebrates (phylum Mollusca) whose richness of

behavioural capabilities (Borrelli and Fiorito 2008) fasci-

nate the public and researchers alike, but that also represent

a very important resource for human consumption (Jereb

et al. 2005). The class Cephalopoda is considered the most

complex one in the phylum Mollusca and arguably amongst

all other invertebrate phyla as reflected in the use of the term

‘‘advanced invertebrate’’ or ‘‘exceptional invertebrate

class’’ (sensu Zullo and Hochner 2011). It includes exclu-

sively marine living species considered to have rivaled

fishes during evolution (e.g. Packard 1972; but see also

Kröger et al. 2011). Cephalopods demonstrate a refined and

extraordinary ability to adapt their morphology (Kröger

et al. 2011) and behavioural repertoire to their niche; this

may have contributed greatly to their success (Hochner

et al. 2006; Hochner 2008, 2012; Borrelli and Fiorito 2008).

Amongst the several notable expressions of phenotypic

plasticity in cephalopods (Hanlon and Messenger 1996; see

also Barbato et al. 2007) is the capability to display envi-

ronmentally cued phenotypes, i.e. body patterns (Borrelli

et al. 2006). The complex behavioural and learning capa-

bilities of cephalopods (Hanlon and Messenger 1996;

Borrelli and Fiorito 2008; Huffard 2013) correspond to a

highly sophisticated nervous system that appears to be

correlated with their lifestyle (Nixon and Young 2003;

Borrelli 2007). The flexibility of the behavioural repertoire

of cephalopods is supported by evident cellular and synaptic

plasticity at the level of the central and peripheral nervous

system and of the neuromuscular junctions (review in

Brown and Piscopo 2013). Cephalopods are well known

amongst neuroscientists for their contribution to funda-

mental understanding of the nervous system (Young 1985;

Abbott et al. 1995; but see also Brown and Piscopo 2013).

This paper is prompted by the recent inclusion of ‘‘all

live cephalopods’’ in Directive 2010/63/EU that regulates

the use of animals for scientific purposes (European Par-

liament and Council of the European Union 2010).

Regulation of scientific uses of cephalopods

National legislation regulating experimentation on living

animals began to appear in several European countries in

the late nineteenth century and made a division between

vertebrates and invertebrates, with only vertebrates being

regulated (i.e.: United Kingdom, 1876; Germany, 1883;

Denmark, 1891; see Smith et al. 2013 for references).1

One species of cephalopod, Octopus vulgaris, was

included in a revision of the UK legislation (Animals

[Scientific Procedures] Act 1986), but no studies have ever

been conducted under the legislation. Cephalopods have

been included in various national codes of practice and

legislation covering research in several countries outside

the EU, for example: Canada, 1991; New Zealand, 1999;

Australia, 2004; Switzerland, 2011; Norway, 2011; see

Smith et al. (2013) for details and references.

Animal experimentation involving all vertebrates has

been regulated at EU level since 1986 (Directive 86/609/
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1 The vertebrate species commonly covered were those utilised in

experiments (primarily physiology) at the time (e.g. frogs, cats, dogs).

The wording of the UK 1876 Cruelty to Animals Act perhaps gives an

additional insight into the basis for ‘‘the division’’ between inverte-

brates and vertebrates. The Act permits ‘‘the advancement of new

discovery of physiological knowledge by experiments calculated to

give pain’’ (our italics), implying that the authors of the Act may have

taken the view that whilst vertebrates may experience pain inverte-

brates do not (but see Fiorito 1986; and Andrews 2011a; Andrews

et al. 2013 for details).
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EEC) and Directive 2010/63/EU (European Parliament and

Council of the European Union 2010), which we will refer

to here as the ‘‘Directive’’ is a major revision intended to

make the regulation ‘‘more stringent and transparent’’ as

well as recognising advances in research techniques,

improved understanding and assessment of animal welfare

(see: Broom 1991a, b, 2011 for an introduction to the

issues) and developments in ethical review of animal

experimentation (Smith et al. 2013) particularly in relation

to invertebrates (Mather and Anderson 2007; Moltschan-

iwskyj et al. 2007; Horvath et al. 2013). The Directive also

places particular emphasis on application of the ‘‘3Rs’’

principles of Replacement, Reduction and Refinement

formulated by Russell and Burch (1959) and discussed in

detail below in relation to neuroscience research.

For invertebrate research in the EU, Directive 2010/63/

EU which implemented on 1 January 2013 marks a para-

digm shift by covering the use of an entire class of Mol-

luscs, namely ‘‘live cephalopods’’ (i.e. hatched juveniles

and adults) in the legislation covering experimental proce-

dures likely to cause pain, suffering, distress or lasting harm

(EFSA Panel on Animal Health and Welfare 2005; Euro-

pean Parliament and Council of the European Union 2010;

Smith et al. 2013). This means that, under the Directive and

transposed national laws, cephalopods have the same legal

status as vertebrates in relation to their experimental use in

research and testing (Smith et al. 2013).

It should be noted that drafts of the Directive also

included decapod Crustacea (e.g. crabs, lobsters). Although

decapod crustaceans were not included in the adopted

Directive, it is likely that this issue will be revisited

because of the continuing debate about their pain percep-

tion (Gherardi 2009; Magee and Elwood 2013; Horvath

et al. 2013) and also because as was the case with cepha-

lopods there is interest in this issue from animal welfare

and animal rights groups (Advocates for Animals 2005).

The decision to include cephalopods was based primarily

upon the recommendations of a scientific panel which

concluded that there was ‘‘scientific evidence of their ability

to experience pain, suffering, distress and lasting harm’’

(i.e. PSLDH; Directive 2010/63/EU: Recital 8, European

Parliament and Council of the European Union 2010).

However, note that this view is not universally shared by the

global research community. In essence, much of the evi-

dence for inclusion of cephalopods in the Directive is based

upon various aspects of neuroscience research on cephalo-

pods and the criteria used, as well as additional recent

studies, are reviewed by Andrews et al. (2013).

It is anticipated that the Directive will provide a stim-

ulus to cephalopod neuroscience research, as ensuring the

highest welfare standards requires answers to a number of

questions some of which are summarised in Table 1.

The Directive will impact upon scientific work using any

of the approximately 700 extant species of cephalopods, but

in practice within the EU the species most commonly used

are the coleoid cephalopods: the cuttlefish Sepia officinalis;

the squids Loligo vulgaris and Loligo forbesi; and the

octopuses O. vulgaris, Eledone cirrhosa and Eledone
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moschata. The shelled cephalopod Nautilus pompilius is

also used occasionally but is imported from tropical waters.

Compliance with the new EU legislation will be chal-

lenging for many areas of cephalopod research, especially

neuroscience; some concern has already been expressed

regarding the applicability of ‘‘mammal-centric’’ regula-

tions to cephalopods (Nosengo 2011). Yet, the legislation

by itself is not aimed to be ‘‘mammal-centric’’, as the law

applies equally to fish, amphibians and birds as well as

mammals, and the principles are the same for all species!

Some implications of the Directive for research

on cephalopods

The inclusion of cephalopods in the Directive has a number

of implications for different groups:

1. Researchers All researchers who use cephalopods in

their research will need to ascertain whether the

intended experiments are covered by the Directive and

if so an application will need to be submitted to the

appropriate National Competent Authority (NCA;2 e.g.

Home Office in the UK; Ministère de l’Enseignement

Supérieur et de la Recherche in France; Ministero della

Salute in Italy) and approval obtained prior to starting

the project. The authorisation process involves impar-

tial evaluation of the project by the NCA including

examination of the purpose of the research procedures

(permitted purposes are listed in Article 5 of the

Directive), compliance with 3Rs, severity classifica-

tion of procedures and a harm-benefit analysis of the

project (Voipio et al. 2004; for details and examples

see: Smith et al. 2013). Researchers should consult

their NCA to obtain details of the authorisation process

as although the principles are common throughout the

EU, the way in which the Directive is transposed into

national legislation may differ. It should also be noted

that in addition to covering the experiments them-

selves, the Directive also regulates the place where

experiments are undertaken, the standards of housing

and care of animals used for research and methods of

euthanasia. Researchers will also need to ensure that

their project is authorised and that their whole team is

familiar with the national law covering their experi-

ments are appropriately trained and competent to

perform the procedures (Article 23 of the Directive)

and, if required by the national legislation, that the

project and personnel are covered by appropriate

licences (e.g. in the UK Home Office Project and

Personal Licences). A checklist of what is needed in

the case of conducting cephalopod research in the EU

is summarised in Smith et al. (2013).

2. Animal technologists, veterinarians and regulators

The Directive places the care and welfare within a

legal framework requiring documented monitoring and

compliance. Research on cephalopods, under the

Directive, is likely to be performed in the same places

where research is currently undertaken, so those

currently responsible for care and welfare will be

hopefully familiar with the expected requirements.

Nonetheless, it is likely that some training will be

needed even for those familiar with maintenance of

cephalopods in the laboratory. In addition, veterinar-

ians or other suitable qualified experts with responsi-

bility for laboratory animal facilities will need to

become familiar with all aspects of health and welfare

of the cephalopod species in their care. Although there

Table 1 Possible areas of biological and neuroscience research

expected to contribute to increasing knowledge of cephalopod welfare

as stimulated by Directive 2010/63/EU

Optimal conditions of care and maintenance of animals also
aimed to increase well-being

Evidence of the capacity for cephalopods to experience pain

Search for receptors sensitive to noxious stimuli

Functional analysis of ‘‘brain centres’’

Analysis of nervous pathways connecting the nociceptive system

to higher ‘‘brain centres’’

Search for receptors for opioid, cannabinoid and analgesic

steroid substances

Studies on analgesia and animals’ responses

Behavioural and functional analysis of animals’ response to

painful stimuli

Search of objective signs of pain, suffering and distress

Physiological indicators of pain

Humane end points in cephalopod studies

General anaesthesia for cephalopods

Establishment of objective criteria for assessing depth of general

anaesthesia

Methods for maintenance of general anaesthesia and facilitation

of recovery

Methods for production of local anaesthesia and systemic

analgesia

Methods for humane killing

Physiological analysis and evaluation of stress, suffering or pain,
including evaluation of biomarkers of immune response linked
to diseases and distress

Noninvasive approaches to characterise physiological function
of organs and systems and monitoring effects of experimental
treatments

For review and further discussion see Andrews (2011a, b), Andrews

et al. (2013) and Smith et al. (2013). See also: Borrelli and Fiorito

(2008), Ponte and Fiorito (2011, 2013), Boal (2011), Margheri et al.

(2011b), Ponte et al. (2013)

2 A list of NCA is available at http://ec.europa.eu/environment/

chemicals/lab_animals/ms_en.htm.
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are reviews covering cephalopod health (e.g.: Boletzky

and Hanlon 1983; Hochberg 1990; Hanlon and Forsy-

the 1990a, b; Boyle 1991; Castellanos-Martinez and

Gestal 2013), there are few aquatic medicine courses

covering invertebrates (see for example: Virginia-

Maryland Regional College of Veterinary Medicine,

http://www.vetmed.vt.edu/research/aquatic/education.

html).

One aspect of monitoring compliance with the Direc-

tive involves ‘‘regular inspections’’ of establishments,

of which ‘‘an appropriate proportion’’ is to be carried

out ‘‘without prior warning’’ (Directive Article 34).

Monitoring may involve inspection of the place where

the animals are kept, observations of procedures and

inspection of experimental records. The records must

include the source of the animals, whether they were

purpose bred, what they were used for and by whom,

and their fate at the end of the study (Directive Article

30). Those responsible for monitoring compliance with

the Directive will need training to become familiar

with this newly regulated class of animal.

3. Funders Most grant funding agencies and charities

already require that grant applications involving

research on vertebrates certify that, if required, appro-

priate authorisation (normally including ‘‘ethical’’

review) to conduct the proposed studies is in place.

As cephalopods are now covered by the same legis-

lation as vertebrates, grants involving particular types

of research concerning their regulated use will need to

ensure that the proposed studies comply with the

Directive and any national Codes of Practice related to

care and welfare.

4. Journal editors and reviewers The editors and review-

ers of Journals will need to be made aware of the

change in the regulation within the EU to ensure that

papers submitted for publication if appropriate make

reference to compliance with the Directive. This may

be difficult for a short period as although the Directive

was implemented on 1 January 2013, some EU states

have not yet transposed it into national legislation

(http://ec.europa.eu/environment/chemicals/lab_animals/

transposition_en.htm). Although not part of the Direc-

tive, several journals (e.g. Nature, PLoS)3 have volun-

tary adopted the ARRIVE (Animal Research: Reporting

of in vivo Experiments: http://www.nc3rs.org.uk/page.

asp?id=1357) guidelines for reporting experiment (Kil-

kenny et al. 2010). These guidelines provide checklists

of information that should be included in published

papers, particularly in the methods sections. Whilst

many papers involving cephalopods already contain

much of this information, key information is lacking in

others. For example, only in the 40 % of papers pub-

lished in the 2010 (n = 65; source WoK: ISI Web of

Knowledge), mention the conditions in which cephalo-

pods are maintained. However, only half of those (13 out

26 papers) provide details on tank and lighting. Further

analysis reveals that for the five cases in which octo-

puses were utilised, tanks ranged from 200 to 7,000 L

and for cuttlefishes (n = 7) a wider range of tank sizes

was utilised (from 30 to 20,000 L). It is remarkable that

a justification for such a diversity of approach for

accommodating animals is missing in the papers.

Finally, no indication of the stocking density of animals

is provided in the great majority of studies here con-

sidered.

The lack of such information makes it difficult to

undertake systematic analysis of housing conditions in

order to derive guidelines reflecting the consensus in the

literature. In addition, lack of critical information on sex,

body weight, feeding, tank size, lighting, handling and

euthanasia methodology can compromise assessment of

results. Based upon studies in vertebrates, the outcome

of neuroscience studies, and in particular studies of

behaviour in cephalopods, is most likely to be sensitive

to environmental factors.

5. The public Although cephalopods are frequently

portrayed as creatures of nightmares in films and

literature (e.g.: Muntz 1995; Ellis 1998), people are

nevertheless fascinated by these animals in display

aquaria and they make frequent appearances in

natural history documentaries and the media. In

contrast to mice, rats and rabbits, the public do not

make an immediate association between cephalopods

and ‘‘animal experimentation’’, but this may change

as the knowledge of their inclusion in the Directive

becomes more widely known and researchers should

be aware that their studies may come under public

and media scrutiny.

Neuroscience research and the impact of the Directive

Cephalopods are a large group of marine predators whose

major aspects of biology, behaviour, and ecology provide

a backdrop against which their neurobiology can be

interpreted. Special features of their reproduction (Rocha

et al. 2001), camouflage, motor control, memory, learn-

ing, and behavioural ecology may be considered as spe-

cial cases of convergent evolution with vertebrates

(Packard 1972; Borrelli and Fiorito 2008; Huffard 2013).

3 For an updated list see Journals that have incorporated ARRIVE in

their Instructions for Authors at: http://www.nc3rs.org.uk/page.

asp?id=1796.
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Neuroscience research involving brain and behaviour is

particularly prominent because of the perceived status of

cephalopods as ‘‘advanced invertebrates’’. Cephalopods

are model organisms for a diverse range of neuroscience

areas, and their anatomical features provide unique

opportunities for research (see examples in Table 2).

Neuroscience research studies may be particularly

impacted by the Directive as they cover a diversity of

experimental techniques (‘‘procedures’’) which are often

invasive and may cause pain, suffering, distress and

lasting harm. This aspect is discussed in detail hereunder

with examples of the types of study likely to fall within

the scope of the Directive and which will need to be

authorised by the appropriate national competent author-

ity. Although researchers should be familiar with all the

requirements of the Directive in relation to routine care

and welfare, it is the aspects of the Directive covering

procedures and their impact upon the health and welfare

of the animal that are likely to have the greatest impact

upon their use in research.

Table 2 A selected summary of cephalopod neuroscience and neu-

robehavioural research [for review see also: Borrelli and Fiorito

(2008), Brown and Piscopo (2013), Huffard (2013)]

Squid giant axon and giant synapse

Physiology of resting membrane potential and action potential

[consider also the Nobel Prize to Eccles (Hodgkin and

Huxley1952)]

Giant axon-Schwann cell signalling

Physiology and pharmacology of synaptic transmission

Axoplasmic transport

Consider also recent studies on

The effect of mutant SOD1 implicated in Lou Gehrig disease in

humans

Effect of human tau-protein implicated in Alzheimer’s disease

Relevant references: Young (1938), Bullock (1948), Hodgkin

and Huxley (1952), Bloedel et al. (1966), Coles and Abbott

(1996), Moreno et al. (2011), Song et al. (2012)

Behavioural studies and the search for their
neural correlates

Behavioural plasticity, learning and memory

Sleep-like states

Consciousness

Physiology and pharmacology of long-term potentiation (LTP)

Relevant references: Sanders (1975), Fiorito et al. (1990), Young

(1991, 1995), Fiorito and Scotto (1992), Robertson et al. (1994,

1995, 1996), Fiorito and Chichery (1995), Boal 1996, Boal and

Gonzalez (1998), Boal and Golden (1999), Boal et al. (2000),

Agin et al. (2001), Vinogradova et al. (2002), Agin et al. (2003),

Hochner et al. (2003, 2006), Karson et al. (2003), Darmaillacq

et al. (2004, 2006), Boal (2006), Agin et al. (2006), Brown et al.

(2006), Langridge et al. (2007), Hochner (2008), Shomrat et al.

(2008, 2010), Mather (2008), Edelman and Seth (2009), Zullo

et al. (2009), Zylinski et al. (2011), Shomrat et al. (2011),

Tricarico et al. (2011), Zullo and Hochner (2011), Edelman

(2011), Osorio and Zylinski (2011), Gutnick et al. (2011a, b),

Josef et al. (2012), Hochner (2012), Frank et al. (2012)

Neurotransmitters (sensu lato)

Relevant references: Florey (1963), Loe and Florey (1966),

Florey and Winesdorfer (1968), Tansey (1978, 1979),

Budelmann and Bonn (1982), Williamson (1989), Cornwell

et al. (1993), Messenger (1996), Palumbo et al. (1999), Loi and

Tublitz (2000), Lima et al. (2003), Di Cosmo et al. (2004,

2006, 2007), Fiore et al. (2004), Scheinker et al. (2005), Di

Cristo et al. (2007), Boyer et al. (2007), Wollesen et al. (2008,

2010a, b, 2012), Bardou et al. (2009, 2010), Shomrat et al.

(2010), Ponte (2012), Conti et al. (2013)

Nociception

Relevant references: Crook and Walters (2011), Crook et al.

(2011, 2013), Hague et al. (2013), Andrews et al. (2013), but

see also: Wells et al. (1965), Wells (1978), Hanlon and

Messenger (1996), Mather and Anderson (2007)

Regeneration

Regeneration of appendages following damage (wild and

experimental)

Nerve regrowth

Relevant references: Lange (1920), Sereni and Young (1932),

Sanders and Young (1974), Féral (1988), Rohrbach and

Schmidtberg (2006), Florini et al. (2011), Fossati et al. (2013)

Table 2 continued

Neuromotor control

Motor and sensory control of arm movements

Arm use preference and functioning (including suckers)

Octopus arm as a bio-inspired robotic model

Control of chromatophores and body patterning

Relevant references: Kier (1982, 1985, 1991), Kier and Smith

(1985), Hanlon and Messenger (1996), Kier and VanLeeuwen

(1997), Mather (1998), Loi and Tublitz (2000), Messenger

(2001), Sumbre et al. (2001, 2005, 2006), Borrelli et al. (2006),

Gutfreund et al. (2006), Byrne et al. (2006a, b), Grasso and

Setlur (2007), Barbato et al. (2007), Grasso (2008), Kier and

Schachat (2008), Zullo et al. (2009), Mattiello et al. (2010),

Calisti et al. (2011), Margheri et al. (2011a, b, 2012), Mazzolai

et al. (2012), Laschi et al. (2012)

Physiology of the sensory systems

Visual and chemo-tactile systems

Statocyst and oculomotor systems

Relevant references: Bullock (1965), Williamson (1986, 1989,

1995), Budelmann (1995), Abbott et al. (1995), Lucero and Gilly

(1995), Budelmann et al. (1997), Williamson and Chrachri (2004)

Development and functional organisation of the ‘‘brain’’ and
muscles

Relevant references: Young (1991, 1995), Gutfreund et al.

(1996), Shigeno et al. (2001a, b, 2008a, b), Callaerts et al.

(2002), Shigeno and Yamamoto (2002), Lee et al. (2003),

Hartmann et al. (2003), Nixon and Young (2003), Grimaldi

et al. (2004), Borrelli (2007), Navet et al. (2008), Lee et al.

(2009), Baratte and Bonnaud (2009), Navet et al. (2009),

Wollesen et al. (2009), Zullo et al. (2009), Zullo and Hochner

(2011), Hochner (2012), Mattiello et al. (2012)

An annotated bibliography on classical contributions to cephalopod’

biology and physiology is also provided by Ponte et al. (2013).

References to relevant studies included are given as examples
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Care and welfare of cephalopods in neuroscience

research and the need for guidelines

The inclusion of all live cephalopods (i.e. larval and adult

forms) in the new EU Directive has a number of practical

implications for those undertaking research involving

cephalopods, irrespective of the subject area. Guidelines

for the general care and welfare for vertebrate laboratory

species such as mammals (Sikes and Gannon 2011) and

fishes (DeTolla et al. 1995; Hawkins et al. 2011a) are well

developed, and specific guidelines are available for the

welfare of vertebrates used in particular types of research

such as cancer (Workman et al. 2010). For vertebrates in

general and mammals specifically, objective criteria for

identification and assessment of pain, suffering, distress

and lasting harm are well researched (e.g.: Morton and

Griffiths 1985; Bateson 1991) and protocols for surgery,

anaesthesia, analgesia and humane euthanasia established.

However, for cephalopods such knowledge is relatively

rudimentary and maybe further hampered by lack of spe-

cific veterinary expertise; as in contrast to vertebrates,

cephalopods are not common companion animals, although

they are often found in display aquaria and knowledge

gained in this setting is making a useful contribution to

understanding their general welfare requirements.

The Directive is likely to stimulate research in the above

areas so as to facilitate development of evidence-based

guidelines for optimal care and welfare (Moltschaniwskyj

et al. 2007; Louhimies 2011; see for example: Andrews

2011a, b; Goncalves et al. 2012; Sykes et al. 2012;

Andrews et al. 2013; Smith et al. 2013).

The text of the Directive does not provide specific

guidance on the above aspects for cephalopods, and at

present, there are no national codes of practice for care and

use of cephalopods under the terms of the Directive. In

view of this, the cephalopod research community initiated

a project to develop guidelines for the Care and Welfare of

Cephalopods in Research. This project is an initiative4

between the Federation of European Laboratory Animal

Science Association (FELASA: www.felasa.eu), the Boyd

Group (http://www.boyd-group.demon.co.uk/) and Ceph-

Res (www.cephalopodresearch.org). The guidelines are

being developed based upon structured discussions

amongst 30 active cephalopod researchers drawn from 26

research institutes in 11 countries including from outside

the EU. The discussions also included national and EU

legislators and regulators, as well as researchers with

expertise in vertebrate animal welfare (i.e. Giovanni Botta,

Italy; Paolo De Girolamo, Italy; Ngaire Dennison, UK;

Tore Kristiansen, Norway; Marcello Raspa, Italy; Jane

Smith, UK; David Smith, UK). Some of the main points

arising from these discussions, with particular impact upon

neuroscience research, are discussed below. It must be

emphasised that these only provide an overview, and there

are still many areas of contention. More detailed reviews of

specific aspects and species should be consulted for more

practical information.

Table 3 summarises some of the main reviews and

topics in this area. However, given that there are more than

700 known living species of cephalopods of which a wide

variety are used for scientific purposes, care should be

taken to meet the particular requirements of individual

species involved in experiments or other scientific proce-

dures. Species-specific guidelines will need to be devel-

oped, and for many aspects of care and welfare, this will

require research, but here we focus on the more generic

Table 3 Summary of resources relevant to implementation and

compliance with specific aspects of Directive 2010/63/EU in relation

to cephalopods

Area covered by the Directive References

Biology including normal

behaviour and physiology

Bullock (1965), Wells (1962,

1978), Hanlon and Messenger

(1996), Norman (2000), Boyle

and Rodhouse (2005), Borrelli

et al. (2006), Boal (2011)

Overview of Directive

requirements and project

(‘‘ethical’’) review

Smith et al. (2013)

List of what needs to be done if

you are a researcher

Ethics of cephalopod research

and invertebrates in general

Mather and Anderson (2007),

Moltschaniwskyj et al. (2007),

Andrews (2011a), Horvath

et al. (2013)

3Rs principles in relation to

cephalopod research including

worked examples of project

review

Smith et al. (2013)

Various aspects of general

maintenance, handling, rearing

and culture of a number of

cephalopod species

Grimpe (1928), Walker et al.

(1970), Boletzky and Hanlon

(1983), Boal (2011), Sykes

et al. (2012)

Pain, suffering and distress in

cephalopods

Crook and Walters (2011), Crook

et al. (2011, 2013), Andrews

et al. (2013)

Approaches to objective

measurement of cephalopod

health and welfare

General anaesthesia Gunkel and Lewbart (2008),

Pagano et al. (2011), Lewbart

and Mosley (2012), Goncalves

et al. (2012), Gleadall (2013),

Andrews et al. (2013)

Euthanasia Boyle (1991), Demers et al.

(2006), Andrews et al. (2013)

4 Developing guidelines for the care and welfare of Cephalopods

under European directive 2010/63/EU. Available at: http://www.

felasa.eu/announcements/felasa-collaboration-on-cephalopods.
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issues relating to the cephalopod species most commonly

used in the EU, as a baseline for future Guideline

development.

Care and welfare of cephalopods: an introduction

This section discusses some of the key areas covered by the

Directive and which we believe impact particularly upon

neuroscience research involving cephalopods.

Sources of animals

Cephalopods used in research are currently commonly

taken from the wild (for review on fishing methods see:

Lane 1960; Boyle and Rodhouse 2005) mainly because of

the difficulties of laboratory breeding of many but not all

species. Recent exceptions are, for example, S. officinalis,

Octopus bimaculoides, Euprymna scolopes (review in

Albertin et al. 2012). However, the Directive (Article 9)

prohibits capture in the wild unless an exemption has been

granted by the NCA. In practice, this means that animals

may still be obtained from the wild provided that this can

be justified to the Competent Authority. In addition, cap-

ture must be undertaken by competent persons using

methods which do not cause pain, suffering, distress or

lasting harm.

Wild caught animals may be obtained from approved

suppliers (including authorised laboratories specialising in

cephalopod research or specialist importers as in the case

of Nautilus), but they must also obtain approval for the

capture from the NCA.

Depending upon the research project, one potential issue

with using research animals from the wild is that it may be

harder to ensure ‘‘standardised’’ groups of animals both

within a study continuing over several years and to permit

comparison between research groups in different locations.

This inherent variability may lead to the use of a larger

number of animals than in other studies to demonstrate

statistically significant effects, particularly in behavioural

studies, and this could become an issue in project evalua-

tion and authorisation where factors taken into account

include animal numbers (estimates may include power

calculation) and experimental design (including statistical

analysis) to ensure that the minimum number of animals

are used to achieve the scientific objective (see instructions

and citations included in Animal Behaviour 2012).

Transport, quarantine and acclimatisation

Transport of animals should be minimised, and where

possible the researcher should travel to study the animals

not vice versa. A solution is to transport eggs rather than

animals (e.g. cuttlefish) and to culture these; however, as

mentioned above, this is not possible for most cephalopod

species. Transport of animals should always be in sea

water. The levels of available oxygen and accumulation of

metabolites in a limited volume are important consider-

ations for transport of living cephalopods, as recommended

in the classic work by Grimpe (1928).

When animals are transported, the potential impact upon

their health and welfare will need to be assessed and

careful consideration given to the time required for adap-

tation before experimentation. On arrival in the laboratory,

all animals should be closely inspected for overt signs of

illness and if necessary advice sought from the person with

legal responsibility for the care of animals (e.g. veterinar-

ian or other appropriately qualified expert) on action to be

taken.

Quarantining the animals is good practice whether they

come from the wild or an authorised breeder/supplier as it

reduces the risk of introducing infectious agents or para-

sites that could spread to other animals. It also gives time

for diseases to manifest before animals are assigned to a

research project requiring long-term study.

Irrespective of their origin, animals will need some time

to acclimatise to their novel home or experimental envi-

ronment (review in: Grimpe 1928; Borrelli 2007; Borrelli

and Fiorito 2008) before any experimental procedures can

be contemplated, although the nature of the study may

affect the duration of acclimatisation. Research is needed

to identify objective measures of acclimatisation.

Acclimatisation also needs to be considered when

moving animals from one tank to another within the lab-

oratory especially if the animal has been moved out of

water even for brief periods. For example, in E. cirrhosa

Malham et al. (2002) showed that 5-min exposure to air

produced a significant increase in plasma noradrenaline

lasting up to 30 min and in reactive oxygen species lasting

2 h. The experimenter should be aware of potential han-

dling and relocation stress, and their possible impacts upon

their study. For instance, the skin of cuttlefishes and squids

is delicate and may be harmed if they are removed from the

water with nets; nautiluses are particularly sensitive to

exposure to air (J. Basil, personal communication), and this

should be avoided if possible by transporting them in

vessels containing sea water; for octopuses, it is acceptable

to use wet nets with a fine mesh (but see Walker et al.

1970). Movement of animals should be minimised.

Environment and its control

Water supply and quality

As a minimum, sea water salinity, dissolved oxygen, pH,

nitrogenous compounds and temperature must be
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monitored and maintained within physiological ranges

reported for each species.

Cephalopod housing systems currently are predomi-

nantly based on open systems where a continuous supply of

fresh sea water from a nearby location is available. More

recently, efficient and relatively easily maintained closed

aquarium systems have been developed (Toonen 2003;

Gutnick et al. 2011b). In open sea water systems, water

flow and exchange should be high enough to maintain

water quality comparable to natural conditions. In a closed

system, sea water salinity, dissolved oxygen, pH, nitroge-

nous compounds and temperature must be monitored and

maintained within physiological ranges reported for each

species.

Commercially available artificial seawater preparations

are considered adequate and contain all the necessary

substances and trace elements to keep cephalopods in good

health (e.g. any mixture designed for marine invertebrates

and corals but not fish is recommended). Trace elements, in

particular strontium and calcium, should be monitored and

added, if necessary.

Cephalopods are reported to accumulate (e.g.: Storelli

et al. 2005; Seixas et al. 2005; Seixas and Pierce 2005;

Raimundo et al. 2005; Napoleao et al. 2005; Raimundo and

Vale 2008; Lacoue-Labarthe et al. 2008; Bustamante et al.

2008; Raimundo et al. 2009, 2010b; Pernice et al. 2009;

Lourenco et al. 2009; Galitsopoulou et al. 2009; Pereira

et al. 2009; Cirillo et al. 2010; Lacoue-Labarthe et al.

2012), and be sensitive to heavy metals (Raimundo et al.

2010a; de Polo and Scrimshaw 2012; Semedo et al. 2012),

so care should be taken to ensure these are monitored and

maintained within normal ambient ranges.

It is important to keep water and tanks clean of animal

waste, uneaten food or inedible components (e.g. crab

shells).

Light requirements

Photoperiod and light intensity should be maintained

according to the natural living habits and possibly the

geographical origin of the animal. A simulated dusk and

dawn period is desirable. In the great majority of cases,

cephalopods will adapt to changes in the lighting condi-

tions in captivity (see for example: Fiorito et al. 1990;

Borrelli 2007; Sykes et al. 2011). A number of studies have

been carried out to analyse the circadian rhythm of several

species (Houck 1982; Meisel et al. 2003, 2006; Brown

et al. 2006; Frank et al. 2012). Recent studies also revealed

an effect of light regimes on the growth of cuttlefish (Sykes

et al. 2013). However, further studies are required to assess

whether significant deviations in light intensity or photo-

period from the natural environment negatively impact

animal welfare.

The use of a weak ambient light (e.g. moonlight lamp)

or a specific red light illumination reduces the risk of dis-

turbance when observation of the animal is required at

night (e.g. Allen et al. 2010).

Noise and vibration

Recent evidence provides preliminary information on the

impact of sound on cephalopods well-being (Guerra et al.

2007; André et al. 2011; Fewtrell and McCauley 2012).

Noise, vibration and other sources of disturbance should be

avoided; those originating from aquarium systems should

be minimal, and preferably pumps and any other noise

sources should be placed in a separate room.

Assessment and maintenance of health and welfare

Animals must be inspected at least once a day by a com-

petent person, and a record kept of their conditions

(Directive Annex III requirement). Signs of health and

illness in cephalopods vary with species (for a review of

possible signs due to diseases see: Hochberg 1990; Hanlon

and Forsythe 1990a, b). Signs based upon appearance,

behaviour and physiology which could be used as part of

health monitoring programme are summarised below.

Criteria for identification of well-being and illness are

closely related to the development of signs of pain, suf-

fering, distress and lasting harm (PSDLH) required for

assessment of the impact of regulated procedures and

development of humane end points5 for studies (Andrews

2011a; Andrews et al. 2013) including assessment of the

effect of surgical procedures or drug treatments on the

animals. Signs of illness and PSDLH also need to be

capable of some quantification to assess their magnitude

and duration for implementing humane end points and

reporting data (a requirement under the Directive, for

publication by the EU) on the actual severity of effects

caused by procedures (e.g. mild, moderate, severe) in

comparison with that anticipated at the time of project

evaluation. This is an area requiring considerable research,

and the criteria outlined below should be viewed as a

starting point, from which more detailed guidance is being

developed (for details see Andrews et al. 2013).

For each of the categories below, consideration needs to

be given to grading the signs to link to the assessment of

severity. For example, what degree of weight loss would be

considered mild, moderate and severe?

5 I.e. the predetermined criteria which if they are reached result in

termination of the procedure or require treatment/euthanasia of the

animal.
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Indicators based on appearance of the animal

• Abnormal body colouration and body patterning, skin

texture including swellings (bruising or oedema) and

compromised skin integrity (erosion and ulceration);

for examples see figures included in Hochberg (1990)

and Hanlon and Forsythe (1990a, b). Skin lesions

should always be closely monitored and if possible

treated. For example, E. cirrhosa housed long term in

the laboratory died within 2–4 days of the skin ulcer-

ating (Boyle 1981, 1991).

• Abnormal morphology or damage to cuttlebone or

shell.

• Abnormal body posture or position in the water

column.

• Abnormal appearance as a result of body weight loss,

possibly secondary to reduced food intake.

Indicators based upon the behaviour of the animal

• Reduced or absent food intake and a reluctance to feed

or to attack (consider that reduced feeding during ac-

climatisation should be expected).

• Reduced or absent social interaction in social species

and refusal or reluctance to leave a shelter in solitary

housed species (e.g. O. vulgaris); lack of response to

external stimuli or a sluggish response and in octopus a

lack of natural curiosity.

• Stereotypic or repetitive behaviours.

• Reduced or excessive grooming and guarding behav-

iour of a body part.

• Abnormal motor or locomotor coordination.

• Autophagy or automutilation normally indicated by

removal of one or more arms (Reimschuessel and

Stoskopf 1990; Budelmann 1998).

• Excessive, uncontrolled or inappropriate inking.

Clinical signs

• Abnormal change (increase or decrease) in ventilation

defined by rate, depth and coordination.

• Reduction in body weight over specific periods of time.

• Biomarkers such as phagocytes and catecholamines in

the blood may increase due to several causes (e.g.:

Malham et al. 1998a, b, 2002).6

Causes of illness in cephalopods

Knowledge of the causes and diagnosis of illness (taken

here to be any deviation from normal functionality) in

cephalopods is rudimentary in comparison with fish and

other vertebrates. The Directive’s requirement for health

monitoring should act as a stimulus to research in this area

and in particular systematically collection, collation and

exchange data. It will be important to distinguish between

illness acquired in the wild, acquired in the laboratory and

congenital defects. Causes of illness can be summarised

under the following headings, but each cause requires

detailed research, as do treatments.

1. Physical trauma This includes skin, shell, pen or

gladius and cuttlebone damage during capture of wild

caught animals or by collision with a transport or

holding tank wall (Grimpe 1928; Boyle 1981). Bites

and limb amputation are also commonly observed in

wild caught animals (e.g. O. vulgaris, Florini et al.

2011) but may also occur during fighting, cannibalistic

behaviour (Ibáñez and Keyl 2010) or by autophagy/

automutilation (Reimschuessel and Stoskopf 1990;

Budelmann 1998).

2. Parasites, bacteria and viruses Host defence mecha-

nisms in cephalopods have been reviewed by Ford

(1992) and recently by Castellanos-Martinez and

Gestal (2013). In the words of Boyle, ‘‘Cephalopods

carry a wide variety of parasites and symbionts which

include viruses, bacteria, fungi, sporozoans, ciliates,

dicyemids (mesozoa), monogeneans, digeneans, ces-

todes, acanthocephalans, nematodes, polychaetes, hiru-

dineans, branchiurians, copepods and isopods’’ (Boyle

1991, p. 133). However, there appear to be few data on

the health impact (if any) of these various organisms,

although it is likely that bacteria and viruses are causal

agents of illness particularly in senescing animals with

compromised defences (Anderson et al. 2002; Pascual

et al. 2010). The cases provided below represent only

few examples.

Bacteria have been isolated from skin lesions in

octopus and squid (e.g.: Hanlon et al. 1984; Pascual

et al. 2006) and infection of Octopus joubini with

Vibrio alginolyticus induced skin ulceration in 2 days

(as reported by Boyle 1991) and in E. cirrhosa a

related Vibrio sp. (obtained from the diet) impaired

skin would healing (Polglase et al. 1983; Bullock

et al. 1987).

The gastrointestinal coccidian parasite Aggregata

octopiana is found in O. vulgaris and produces

malabsorption syndrome impacting growth (Castell-

anos-Martinez and Gestal 2011; but see also Castell-

anos-Martinez and Gestal 2013). A related organism

6 Note there is also a possibility of measuring faecal steroids (e.g.

cortisol) as well as reproductive hormones (Larson and Anderson

2010) to assess welfare with the advantage that such techniques are

noninvasive.
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(A. andresei) has been identified in the flying squid,

Martialia hyadesi (Gestal et al. 2005). Larval nem-

atodes including Ascaris and Anisakis (commonly

found in fish) and larval and adult trematodes are

reported in many cephalopod species (Hochberg 1990;

Pascual and Hochberg 1996), but the health impact (if

any) on the cephalopod is not known (for review see

also Castellanos-Martinez and Gestal 2013).

The bacterium Vibrio fischeri has been studied exten-

sively as it is a symbiont of the bobtail squid,

E. scolopes (McFall-Ngai 1994; Nyholm et al. 2009;

McFall-Ngai et al. 2010; Rader and Nyholm 2012;

Collins et al. 2012; Nyholm and Graf 2012) and should

not be considered as a disturbance.

3. Toxic substances As reviewed by Smith (2008) and

Smith et al. (2008) toxic agents may originate from

food and seawater. Food, particularly crustacea and

bivalves, are a potential source of a number of

neurotoxins including paralytic, diarrhoeic and neuro-

toxic shellfish toxins (Watkins et al. 2008; for review

see for example: Wang 2008; see also Paredes et al.

2011). Although the clinical effects of these toxins on

humans are clear, the impact (if any) on cephalopods is

not known, but—in view of the number of brain

behavioural studies in which cephalopods are used—

studies of the potential effect of the neurotoxic

substances (including amnesia inducing toxins

reported in cephalopods; e.g.: Costa et al. 2005; Costa

and Pereira 2010; Lage et al. 2012; Braid et al. 2012)

are needed to assess whether this could be a con-

founding factor in some research studies. Sea water

may become toxic from excess levels of heavy metals

and environmental pollutants. Little is known of

the sensitivity of cephalopods to specific agents

(e.g.: Raimundo et al. 2010a; Semedo et al. 2012).

Measurements of antioxidant enzyme activity (cata-

lase, superoxide dismutase, and glutathione S-transfer-

ases) in the digestive gland have been shown to be

markers of oxidative stress induced by metal accumu-

lation in O. vulgaris (Semedo et al. 2012). Recent

studies have also shown that ingested nanoparticles

induce immune responses in the octopus (Grimaldi

et al. 2013). Sea water may also become toxic if

oxygen, carbon dioxide, pH and nitrogenous waste

products are outside normal limits (e.g.: Gutowska

et al. 2010a, b; Hu et al. 2011) particularly if

accompanied by elevated temperature.

Age estimation and senescence

Age estimation in cephalopods is essentially based upon

direct methods (Semmens et al. 2004) and analysis of

increments in internal structures (e.g.: Choe 1963;

Bettencourt et al. 1996; Perez et al. 1996; Le Goff et al.

1998; Jackson and Moltschaniwskyj 1999; Bettencourt and

Guerra 2000; Arkhipkin 2005; Hall et al. 2007; Ikeda and

Kobayashi 2010; Hermosilla et al. 2010; Canali et al.

2011a, b; Lei et al. 2012; Arkhipkin and Shcherbich 2012;

Raya et al. 2013). Further research is recommended to

estimate age in cephalopods in vivo.

With age, cephalopods undergo the natural process of

senescence, a process where the body appears to ‘‘shut

down’’ in females after brooding (review in Rocha et al.

2001) and the animal begins to die. The clinical signs of

animals in senescence include reduced or absent drive to

eat, cloudy eyes and changed behaviour (Chichery and

Chichery 1992a, b; Dumont et al. 1994; for review see also

Anderson et al. 2002). Good record keeping of age may

help to differentiate between animals that are affected by

diseases or simply show signs of senescence.

The predictable onset of senescence in some species of

cephalopods post-reproduction (Rocha et al. 2001; but see

also Anderson et al. 2002) and the modulation of the pro-

cess by the secretions from the optic gland (Wodinsky

1977) may make cephalopods a model for investigating the

impact of senescence on the brain (see also: Chichery and

Chichery 1992a, b; Dumont et al. 1994) and provide

insights in neuroprotective mechanisms. Such studies

would need to be justified in the project evaluation process

and in particular the potential welfare issues regarding the

care of senescent animals carefully considered (see Smith

et al. 2013 for discussion).

Housing and care

Tank specification and location

Tank requirements (for review see also: Grimpe 1928;

Hanlon et al. 1983; Boletzky and Hanlon 1983; Borrelli

2007) vary tremendously between species as do stocking

densities. In some benthic species, the available bottom

surface area is an important requirement, whilst in others

the volume of water is of more relevance. Shape and size of

tanks should accommodate the natural behaviour of the

animals. For example, Nautiloids need to be provided with

vertical space, but benthic cephalopods need to be given

large surface areas rather than deep tanks, and pelagic

species need sufficient space to swim. Smooth, curved

walls are recommended at least for cuttlefish and squid.

Annex III of the Directive requires that ‘‘All animals shall

be provided with space of sufficient complexity to allow

expression of a wide range of normal behaviour. They shall

be given a degree of control and choice over their envi-

ronment to reduce stress-induced behaviour’’. Animals
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should be provided with dens and shelters based upon their

natural requirements. Use of gravel as a substrate for

benthic species is highly recommended, but not mandatory.

Environmental enrichment is already part of the best

practice in cephalopod care for experimental purposes

(e.g.: Fiorito et al. 1990; Mather and Anderson 1999;

Dickel et al. 2000; Anderson and Wood 2001; Poirier et al.

2004; Borrelli 2007; Borrelli and Fiorito 2008; Boal 2011).

It is interesting to note that in the classic work by Grimpe

(1928) gravel, pebbles and stones are recommended to

facilitate self-construction of a refuge by animals. In

addition, other species, such as medium-sized sea stars,

should be accommodated in the tanks to facilitate reduction

in remains of food and faeces (Grimpe 1928). This would

provide the enriched type of environment considered to be

good welfare practice.

Cephalopods can be kept in shared water systems and

rooms with different cephalopods species or other marine

organisms. In principle, there is no need for separate rooms

for experimental treatments and housing, but this will

depend upon the type of study. For example, it is strongly

recommended that a standardised dedicated room is used

for behavioural experiments, and it is not good practice to

perform surgical procedures and euthanasia in the same

room where animals are housed. Moreover, animals sub-

jected to surgical lesions should not be placed in a tank

where there is a possibility that any chemical signal can be

detected by un-operated animals.

Note that Directive Annex III, section A, includes gen-

eral requirements pertaining to all species and also section

B, for fish, where most principles might also apply to

cephalopods.

Animal stocking

Solitary animals (e.g. O. vulgaris) should be kept sepa-

rately. Annex III of the Directive states that social animals

must be socially housed in stable groups of compatible

individuals (e.g. squids), but interactions should be moni-

tored and animals separated if there is evidence of non-

compatibility. Some animals such as Nautilus are primarily

solitary in the wild, but may be housed together at low

densities. The social structures of many species (e.g.

S. officinalis) are not yet known, but captive bred European

cuttlefish adults, as well as hatchling and young of all

sources can be kept in groups (A. Sykes, pers.

communication).

Routine animal care and maintenance

Animal care includes routine maintenance, husbandry, and

animal handling. Handling procedures should be stand-

ardised within the laboratory (and field) to minimise

experimental variability produced by different handlers,

also taking into account that some animals may learn to

anticipate handling procedures (Boycott 1954). As with

any live animal, handling and human interaction should be

kept to the minimum needed to meet daily care and

experimental requirements, standardised and performed by

trained staff only, to minimise stress. Handling and all

human interactions should be recorded, as the amount,

frequency and nature of the interactions can influence

husbandry and the outcome of experiments (for a general

review see: Davis and Balfour 1992). For octopuses, the

effects of rough handling on the skin may not be apparent

until several days (Wells 1962), and as mentioned above,

skin lesions may be fatal (as reviewed in Boyle 1991) so

this could have major consequences if the animal had been

assigned to a study requiring long-term survival. Even for

commonly used laboratory mammals, the effects of dif-

ferent handling techniques are still being discovered; for

example, Hurst and West (2010) compared commonly used

techniques of handling laboratory mice and showed

marked differences in biomarkers of anxiety. For cepha-

lopods, optimal handling protocols need to be identified for

each species to minimise adverse effects, which can be a

confounding factor in experiments.

Feeding

Feeding regimes should fit the lifestyle, natural diet, and

developmental stages of the animals (see reviews in: Bo-

letzky and Hanlon 1983; Borrelli 2007; Sykes et al. 2011,

2012). Cephalopods are carnivorous and, with the exception

of the Nautilus, are predatory, and therefore, the use of live

food can be essential, although may require justification

(Smith et al. 2013). There are many examples of species and

life stages where live prey is the only food accepted, and the

benefits outweigh the risk of disease from the food. Efforts

are underway to develop artificial diets. Daily feeding is

common practice, and higher frequencies might be needed

for young animals. Over feeding is preferred as long as

excess food is removed in a time frame fitting the feeding

habits of the species (Oestmann et al. 1997) and does not

overwhelm the capacity of the filter system of the tank.

Cuttlefish and squid are especially sensitive to lack of food;

dead food can be used as alternative to live in some species

(e.g.: Domingues et al. 2004; Ferreira et al. 2010).

Research is needed to identify optimal nutritional

requirements that ensure health and welfare of each of the

common laboratory species of cephalopod at key life

stages. In addition, studies are needed to understand the

physiological impact of a reduction in food intake because

of illness, as a consequence of a surgical procedure or

pharmacological intervention and as part of a training

protocol for example when food may be used as a positive
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reinforcement. The impact of a particular experimental

protocol upon food intake is likely to be a key question in

harm-benefit evaluation of a project because of the high

metabolic rate of cephalopods.

Identification and marking techniques

Most studies identify animals using individual housing, but

some studies are done with groups of animals. In general,

marking soft parts of cephalopods may have a deleterious

effect on health and welfare and should be avoided. When

scientifically necessary, individual marking may be per-

formed, under anaesthesia, using for example fluorescent

elastomer tags (Zeeh and Wood 2009; e.g. Sepioteuthis sp.:

Ikeda et al. 2009; e.g. Octopus sp.: Barry et al. 2011;

Brewer and Norcross 2012) or integrated archival tags

including implanted microchips (in O. vulgaris: Estefanell

et al. 2011; in S. officinalis: Wearmouth et al. 2013). For

Nautilus, individual shell marking is preferred and can be

done without anaesthesia (J. Basil, pers. communication).

In non-shelled cephalopods, there have been some

reports of the use of unique natural patterns of individual

animals as a means of identification (Huffard et al. 2008).

The application of noninvasive methods for identification

of individuals is important in the interests of animal

welfare.

Procedures

A procedure within the Directive (Article 3, 1) is defined as

‘‘Any use, invasive or noninvasive, of an animal for

experimental or other scientific purposes, with known or

unknown outcome, or educational purposes, which may

cause the animal a level of pain, suffering, distress or

lasting harm equivalent to, or higher than, that caused by

the introduction of a needle in accordance with good vet-

erinary practice’’. Objective criteria will need to identified

by which it is possible to determine whether a particular

procedure causes pain, suffering, distress or lasting harm

equivalent or higher than that caused by the skilled intro-

duction of a needle. In addition, the Directive also makes

specific references to humane methods of killing (Article 6)

and the use of anaesthesia and analgesia (Article 14). The

potential impact upon many aspects of cephalopod research

in general and the broad range of neuroscience research in

particular is considerable. To illustrate this, examples of

published studies are listed in Table 4, which are now

likely to be regulated under the scope of the Directive if

performed in the EU. In this section, we focus on some

specific aspects to illustrate some challenges to neurosci-

ence research presented by the above aspects of the

Directive.

Pain, suffering, distress and lasting harm (PSDLH)

One of several drivers for the inclusion of cephalopods in

the Directive was a review of the evidence relating to

their ability to perceive pain (EFSA Panel on Animal

Health and Welfare 2005). The criteria used in the EFSA

report have recently been reviewed in detail (Andrews

et al. 2013) as has nociception in invertebrates (Crook and

Walters 2011). At the time of the EFSA report (2005),

evidence for the existence of nociceptors in cephalopods

was largely circumstantial. Recently, afferents with the

characteristics of nociceptors sensitive to mechanical

stimulation have been described in a squid and evidence

provided for long-term sensitisation (Crook et al. 2013).

However, there are major gaps in our knowledge of the

central processing of the information arising from the

nociceptors in invertebrates in general and cephalopods

specifically (Crook and Walters 2011; Andrews et al.

2013). The anatomy of the afferent projections from the

arms and various lobes of the brain has been described for

O. vulgaris, S. officinalis and L. vulgaris (Budelmann and

Young 1985, 1987), but again neurophysiological studies

are needed to understand the central processing of infor-

mation from well-characterised nociceptors. Until such

studies are performed, ‘‘pain perception’’ (i.e. what the

animal might ‘‘feel’’ as a result of nociceptor activation)

in cephalopods will remain a contentious issue. However,

from an animal welfare perspective, researchers should be

mindful of stimuli likely to activate nociceptors in their

experimental protocols and either justify their use or take

action to mitigate the impact. Neurophysiological studies

in combination with behavioural studies will also be

required to identify substances with analgesic effects that

can be used postoperatively and to identify the mecha-

nism(s) by which substances with presumed general

anaesthetic actions in cephalopods act.

In addition to the physiology and pharmacology of

pain perception in cephalopods, objective criteria for the

identification and measurement of pain are required as

part of welfare assessment and in particular to assess the

impact of any experimental intervention. Although a great

emphasis is rightly placed upon pain, equal consideration

needs to be given to other ways in which an animal may

suffer, be in distress or be caused lasting harm in an

experimental setting and ways in which they can be

identified and measured. Examples of ‘‘non-painful’’ types

of suffering could include isolation in social species,

housing in a tank of inappropriate size or with no refuge

or being caused fear and anxiety (see Hawkins et al.

2011b for other examples). A preliminary approach to

monitoring PSDLH in cephalopods has been recently

described (see Table 1 in Andrews et al. 2013) based

upon the types of criteria that have been developed over
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many years for mammals (e.g. Morton and Griffiths

1985).7
General anaesthesia

General anaesthesia is required for performing surgical

procedures followed by recovery (e.g. selective brain or

nerve lesions, implantation of telemetry devices) for some

types of in vivo physiological study (e.g. reflex control of

Table 4 Examples of published research on cephalopods which if carried out in the EU would now be likely to come within the scope of

Directive 2010/63/EU

Research topic or technique References

Implantation of electromyographic electrodes under anaesthesia in cuttlefish

fin muscle and recording from unanaesthetised animals

Kier et al. (1989)

Removal of optic glands under anaesthesia followed by recovery (study

effect on senescence)

Wodinsky (1977)

Sampling of haemolymph usually under anaesthesia Malham et al. (1998a), Collins and Nyholm (2010),

Grimaldi et al. (2013), Locatello et al. (2013)

Implantation of a catheter into the dorsal aorta for administration of drugs to

the brain

Andrews et al. (1981)

Investigation of the efficacy of different anaesthetic techniques and

mechanisms of anaesthesia

Andrews and Tansey (1981), Messenger et al.

(1985), Seol et al. (2007), Sen and Tanrikul

(2009), Pagano et al. (2011), Goncalves et al.

(2012), Gleadall (2013)

Implantation of electrodes for recording or stimulation into the brain under

anaesthesia followed by investigation of the effects in the conscious animal

Chichery and Chanelet (1976), Brown et al. (2006),

Shomrat et al. (2008), Zullo et al. (2009), Mooney

et al. (2010), Shomrat et al. (2011)

Removal of an arm or a tentacle with or without anaesthesia to investigate

regeneration or the acute tissue and behavioural response to injury

Lange (1920), Crook et al. (2011), Fossati et al.

(2013), Tressler et al. (2013)

Administration of substances into the circulation via the branchial hearts or

intramuscular routes or directly into the brain

Agnisola et al. (1996), Fiorito et al. (1998), Agin

et al. (2003), Graindorge et al. (2008)

Tracing nerve pathways using marker injection under anaesthesia followed

by recovery to allow marker transport

Gaston and Tublitz (2004), Tublitz et al. (2006)

Implantation of electronic tags for tracking movement in the wild Wearmouth et al. (2013)

Noninvasive measurement of brain size and arm morphology under

anaesthesia with or without recovery

Grimaldi et al. (2007), Margheri et al. (2011b)

Killing animals (including hatchlings) to remove tissue (e.g. arm, brain), for

study in vitro (e.g. brain slices), histological and molecular studies

particularly if the study involves ‘‘nonstandard’’ methods

Kier et al. (1989), Westermann et al. (2002),

Hochner et al. (2003), Kier and Stella (2007),

Mackie (2008), Hague et al. (2013)

Brain or peripheral nervous system lesions under anaesthesia followed by

recovery

Fiorito and Chichery (1995), Sumbre et al. (2001),

Graindorge et al. (2006, 2008)

Use of aversive stimuli (e.g. electric shock, bitter taste) in training protocols Robertson et al. (1994, 1995, 1996), Darmaillacq

et al. (2004), Borrelli (2007)

Deprivation of food for 5 days, feeding with barium sulphate labelled

shrimps, constraint of the animal and exposure to X-rays for imaging gut

contents

Westermann et al. (2002)

Exposure of an animal to a potentially ‘‘stressful’’ environment/stimulus as

an experimental procedure; examples include a large moving shape, a

larger conspecific, a predator, air or sea water with temperature or oxygen

partial pressure outside the normal aquarium range or manipulation of

natural photoperiod/light intensity. Noninvasive immobilisation

(confinement) may also constitute a stressful stimulus. The intensity,

duration and exposure frequency are all factors which need to be

considered

Malham et al. (2002), Cole and Adamo (2005), King

and Adamo (2006), Adamo et al. (2006), Kuba

et al. (2006), Canali et al. (2011a)

Production of hatchlings with deleterious phenotypes/genotypes by exposure

of the eggs to a harmful environment or mutagen or genetic manipulation

Rosa et al. (2012)

Note that not all examples relate to invasive or surgical procedures (see also Ponte et al. 2013 for other resources). Papers have been selected to

illustrate the diversity of studies likely to be regulated, and no comment is made about whether a particular study would now be permitted by a

particular national competent authority

7 For severity assessment see also: http://ec.europa.eu/environment/

chemicals/lab_animals/pdf/Consensus%20doc%20on%20severity%

20assessment.pdf.
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the cardio-respiratory system, investigation of somato-

sensory processing) and to permit handling for veterinary

investigation and treatment. Over the last century, a diverse

range of substances has been used to induce general

anaesthesia in cephalopods (Pagano et al. 2011; Goncalves

et al. 2012; Gleadall 2013; Andrews et al. 2013), but there

have been relatively few studies utilising objective criteria

to define the anaesthetic state or the mechanism and site of

action and little consideration has been given to the pro-

cedures used from a welfare perspective (e.g. how aversive

are the agents used?). Recently, isoflurane as been tested as

an anaesthetic in O. vulgaris (Di Cosmo, pers. communi-

cation), but more investigation is required.

All current techniques use immersion in sea water

containing the anaesthetic agent. Magnesium chloride and

ethanol, used either separately or in combination, are the

most commonly used agents. Following Andrews et al.

(2013), criteria for assessment of general anaesthesia in

cephalopods include: (1) depression of ventilation and in

some cases cessation, probably accompanied by reduced

cardiac activity; (2) decrease in chromatophore tone

(indicative of reduced drive to or from the sub-oesophageal

chromatophore lobes); (3) reduced arm activity, tone and

sucker adhesion (particularly octopus); (4) loss of normal

posture and righting reflex; (5) reduced or absent response

to a noxious stimulus. The last needs to be used with some

care as in O. vulgaris arms removed from the body with-

draw in response to a noxious stimulus (Hague et al. 2013).

Studies are urgently required to understand the way in

which the putative anaesthetic agents act on the nervous

system to produce the above effects and to render the

animal into a presumed state of insensibility and uncon-

sciousness. The site and mechanism of action of general

anaesthetics has been studied extensively in mammals (e.g.

Angel 1993), but there are few studies in cephalopods (e.g.:

Andrews and Tansey 1981; Messenger et al. 1985),

although with their high degree of encephalization com-

bined with a brain organised in a fundamentally different

way from vertebrates studies of general anaesthesia may

provide novel insights into mechanisms of consciousness.

Humane methods of killing

The Directive requires that if it is necessary to kill an animal

(e.g. at the end of project, to obtain tissue for an in vitro

study, because a humane end point is reached), it must be

done ‘‘with the minimum of pain, suffering and distress’’

(Article 6). Acceptable methods should comply with the

general principles of humane animal euthanasia set out in

Demers et al. (2006) and Annex IV of the Directive.

Identification of humane methods for killing is a par-

ticular challenge for neuroscience as physical destruction

of the brain is a commonly used method and maybe

acceptable if the method used can be demonstrated to be

humane, but it is obviously not suitable when the brain is

the subject of study. Similarly, overdose of general

anaesthetic is often used, but again could be argued to

compromise subsequent studies of brain function because

of the residual pharmacological effect of the agent used and

the effects of asphyxia caused by the prolonged (usually

[30 min) immersion in anaesthetic needed to kill the

animal. Such constraints may encourage investigation of

electrical euthanasia methods similar to those used for

crustaceans (Neill 2010). Annex IV of the Directive also

includes methods for confirmation of death, and these are

discussed in relation to cephalopods in Andrews et al.

(2013). It should also be noted that the requirement for

humane killing also applies to hatchlings. In this last case,

killing by direct immersion in fixative would not now be

considered acceptable in the EU, although it might be

possible to obtain permission to use this as a method if it

could be justified to the NCA.

Humane killing methods for both hatchlings and

developmental stages through adult cephalopods require

additional research, but in the interim it is proposed that

animals are either anaesthetised prior to mechanical

destruction of the brain (this may be difficult in nautiloids)

or if the brain is required that animals (including hatch-

lings) are killed by prolonged immersion in anaesthetic,

recognising that the impact upon the brain will need to be

considered in the light of the scientific objectives and that a

shorter period of anaesthesia followed by decapitation

when the animal is insensible may need to be considered

(Andrews et al. 2013).

Replacement, refinement and reduction and cephalopod

research

The principles of Replacement, Refinement and Reduction

(‘‘3Rs’’) developed by Russell and Burch (1959) as key

elements of humane experimentation involving sentient

animals are at the heart of the Directive (Article 4), and

project evaluation prior to authorisation requires an

assessment of how the 3Rs are addressed in the proposed

study (Article 38). Replacement ‘‘of the use of a regulated

living animal’’ is often used in the context of pharmaceu-

tical research to describe replacing a test (e.g. for drug

efficacy) in a living animal with one using a microorgan-

ism, human tissue or in silico methods. Superficially,

‘‘replacement’’ may not appear to apply to most cephalo-

pod research as many researchers are undertaking the

research because they have a specific interest in an aspect

to cephalopod biology, but ‘‘replacement’’ requires

researchers to consider a priori whether they need to use a

‘‘living animal’’ (of a species covered by the Directive) to
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answer the specific research question or whether the same

research question could be tackled in another way which

could e.g. include in vitro studies of tissue take from the

same species provided that the animal is killed using an

approved humane method.

Most researchers will already be applying the principle

of ‘‘reduction’’ to their studies as this relates to the use of

the minimum number of animals required to achieve the

scientific objectives of the project and is an inherent part of

good experimental and statistical design. Although not

strictly an example of ‘‘reduction’’ within the meaning of

the 3Rs the Directive also makes a specific point (Article

18) about sharing organs and tissues from killed animals.

This could contribute to a reduction in the overall number

of animals used within an institute by coordinating the

killing animals at the end of a procedure with in vitro

studies requiring fresh living tissue and/or banking tissue

for molecular or histological studies. In the case of the

latter, tissue could be shipped to other institutions.

Refinement is the ‘‘R’’ most likely to impinge upon current

cephalopod research by requiring that experimental proce-

dures, housing, husbandry and all aspects of care are

‘‘refined’’ so that they cause the minimum possible pain,

suffering, distress or lasting harm throughout the life of the

animal being used. Refinement of current best practice in the

care and welfare assessment of the various cephalopod spe-

cies will evolve by research to provide evidence to support

changes of approach and technique that reduce adverse

effects and maybe informed by approaches to refining pro-

cedures commonly carried out on laboratory vertebrates

(Hawkins et al. 2011a). For experimental procedures,

refinement requires the researcher to carefully examine their

protocols and see where changes in can be made in any aspect

likely to cause PSDLH to reduce adverse effects whilst

achieving the scientific outcome. For example, it might be

asked whether the number of haemolymph samples taken or

number of drug doses given each day could be reduced; or

whether positive reinforcement could be used instead of

negative ones in training protocols; and whether induction of

general anaesthesia could be made more humane by exposing

the animal to a gradually rising concentration of anaesthetic

rather than direct immersion in a fully effective concentra-

tion. All three are examples of approaches accepted and used

to refine procedures in vertebrates. Additional examples

using hypothetical research projects involving cephalopods

are discussed in Smith et al. (2013).

Conclusion

Directive 2010/63/EU is a milestone for invertebrate research

in the EU because it is the first time particular types of research

involving an entire class of invertebrates, the cephalopods,

will be regulated in the same way as scientific projects

involving vertebrates. Although regulation presents chal-

lenges, there are several areas where neurophysiological and

behavioural neuroscience research could be useful to address

key questions related to cephalopod care and welfare dis-

cussed above. Most researchers already recognise the rela-

tionship between good welfare and good science, but the

development of consensus Guidelines for Care and Welfare of

Cephalopods led by the research community will facilitate the

dissemination and adoption of good practice. Guidelines are

being developed based upon literature review and discussion

meetings, but they are only an initial step and evolution of such

guidelines will rely upon capturing the experience and

knowledge of the cephalopod research community. It is hoped

that this review will prompt readers to investigate some of the

neuroscience questions posed and to contribute to the future

development of guidelines for optimal care and welfare of

cephalopods via publication and contributions to online

research fora (e.g. CephRes: www.cephalopodresearch.org;

CephSeq: http://cephseq.org/; Cephalopod International

Advisory Council: http://www.abdn.ac.uk/CIAC/).
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