

Stefanie Rettig¹, Lars Kindermann¹, Sebastian Menze¹, Ilse van Opzeeland¹, Christopher Clark², Olaf Boebel¹

¹ Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany ² Bioacoustics Research Program, Cornell Lab of Ornithology, Ithaca, NY, USA

Passive Acoustic Monitoring (PAM) in the Southern Ocean: three generations of autonomous recorders in a basin wide array

Passive acoustic monitoring (PAM) has emerged as a highly efficient technology for long-term, year-round monitoring of marine mammals at (species dependent) local to basin scales, providing valuable new insights into species' distributions and migration patterns. To study Antarctic mammals and their acoustic environment, we are in the process of establishing a basin scale array of ca. 20 autonomous recorders within the Weddell Gyre (Fig. 1 and 2). Due to this region's remoteness, challenging accessibility, and ensuing logistic constraints, especially during austral winter, recording devices were/are deployed for extended periods (typically 2-3 years), resulting in high demands on their power efficiency and storage capability. Three types of autonomous acoustic recorders, AURAL, MARU and Sono.Vault were deployed and partially have been recovered. AURAL and MARU were deployed in March 2008 and December 2008, respectively, and recovered in December 2010. A set of 8 Sono.Vault recorders were deployed in December 2010 and are scheduled for recovery in December 2012. Hence, *in-situ* recordings are available for AURAL and MARU to evaluate their performance and guide instrument settings of future deployments. For Sono.Vaults, laboratory tests provide a first technical evaluation of these newly developed systems.

	Aim:	Constraints:	
	Establish basin scale PAM	Logistic:	
35	array of up to 20 acoustic	 Limited accessibility: study area 	
-	recorders to:	visited once per year only;	
	 Understand marine mammal distribution and acoustic ecology: 	 High costs: joint moorings with oceanography; mooring turnaround every 2-3 years. 	
NIOZ]	 Map the underwater ambient 	Environmental:	
	noise environment and changes	 Ice cover and adverse weather 	

Fig. 2: Weddell Gyre area

CUTURIONS / TECOVERY DELAY DY T-2 years possible;

• Risk of mooring loss due to possible entrapment by passing icebergs.

Requirements for PAM recorders:

- Multi-year recording periods:
 - \rightarrow sufficient data storage and power or
 - \rightarrow subsampling / smart sampling options
- Individual calibration and low electronic noise for ambient noise studies
- Reliability tolerant towards faulty storage media / batteries
- Precise timebase for localization of acoustic sources and event correlation
- Deployment depth greater than 200 m to minimize chance of entrapment by passing icebergs

	(Cornell Lab of Ornithology, USA) 1997	AURAL-M2 (Multi-Electronique (MTE) Inc., Canada) (Develogic Subsea Systems GmbH, Germany) 2009
Specifications	Price (leasing*)14000-16000 US\$ /yearHydrophone typeHTI-94-SSQHydropone sensitivity-168 dB re 1V/μPaADC12 bitGainUser variableSampling frequencyUp to 64 kHzMax. data storageone HDD (120GB)File formatBINHousingGlas Bubble withhardheadMax. deploy. depthMax. deploy. depth6700 mTemperature, Pressure	Price*17400 CAD\$Hydrophone typeHTI-96-minHydrophone sensitivity -162 dB re 1V/µPaADC16 bitADC16 bitGain16, 18, 20, 22 dBSampling frequencyUp to 32 kHzMax. data storage2 HDD (640GB)File formatComposite WAVEHousingStainless Steel, Delrin,Fiberglass/EpoxyFile formatMax deploy, depth300 m (tested)Additional sensorsTemperature, Pressure
Deployment	Image: state of the state of	Number of units depl.2Gain setting22 dBGain setting frequency32 kHzSampling frequency32 kHzRecording interval5 min every 4 hrsStorage capacity160 GBPower supply128 Alkali D-cellsDeployment depthca. 200 m
Results	Image: starting HDD and a now remedied continuous 40 Hz signal with harmonics (Fig. 3). The data contain calls of different cetacean and pinniped species with low background noise. Single Antarctic blue whale (Balaenoptera musculus) Z-calls	$ \begin{array}{ c c } \hline \\ \hline $

60° \//	30° W/ 0°	Numbe
60° S		Gain se
		Samplir
		Recordi
		Storage
Mooring p	ositions	Power s

	Number of units depl.	2
	Gain setting	23.5 dB
	Sampling frequency	2 kHz
	Recording interval	6 min every hour
	Storage capacity	120 GB
	Power supply	Alkali D-Cells
	Deployment depth	ca. 4800 m

	103		
		Deployment period	730 d
	Frequency in Hz	Recording period	357 d (batteries empty)
	10 ¹	Total recording time	855.6 hrs
50 60 70 80 90 100 110 Timeins	60 80 100 Amplitude in dB re 1μPa ² /Hz		

Single Antarctic blue whale (Balaenoptera musculus) Z-calls (28 Hz tonal - downsweep - 19 Hz tonal) can be identified in the MARU recordings.

summer. The spectrogram below shows 3 year of recordings from one AURAL. The background noise decreases during austral winter, concurrent with the presence of sea ice.

The three acoustic recorder types provide:

Biological data:

- providing baseline data on acoustic ecology and occurrence of marine mammals in the Southern Ocean
- gaining insights into local soundscapes and acoustic habitat quality

Information on recorder scheduling for future deployments:

- to evaluate the use of subsampling regimes to maximize the probability of detection of target species (e.g., high frequency odontocetes)
- providing a base for designing smart sampling patterns, e.g. adapt gain in response to changes in background noise
- Recovery of 8 Sono.Vault and 2 AURAL in December 2012

sampling frequencies (i.e. 96 kHz).

kHz, interrupted by regular sampling intervals at higher

- 17 PAM planned to be deployed in December 2012
- **On-going work** Using RAFOS sound sources as calibrated sound signals to estimate acoustic ranges of 260 Hz signals.

Planned PAM moorings for December 2012

e-mail: Stefanie.Rettig@awi.de http://www.awi.de

